
Towards Policy-Supported Adaptable Service Systems

Paramai Supadulchai, Finn Arve Aagesen and Patcharee Thongtra

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N7491 Trondheim, Norway
paramai@item.ntnu.no, finnarve@item.ntnu.no, patt@item.ntnu.no

Abstract. This paper presents a policy-supported architecture for adaptable ser-
vice systems based on the combination of Reasoning Machines and Extended
Finite State Machines. Policies are introduced to obtain flexibility with respect
to specification and execution of adaptation mechanisms. The presented archi-
tecture covers two aspects: service system framework and adaptation mecha-
nisms. The service system framework is a general framework for capability
management. Adaptation mechanisms are needed for autonomous adaptation.
The adaptation mechanisms can be based on static or dynamic policy systems.
Capability management for of a simple music video-on demand service system
with runtime simulation results based on the proposed architecture is presented.

1 Introduction

Networked service systems are considered. Services are realized by service compo-
nents, which by their inter-working provide a service in the role of a service provider
to a service user. Service components are executed as software components in nodes,
which are physical processing units such as servers, routers, switches and user termi-
nals.

An adaptable service system is here defined as a service system which is able to
adapt dynamically to changes in time and position related to users, nodes, capabili-
ties, system performance, changed service requirements and policies. In this context,
capability is defined as an inherent physical property of a node, which is used as a ba-
sis to implement services. Capabilities can be classified into resources, functions and
data. Examples are CPU, memory, transmission capacity of connected transmission
links, available special hardware, and available programs and data.

The software mechanisms used for implementing the functionality of the service
components of adaptable service systems must be flexible and powerful. Service
components based on the classical EFSM (Extended Finite State Machine) approach
can be flexibly executed by using generic EFSM executing software components that
are able to download and execute different EFSM-based specifications [1].

In addition to this type of flexibility the EFSM-based functionality can be supple-
mented by reasoning-machine (RM) based functionality, which makes policy-based
specification and operation possible. “Policies represent externalized logic that can
determine the behavior of the managed systems” [2]. In this paper a policy is techni-
cally defined as a set of rules with related actions. A policy system is a set of policies,

mailto:paramai@item.ntnu.no
mailto:finnarve@item.ntnu.no
mailto:patt@item.ntnu.no

and an RM-based functionality is using a policy system to manage the behavior of a
target system, which can be another policy system. A static policy system has a non
changeable set of rules and actions, while a dynamic policy system has a changeable
set of rules and actions.

Policy-based software has a specification style, which is expressive and flexible.
Software functionality based on policy-based specifications, however, also needs to
be appropriately specified and validated. The validation aspect is outside the scope of
this paper.

The main contribution of this paper is the presentation of a generic service frame-
work for adaptable service systems that combines the use of EFSM-based and RM-
based service components. In this context the reasoning machines can be used

a) as ordinary procedural services for EFSM-based service components
b) for instantiation and re-instantiation (i.e. after movement) of EFSM-based

service components according to the availability and need of capabilities
c) to adapt the behavior of and capabilities allocated to instantiated EFSM-based

service components in the nodes where they are instantiated
This paper has focus on issue c), but the framework presented can be used for a)

and b) also. In general, adaptation needs appropriate mechanisms to guarantee the
wanted results. For autonomous adaptation stable feedback loops [3], which control
the performance, are needed. As the capabilities are limited, the access to the system
must be controlled, and there must also be priority mechanisms that give priority to
users which are willing to pay more and/or are in a higher need in situations with lack
of capabilities.

The issues of policy-supported adaptable service system architecture are in this pa-
per classified into 3 main aspects: A) Service system framework, B) Adaptation me-
chanism and C) Data model. Service system framework comprises abstraction, con-
cepts and models. Adaptation mechanism concerns the use of the appropriate policies
to control the service system when it is entering a state where RM functionality is
needed. Data model concerns the data representation of the service system framework
and adaptation mechanisms.

This paper comprises the aspects A) and B) only. For details about the data model,
which is based on XML Equivalent Transformation language (XET), Common Infor-
mation Model (CIM) and Resource Definition Framework (RDF), the reader is re-
ferred to [1] and [4]. The remaining part of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 presents the service system framework.
Section 4 presents policy-based adaptation mechanism. Section 5 presents the models
and results for example application cases related to capability management of a music
video on-demand service. Section 6 gives summary and conclusions.

2 Related Work

Most of recent works related to policy-based adaptable service systems focus on the
aspects A) and B) as defined in Section 1. Examples are [2, 5-10]. The aspect C) is
supported by XML-based language in [2, 10], which is analogous to our used XML

Equivalent Transformation (XET). However, [2] has a weak focus on the aspects A)
and B), while [10] has a weak focus on A).

Considering the nature of the policies, [5] is preliminary aimed at static policies,
while [6-10] are both using static and dynamic policies. Excluding [8], systems capa-
ble of dynamic policies [6-7, 9, 10] are based on proper feedbacks. The feedback
loops in [5, 7, 9, 10] are used to evaluate the service system rather than policies. The
loop in [6] evaluates policies. However, the evaluation is based on complex mathe-
matical equations and not by additional policy sets.

The adaptation mechanisms presented in this paper can use static as well as dy-
namic policies. Considering the dynamic policy, the rule-based modification of the
policy managing the service system can be composed at run-time.

The use of dynamic policies in [9, 10] as well as in this paper also aims at being a
flexible tool for the experimentation with alternative policies with respect to optimiza-
tion.

3 Service System Framework

The concept capability was defined in Section 1. Capability performance measures
are the concepts used for the performance modeling, dimensioning, analyzing, moni-
toring and management of capabilities. Capability performance measures comprise
capability capacity, capability state and capability Quality of Service (QoS) measures
(e.g. traffic and availability measures). Service performance measures are perform-
ance measures related to the service provided to the service user (e.g. QoS measures)
as well as service system state measures.

An executing service system consists of executing service components which are
instances of service component types. The functionality types are EFSM types and RM
types. The basic functionality of the service components, however, are based on
EFSMs supported and/or controlled by RMs. EFSM components will have require-
ments with respect to capability and service performance to be able to perform their
intended functionality (Fig. 1). These requirements are denoted as required capability
and service performance. The capability and service performance of an executing ser-
vice system are denoted as inherent capability and service performance.

requires

is of

 Service
Performance

requires
has

 EFSM Service
Component

Type

 Capability
Performance

 EFSM Service
Component

Instance

has

Fig. 1. EFSM part of Service System – Concept Structure

Capability management (CM) is an important function within an adaptable service
system and comprises: 1) service system capability initialization, 2) capability alloca-

tion adaptation and 3) capability re-initialization. Service system capability initializa-
tion is the allocation of the capabilities for the service components to be distributed
and instantiated. Capabilities are allocated according to the system performance re-
quirements of the EFSM components of a service system. Capability allocation adap-
tation is the monitoring of the performance of the executing service system and the
reallocation of capabilities within the executing service systems. In situations when
the instantiated service systems are unable to adapt satisfactory, capability manage-
ment can initiate a service system capability re-initialization for a re-distribution and
re-instantiation of the service system.

As a basis for the optimal adaptation, service level agreements (SLA) are needed
between the service users and the service provider. The service provider view of this
service level agreement can in this context be considered as a part of executing ser-
vice components. A number of QoS levels can exist. The agreement can contain ele-
ments such as: agreed QoS levels, required capabilities, required system performance,
payment for the service in case of agreed QoS level and payments for the service in
case of reduced QoS level. A service level agreement class (SLA class) defines pro-
vided service user functionalities as well as agreed QoS parameter and cost values for
a group of service users with different degree of satisfactions and cost.

In the following a formalized service framework model is presented. The following
concepts are defined:

E Functionality set of an EFSM type
Ê Functionality set of an EFSM instance
R Functionality set of a RM type
R̂ Functionality set of a RM instance
C Capability performance measures set
ĈR Required capability performance set for

an EFSM-based service component
type

ĈI Inherent capability performance set of
an executing EFSM-based service
component

ĈA Set of available capabilities in nodes
S Service performance measures set
ŜR Required service performance set for an

EFSM-based service component type
ŜI Inherent service performance set of an

executing EFSM-based service compo-
nent

I Income functions set for the service
components constituting a service.
These functions will depend on the sys-
tem performance.

The EFSM type E and the RM type R are defined (≡) as follows:
E ≡ { SM, SI, V, P, M(P), O(P), FS, FO, FV } (1)

R ≡ { Q, F, P, T, E, Σ } (2a)
P ≡ { X, A } (2b)

Concerning E, SM is the set of states, SI is the initial state, V is a set of variables,
P is a set of parameters, M(P) is a set of input signal with parameters, O(P) is a set
of output signal with parameters, FS is the state transition function (FS = S x M(P) x
V), FO is the output function, (FO = S x M(P) x V) and FV are the functions and
tasks performed during a specific state transition such as computation on local data,
communication initialization, database access, etc.

Concerning R and P, Q is the set of messages, F is a generic reasoning proce-
dure, P is a policy system which consists of a set of rules X and a set of actions A, T

is a set of system constraints and E is a set of performance data. The reasoning pro-
cedure is the procedure applied by RM to select the appropriate actions. The perform-
ance data represents the inherent performance of the targeted system. The system con-
straints represent the variables of the system and the defined constraints and
relationships between variables. The policy rules are based on the variables of the
constraints. Σ is a set of reasoning conditions defined by trigger conditions ΣT, and
goal conditions ΣG. RM functionality is activated when a ΣT is detected until a ΣG is
reached. When a trigger condition is true, the reasoning procedure transforms Qi to Qj
by using P to match the system constraints T against the performance data E and a set
of suggest actions {Ai, Aj, Ak…} ⊆ A. These actions may also set the next state and
values of the variables of EFSM-based service component instances. The reasoning
procedure is based on Equivalent Transformation (ET) [11], which solves a given
problem by transforming it through repetitive application of (semantically) equivalent
transformation rules.

The RM functionality will need EFSM support for the continuous updating of T, E
and Σ, and for the activation and deactivation of the reasoning machines. This is done
by EFSMs, and in this case T, E and Σ are considered as common data for the EFSMs
and the associated RM-based functionality. A dedicated EFSM EΣ has the duty to in-
spect the reasoning condition and to activate and to deactivate the reasoning machine.

4 Policy-Based Adaptation Mechanism

4.1 System constraints, performance data and reasoning conditions

The elements T and E of an RM as defined in Section 3 depend on the structuring and
the nature of the reasoning functionality. A reasoning cluster, which is an independ-
ent unit with respect to reasoning, is a collection of EFSM-based service components
with an associated reasoning system constituted by one or more reasoning machines.
A reasoning cluster has a set of associated income functions I. The elements T and E
of a reasoning cluster with available capabilities from NNode nodes, consisting of K
EFSM-based service component types and Lk instances of an EFSM-based service
type k are defined as follows:

T ≡ Expr {S, C, I, (; k = [1, K])} (3) R , R ,
ˆ ˆ

k kE ,S ,C k

 kE ≡ {((; l = [1, LI , I ,
ˆ ˆ ˆ

l l lk kE ,S ,C k]), k = [1, K]), (4)

 (; n = [1, NA , nĈ Node])}

The function Expr{Xi; i = [1, I]} in (3) symbolizes the set {Xi; i = [1, I]} and al-
so some set of logical functions based on the elements of the set. The system con-
straints T related to a reasoning cluster comprise the EFSM functionality sets of the
EFSM-based service component types, required capability and service performance,
as well as the income functions for the reasoning cluster. The performance data E de-
fined in (4) is a set of the inherent capability and service performance for all instances
of EFSM-based service components in the reasoning cluster, as well as available ca-

pabilities of the nodes that potentially can contribute their capabilities for the EFSM-
based functionality of the reasoning cluster.

The components constituting the reasoning condition Σ are the states and variables
of the EFSM-based service component types, and the capability and service perform-
ance measures C and S as given in (5).

Σ ≡ Expr {S, C, (; k = [1, K])} (5) R , k R , k
ˆ ˆ

kE ,S ,C

Capability Management (CM) as defined in Section 3 goes beyond the boundaries
of an individual reasoning cluster as well as an individual service system. This means
that CM in general must be handled by a common distributed algorithm or by a cen-
tralized reasoning cluster.

4.2 Policy-based adaptation using static policies

The adaptation mechanism using static policies is illustrated in Fig. 2. The rules X are
unchangeable. When the service systems enter a ΣT, Service System Adaptation Man-
ager (R1) is activated and tries to lead the system back to a goal state ΣG. R1 is de-
activated when service systems enter ΣG.

Fig. 2. Policy-based adaptation using static policies

4.3 Policy-based adaptation using dynamic policies

Fig. 3. Policy based adaptation based on dynamic policies

The adaptation mechanism using dynamic policies is illustrated in Fig. 3. In addition
to the Service System Adaptation Manager (R1) a Policy Evaluator (R2) is used.

A generic rule-based reasoning system with dynamic policy can be defined by (6a,
6b, 6c and 6d) as follows:
 R1 ≡ { Q, F, , T, E, Σ } (6a) P

P ≡ { , } (6b) X A
 R2 ≡ { Q´, F, P´, T ´, E´, Σ´ } (6c)
 P´ ≡ { X´, A´ } (6d)

where T ´= {I, X, A} and E´ = { I I }. Q´ is a set of messages between 1 and
2 . X´ is a set of control rules that can re-order the priority of the rules, activate and

de-activate the rules and change rules’ constraints. The policy evaluator evaluates the
system policy at runtime based on evaluation criteria, reference inputs and feedbacks.
Income functions are used as reference inputs, while the feedbacks are system per-
formance measures. Evaluation criteria can in general be history-based and predic-
tion-based. This paper is only using history-based evaluation, which determines the
consequences of the rules in the past using service performance measures. The predic-
tion-based evaluation determines the consequences of rules in the future based on ma-
thematical equations represented by X´.

ˆ ˆC , S R̂
R̂

Dynamic policies need a certain period to evaluate the consequences of the rules
used. A measure for the learning ability is the learning time (TL), which is the time
needed by the system to properly evaluate the rules. The learning time TL depends on
the service performance measures used by the evaluation algorithm. However, there is
no unique and easy way to define TL.

5 Application Examples

5.1 The application cases

MPO

MPO

MPP

MPO

MPP

EMP

EMP

EMP

EMP

EMP

EMS , ECM, E∑ ,R1 , R2

Waiting clients

Connected clients

Access link

Internet

Fig. 4. A music video on-demand service system; EMS: Media server type, EMP: Media player
type, ECM: Capability manager type, EΣ: Dedicated EFSM type for controlling the reasoning

mechanism, R1: Service system adaptation manager type, R2: Policy evaluator type.

Five application cases (Case I-V) for a simple service system handling the capability
management for a music video on-demand service is presented. The intention is to il-
lustrate the use of the proposed policy-based service system architecture, and the po-
tential advantages of using dynamic policies. The Cases I - III use no policy, Case IV

uses static policies, while Case V uses dynamic policies. The service system is consti-
tuted by one or more media servers (MS) streaming media files to media players (MP)
(Fig. 4). The numbers of MS used in Case I, II and III are fixed (one, two and three
respectively), while the number in Case IV and V can vary from one to three.

The basic EFSM types constituting the capability management system are media
server handler (EMS), media player handler (EMP) and capability manager (ECM)

The capability manager, which operation is based on policy based adaptation, is
used in Case IV and V. According to the definition of capability management in Sec-
tion 3, service system capability initialization and re-initialization is not included in
the example. This means that only capability allocation adaptation is considered. With
reference to the concepts service system adaptation manger and policy evaluator as
defined in Section 4, the capability manager now has the role of a service system ad-
aptation manager, and the policy evaluator is the system determining the policies to
be used of the capability manager.

In the fixed policy case (Case IV) ECM is supported by a rule-based reasoning sys-
tem R1, and in the dynamic policy case (Case V) ECM is supported by R1 and R2. The
EFSM type EΣ is the dedicated EFSM that inspects the reasoning conditions Σ and
activates/deactivates the reasoning mechanisms.

The MS’s required access link capacity CR,AL is set to 100 Mbps. The number of
MPs that can use the service is limited by the MS access link capacity. An MP be-
longs to a SLA_Class. In the example two classes are applied: premium (MPP) and
ordinary (MPO). Three different streaming throughput bit-rates (X) are offered,
500Kbps, 600 Kbps and 1Mbps. MPO connections are 500Kbps (XO) while MPP con-
nections can be either 600Kbps or 1Mbps (XP).

The service level agreements comprise required streaming throughput, maximum
waiting time, payment for the service and penalties for not satisfying the service. The
required streaming throughput of MPO and MPP are XO and XP, respectively.

The mechanisms used by the capability manager are to let client wait, to disconnect
ordinary clients, to decrease the throughput of the premium clients and to change the
number of media servers.

When the required streaming throughput cannot be provided, an MP may have to
wait until some connected MPs have finished using the service. This will result in
money payback to the waiting MPs. An MPO can be disconnected, while an MPP may
have to reduce the throughput. If a client is disconnected, the service provider pays a
penalty. The maximum waiting time for MPP and MPO are 60 seconds and infinite re-
spectively.

The service performance measures are the number of connected and waiting
premium and ordinary clients (N

ˆ
IS

Con,P, NCon,O, NWait,P, NWait,O), the number of discon-
nected MPO (NDis,O), the number of MS (NMS), inherent streaming throughput (XI), the
number of available nodes (NNode) and the accumulated service time and waiting time
of premium and ordinary clients (TServ,P, TServ,O, TWait,P, TWait,O). These values are ob-
served per monitoring interval Δ.

A unit is the price paid by an ordinary customer for one second streaming of the
rate 500 Kbps. The income function for the service provider is m(SLA_Class, XI)
(units/s). The penalty function for waiting is pWait(SLA_Class) (units/s). The penalty
function for disconnections is pDis(SLA_Class) (units/disconnection). The cost func-

tion for adding a new server is pSer (units/s per Node). The total income function (mT)
during the monitoring interval Δ is:
mT = m(MPO, XI,O)×TServ,O + m(MPP, XI,P)× TServ,P − pWait(MPO)×TWait,O

− pWait(MPP) ×TWait,P − pDis(MPO)×NDis,O − pSer ×(NMS-)×Δ (7)

The reasoning machine supported capability manager will try to maximize the total
income. The service system is realized as one reasoning cluster as illustrated in Fig. 4.
The nature of the service system adaptation manager as well as the need and nature of
a policy evaluator depends on the difference in income and penalty for the different
SLA classes, as well as the cost for introducing a new server. If the income and pen-
alty for premium service class is relatively higher than for an ordinary class, it can be
profitable to disconnect some MPO and let some MPP get the service instead.

The specification of the behavior of the service system adaptation manager used
for the Cases IV and V, and the policy evaluator applied for the Case V is given in
Appendix.

5.2 Results

Table 1. Income and penalty functions

 MPO MPP (XI = 600Kbps) MPP (XI = 1Mbps)

m(SLA_Class, XI) / s 1 1.875 2
pWait(SLA_Class) / s 5 10 10
pDis(SLA_Class) / disconnection 10 - -

The MP arrivals are modeled as a Poisson process with parameter λSLA_Class. The
duration of streaming connections dSLA_Class is constant. The quantity ρ =
((λO×dO×XO))+ (λP×dP×XP)))/CI,AL is the traffic per an MS access link. Intuitively,
the system with ρ ≤ 1 needs at least one server while the system with 1 ≤ ρ ≤ 2 needs
at least two servers and so on. The MPP arrival intensity is 15% of the total arrival in-
tensity. The duration of streaming connections are set to 10 minutes, while the moni-
toring interval Δ is set to 1 minute. MPs stop waiting after 10 minutes. The income
and penalty functions in units are given in Table 1.The cost for using an extra MS is
833 units/s per Node.

0

100

200

300

400

500

600

700

800

900

1,000

1 101 201 301 401

Time

Total Income
(Millions)

No Policy (= 1)
No Policy (= 2)
No Policy (= 3)
Static Policies
Dynamic Policies

NMS
NMS

NMS

0

100

200

300

400

500

600

700

800

900

1,000

0 0.5 1 1.5 2 2.5 3 3.5

Total Income
(Millions)

4

No Policy (= 1)
No Policy (= 2)
No Policy (= 3)
Static Policies
Dynamic Policies

NMS

NMS

NMS

ρ

 Fig. 5. Accumulated total income for ρ = 3.45 Fig. 6. Accumulated income at 500th ms

Fig. 5 illustrates the accumulated total income when ρ = 3.45. The value 3.45 is
chosen to compare the no-policy scenarios with NMS = 1, 2, or 3 and as well as the

static and dynamic policy scenarios. The accumulated total incomes of cases with no
policy are relatively lower than those with policies.

Fig. 6 illustrates the values of accumulated total income at the 500th minute for the
ρ values: 0.56, 1,2, 2.3 and 3.5. The systems with no policy produce good results with
a certain load region. The systems operated under policies produced higher accumu-
lated total income independent of load region. Dynamic policies give relatively better
result. These cases also have the potential improvement by changing the policies.

Fig. 7 shows the system behavior for Case IV and V when the traffic is being in-
creased or decreased (the value of ρ varies as a function of time). The time with ρ at a
fixed level is denoted as the ρ period. The dotted line shows the variation of ρ, which
can take the values 0.5, 1, 1.5 and 2 times of ρ = 1.44. The ρ period, which is
10×dSLA_Class, provides much time for the system for learning the consequences of the
rules being applied. Case V gives a better result.

0

200

400

600

800

1,000

1,200

1,400

0 100 200 300 400 500 600 700 800 900 1000 1100

Time

Total Income
(Millions)

Static Policies
Dynamic Policies
Intensity

-12

-8

-4

0

4

8

12

2 5 10

period

Total Income
(% Difference)

ρ

Fig. 7. Accumulated total income Fig. 8. Comparison of Case IV&V

Fig. 8 shows a comparison between Case IV and V for different ρ periods. The fig-
ure shows the difference between the values of accumulated total income after 500
minutes. When the ρ period is small, Case IV may give better result because the sys-
tem need more learning time (TL). The TL value falls between 2× and 5×dSLA_Class.

The use of X3, X4 (see Appendix), which will add or remove an MS, affects the
system’s accumulated total income. Having more MS all the time is better for high
traffic while having few MS all the time is better for low traffic. The policy evaluator
learned this by observing the consequences of X3 and X4. The ability to learn can also
be improved by appropriately selecting service performance measures and algorithms.

6 Conclusion

An architecture for policy-based adaptable service systems, based on the combination
of Reasoning Machines (RMs) and Extended Finite State Machines (EFSMs) has
been presented. Policies have been introduced with the intension to increase flexibil-
ity in the system specification and execution.

The adaptation mechanism uses policies to control service systems when it is enter-
ing a reasoning condition. The use of policy can be of two types: static or dynamic. In
the static case the reasoning system constituted by a service system adaptation man-
ager determines a list of suggested actions that will control the behavior of the service

system. In the dynamic case an additional RM, denoted as the policy evaluator, is
added. The policy evaluator is able to compose policy on-the-fly, and has the ability
to estimate or evaluate the consequences of the rules of a policy based on their accu-
mulated goodness scores.

Five application cases handling the capability management of a music video on-
demand service are presented. The intention is to illustrate the use of the proposed ar-
chitecture and demonstrate the potential advantage of using dynamic policies. Case I,
II and III use no policies. Case IV uses static policies, while Case V uses dynamic
policies. Only capability allocation adaptation is considered. There are situations
where the use of no policy can be superior or equal to the use of policies. The selected
system parameters can represent an optimal dimensioning. However, the same set of
system parameters will likely not be optimal for other system traffic load cases. The
service system operated under static policies give a relatively high income in both low
and high traffic. The service system operated under dynamic policies, however, has a
performance which is superior or equal to other application cases. Nevertheless, the
service system operated under dynamic policies needs a certain period of time de-
noted as learning time to learn the consequences of policies in order to provide supe-
rior performance.

The proposed architecture is also a flexible tool for the experimentation with alter-
native policies with respect to optimization.

References

1. F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M. Shiaa, "Configuration Manage-
ment for an Adaptable Service System," in IFIP International Conference on Metropolitan
Area Networks, Architecture, Protocols, Control, and Management, Ho Chi Minh City,
Viet Nam, 2005.

2. D. Agrawal, K.-W. Lee, and J. Lobo, "Policy-Based Management of Networked Comput-
ing Systems," IEEE Communications Magazine, vol. 43, pp. 69-75, 2005.

3. Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, "A Control
Theory Foundation for Self-Managing Computing Systems," IEEE Journal on Selected
Areas in Communications, vol. 23, pp. 2213-2222, 2005.

4. P. Supadulchai and F. A. Aagesen, "A Framework for Dynamic Service Composition," in
First International IEEE Workshop on Autonomic Communications and Computing (ACC
2005), Taormina, Italy, 2005.

5. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, "Rainbow: Archi-
tecture-Based Self-Adaptation with Reusable Instrastructure," Computer, vol. 37, pp. 46-
54, Oct 2004 2004.

6. N. Samaan and A. Karmouch, "An Automated Policy-Based Management Framework for
Differentiated Communication Systems," IEEE Journal on Selected Areas in Communica-
tions, vol. 23, pp. 2236-2247, 2005.

7. R. Nasri, Z. Altman, and H. Dubreil, "Autonomic Mobile Network Management Tech-
niques for Self-Parameterisation and Auto-regulation," in Smartnet 2006, Paris, 2006.

8. Y. Kanada, "Dynamically Extensible Policy Server and Agent," in Proceedings of the 3rd
Int'l Workshop on Policies for Distributed Systems and Networks (POLICY'02), 2002.

9. H. Chan and T. Kwok, "A Policy-based Management System with Automatic Policy Se-
lection and Creation Capabilities using a Singular Value Decomposition Technique," in
Proceedings of the 7th IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY'06), 2006.

10. R. J. Anthony, "A Policy-Definition Language and Prototype Implementation Library for
Policy-based Autonomic Systems," in Autonomic Computing, 2006. ICAC '06. IEEE In-
ternational Conference on, 2006.

11. K. Akama, T. Shimitsu, and E. Miyamoto, "Solving Problems by Equivalent Transforma-
tion of Declarative Programs," Journal of the Japanese Society of Artificial Intelligence,
vol. 13, pp. 944-952, 1998.

Appendix. Reasoning Machine Specifications

1. Service system adaptation manager (Case IV and V)
The set of actions A applied by the service system adaptation manger is:

A ≡ { AD, AB, AB I, AR } (A.1)
AD (Disconnect-Client) tells MS to disconnect suggested MPO. AB (Decrease-Bit-Rate) tells

MS to reduce throughput of suggested MP
B

P for a certain time period. AI (Initialize-Server) tells
MS to initiate a new MS, while AR (Remove-Server) will remove a MS. Concerning the rea-
soning condition set Σ ≡ { ΣT1, ΣG1 }, the reasoning activation condition ΣT1 is NWait,P+NWait,O
> 0 and the reasoning goal condition ΣG1 is NWait,P+NWait,O = 0. The rule set X for the service
system adaptation manger is:

X ≡ { X1, X2, X3, X4 } (A.2)
X1 suggests AD for disconnecting a list of suggested MPO when pWait(MPO) < pWait(MPP).

The number of MPO is calculated from NWait,P×XP,1Mbps / XO. X2 suggests AB for reducing
throughput of a list of suggested MP

B

P when pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP,
XP,600Kbps). The number of MPP to decrease bandwidth is calculated from NWait,O×XO /
(XP,1Mbps-XP,600Kbps). X3 suggests AI for initiating a new MS when XP×NWait,P + XO×NWait,O /
CR,AL > 0.1. X4 suggests AR for removing an MS when XP×NWait,P + XO×NWait,O / CR,AL < 0.1.

2. Policy evaluator (Case V)

The policy evaluator will be activated and de-activated whenever the service system adapta-
tion manager is activated and de-activated. So we have activation condition ΣT2 ΣT1 (
means ‘is instantiated as’), and goal condition ΣG2 ΣG1. The set of actions A applied
by the the policy evaluator is:

A´ ≡ {AG(Xi), AT(Xi) } (A.3)

AG(Xi) is an action for the calculate of the accumulated goodness score of a rule Xi. AT(Xi)
is an action to suspend XI for a certain time period. The goodness score of a rule (QoXi) during
the monitoring time interval T is calculated by the percentage of the increased or decreased to-
tal income (mT). The algorithm to calculate QoXi is as follows:

QoXI = QoXi + T ,t T ,t 1

T ,t

m m
1 0 0

m
−−
× (A.4)

where mT,t and mT,t-1 are the total income during the current and previous monitoring inter-
val respectively. The rule set X´of the policy evaluator is:

X´ ≡ { X´1, X´2 } (A.5)

X´1 calculate the goodness score of the rule used during the last interval using the action
AG(Xi), and X´2 suspends rules using the action AT(Xi) when their goodness scores are below
zero.

