

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL ENGINEERING

Developing mobile applications

The development of a fleet steering application
with mobility support

Project assignment

Audun Simonsen

Autumn 2004

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL

ENGINEERING

PROJECT ASSIGNMENT

Student's name: Audun Simonsen

Course: TTM4700 Teleservices and Networks, Specialization

Title : Developing mobile applications

Text: The goal is to design, implement and experiment with an

application for the mobile user using the TAPAS platform. The
focus will be on personal and terminal mobility.

 The project will comprise three phases. The first phase is the

design of the service functionality, platform support and user
interfaces. This phase will be based on UML diagram templates.
The second phase is to implement the application itself and the
third phase is the experimentation with the user environment,
most preferably to conduct scenarios on different user mobility
cases.

The application chosen is an application for fleet steering of
emergency vehicles. This application will make use of GPS to
get the geographical location of the user and then report this to
the emergency central in order to guide the vehicles efficiently.
The central can also send new waypoints out to the vehicle and
this will then be put in a car navigation system to guide the user
to the desired position. In addition to this there shall be possible
to create different user profiles, e.g. to let the users send and
receive data files like pictures. For test purposes, the application
will be implemented on a handheld PDA connected to a WLAN
network. The central unit will be represented by a regular PC
using Windows as platform.

Deadline: November 29, 2004
Handed in:
Carried out at: Department of Telematics
Supervisor: Mazen Malek Shiaa

Trondheim, ………2004

Finn Arve Aagesen
Professor

The development of a fleet steering application with mobility support

 - i -

Preface
This report is the result of my project at the Norwegian University of Technology and

Science (NTNU) in Trondheim during the autumn semester 2004, and documents the

project assignment “Developing mobile applications”. The work on this project was

carried out at the Department of Telematics and has been a part of the TAPAS research

project that is carried out there.

The project has been very challenging, partly because of the complexity of TAPAS and

partly because of the development process involved in this project. Before this project my

knowledge of TAPAS and on adaptable networking in general was practically non-

existent, and I’m sure of that the knowledge and experience that I have gained will be of

much value later on in life.

It has been a challenge to work with technologies that are relatively young and that are

constantly undergoing further development. During the short period of time that this

project has been going on a lot have changed, even during the last few days before

handing in this report.

The supervisor for this project has been Mazen Malek Shiaa and the academic

responsible has been professor Finn Arve Aagesen. I would like to thank them both for

help and suggestions during this project and especially Mazen who has been available for

answering my questions at all times. I would also like to thank the IT department at the

department of Telematics for helping out with technical issues that have arisen and to my

fellow students at the TAPAS lab for support during this project.

Trondheim, 29th of November 2004

Audun Simonsen

The development of a fleet steering application with mobility support

 - ii -

The development of a fleet steering application with mobility support

 - iii -

Contents

PREFACE .. I
CONTENTS..III
FIGURES ..V
TABLES .. VI
ABBREVIATIONS ...VII
ABSTRACT ...VIII
1 INTRODUCTION... 1

1.1 BACKGROUND.. 1
1.1.1 Emergency communication network in Norway ... 2

1.2 APPROACH ... 3
1.3 DEMARCATIONS... 4
1.4 STRUCTURE OF THIS REPORT .. 4

2 RELATED TECHNOLOGIES.. 7
2.1 SATELLITE NAVIGATION... 7

2.1.1 Global Positioning System.. 7
2.1.2 Car Navigation System ... 8

2.2 J2ME ... 9
2.3 UBIQUITOUS COMPUTING ..10
2.4 ADAPTABLE NETWORKING ..11

3 THE TAPAS ARCHITECTURE ...13
3.1 FUNCTIONAL ARCHITECTURE ..14
3.2 BASIC ARCHITECTURE...14

3.2.1 TAPAS layered model ..15
3.3 THE TAPAS MOBILITY ARCHITECTURE ...19

3.3.1 Personal mobility...22
3.3.2 Role Figure mobility ..24
3.3.3 Terminal mobility ..26

3.4 MICROTAPAS ..28
3.4.1 Differences to TAPAS Core platform...28
3.4.2 Implementation issues..30

4 THE MOBILE INTERACTIVE NAVIGATION TOOL (MINT) ..31
4.1 SCENARIOS..32

4.1.1 Speeding scenario..32
4.1.2 Busy user scenario...33
4.1.3 Disaster scenario...34

5 DESIGN OF MINT..35
5.1 FUNCTIONAL REQUIREMENTS..35

5.1.1 Mobile unit...35
5.1.2 Server/Central unit ..36

5.2 NON-FUNCTIONAL REQUIREMENTS ...36
5.3 CLASS DIAGRAMS..38
5.4 STATE DIAGRAMS..40
5.5 SEQUENCE DIAGRAMS ...41
5.6 XML FILE ...42

The development of a fleet steering application with mobility support

 - iv -

6 IMPLEMENTATION OF MINT ...43
6.1 LOCATION API (JSR 179) ...43
6.2 SENDING AND GETTING DOCUMENTS...44
6.3 SENDING WAYPOINT..45

6.3.1 Problem #1 ..45
6.3.2 Problem #2 ..45

6.4 MINTSERVER ..46
6.5 SCREENSHOTS ...46

7 TESTING AND EXPERIMENTATION ...49
7.1 TERMINAL MOBILITY TEST ..49

7.1.1 Test results...50
7.2 USER MOBILITY TEST ..51

7.2.1 Test results...51
7.3 GEOGRAPHICAL POSITION TEST...52

7.3.1 Test results...52
7.4 DOCUMENT TRANSFER TEST..53

7.4.1 Test results...54
8 DISCUSSION...57

8.1 FACED CHALLENGES ...57
8.2 EVALUATION OF THE RESULT ..58
8.3 CHANGES MADE TO THE MICROTAPAS IMPLEMENTATION ..59
8.4 FURTHER WORK ..60

8.4.1 Implementation of lacking mobility features..60
8.4.2 Handling of Non-TAPAS code ...60
8.4.3 Better model support for developing role figures ..60

9 CONCLUSION ..61
REFERENCES ..62
ONLINE REFERENCES ...64
APPENDIX A: RUNNING TAPAS ON A PDA ... I

A.1 JVM FOR PDA.. I
A.2 CREATING LINK FOR POCKET PC ...II

APPENDIX B: SCREENSHOTS OF MINT..III
APPENDIX C: SATELLITE NAVIGATION SYSTEMS...VIII

C.1 GLOBAL POSITIONING SYSTEM ..VIII
C.1.1 How GPS works ...IX
C.1.2 Differential GPS (DGPS) ...XI
C.1.3 Wide Area Augmentation Service (WAAS) ... XII

C.2 GALILEO ...XII
C.3 OTHER SYSTEMS ..XIII

APPENDIX D: J2ME..XV
D.1 CONNECTED DEVICE CONFIGURATION (CDC).. XVI

D.1.1 Profiles ...XVII
D.2 JAVA COMMUNITY PROCESS (JCP)...XVIII

APPENDIX E: CD...XX

The development of a fleet steering application with mobility support

 - v -

Figures
FIGURE 1: CHANGEOVER TO SHARED PUBLIC SAFETY NETWORK [19] ... 2
FIGURE 2: THE GPS SEGMENTS [3].. 8
FIGURE 3: THE TAPAS THEATRE METAPHOR [1]. ..14
FIGURE 4: OBJECT MODEL OF THE TAPAS BASIC ARCHITECTURE [1] ..15
FIGURE 5: TAPAS LAYERED MODEL [6]...16
FIGURE 6: EXAMPLE OF TAPAS SYSTEM [1]..17
FIGURE 7: TAPAS MOBILITY CONCEPT [2] ...19
FIGURE 8: OBJECT MODEL OF TAPAS MOBILITY PLATFORM [2] ..20
FIGURE 9: ENGINEERING MODEL OF TAPAS MOBILITY ARCHITECTURE [2] ...21
FIGURE 10: USER SESSION MOBILITY [2] ...23
FIGURE 11: USER MOBILITY [2]..24
FIGURE 12: ROLE FIGURE MOBILITY [2] ...25
FIGURE 13: SEQUENCE CHART OF ROLE FIGURE MOBILITY [2]...26
FIGURE 14: TERMINAL MOBILITY [2]..27
FIGURE 15: MICROTAPAS LAYERED MODEL [4] ...29
FIGURE 16: MICROTAPAS EXAMPLE SYSTEM [9] ..29
FIGURE 17: SPEEDING SCENARIO..32
FIGURE 18: ACCIDENT SCENARIO...33
FIGURE 19: USE CASE FOR MINT..37
FIGURE 20: CLASS DIAGRAM OF MINT ...38
FIGURE 21: CLASS DIAGRAM OF MINTCLIENT..39
FIGURE 22: STATE DIAGRAM FOR MINTCLIENT..40
FIGURE 23: SEQUENCE DIAGRAM FOR LOGGING ON..41
FIGURE 24: LOGIN WINDOW ...46
FIGURE 25: FOUR DIFFERENT USERS, WITH DIFFERENT PROFILES ...47
FIGURE 26: TERMINAL MOBILITY TEST...50

The development of a fleet steering application with mobility support

 - vi -

Tables
TABLE 1: EXAMPLE OF USER PROFILE ..42
TABLE 2: CONFIGURATION OF TERMINAL MOBILITY TEST ..49
TABLE 3: USER PROFILES ...51
TABLE 4: GPS LOCATION TEST...53
TABLE 5: FILES USED IN DOCUMENT TRANSFER ...54
TABLE 6: DOCUMENT TRANSFER TEST ...54
TABLE 7: CHANGES AND ADDITIONS TO MICROTAPAS...60

The development of a fleet steering application with mobility support

 - vii -

Abbreviations
API Application Programming Interface

EGNOS European Geostationary Navigation Overlay Service

ESA European Space Agency

FAA Federal Aviation Administration

GNSS Global Navigation Satellite System

GPS Global Positioning System

ICT Information and Communication Technology

IDE Integrated Development Environment

J2ME Java 2 Platform, Micro Edition

JNI Java Native Interface

JVM Java Virtual Machine

MicroTAPAS Implementation of TAPAS for small handheld devices

NAVSTAR NAVigation Satellite Timing And Ranging, official U.S. Department of

Defence name for GPS

NMEA 0183 National Marine Electronics Association's standards for data

communication between marine instruments (as used between a GPS and

Autopilot, for example)

OS Operating System

PDA Personal Digital Assistant (electronic handheld information device)

PPC Pocket PC, Microsoft OS for PDA

RI Reference Implementation, a prototype for a JSR

SDK Software Development Kit

TAPAS Telematics Architecture for Play-based Adaptable Systems

JSR Java Specification Request

TETRA Terrestrial Trunked Radio, open standard by ETSI

TETRAPOL Emergency communication from EADS Telecom

US DoD United States Department of Defence

WLAN Wireless Local Area Network

The development of a fleet steering application with mobility support

 - viii -

Abstract
The complexity of telecommunication systems is rapidly increasing, and the ongoing

convergences in the ICT sector is opening up for new and innovative possibilities for

services. These possibilities are also setting new demands to the services and applications

developed with a view to development speed, robustness, wearability and so on.

Basically, the users want to have the usability from the computer world combined with

the performance of the telecommunication world. And preferably all integrated in one

unit or gadget.

There are major challenges in handling this evolution, and an approach to these

challenges is the Telematics Architecture for Play-based Adaptable Systems (TAPAS)

project at the department of Telematics at NTNU. Several TAPAS architectures are

developed, including a mobility architecture that supports personal mobility, terminal

mobility and program or application mobility. This last type of mobility is in the TAPAS

context referred to as role figure mobility.

The goal of this project was to develop, implement and experiment with an application

for the mobile user using TAPAS and its mobility architecture. This was to be done with

focus on personal and terminal mobility. For this purpose an implementation of TAPAS

called MicroTAPAS was chosen, because this is designed for small, portable devices like

Personal Digital Assistants (PDA) in a wireless environment. MicroTAPAS is

implemented with Java technology.

The project comprised basically of three phases. The first phase was to design the service

functionality, platform support and user interfaces. For this phase predefined UML

diagram templates was used for support. The second phase was to implement the

application itself and this was done be using standard developing techniques for

implementing Java code. The third phase was to experiment with the user environment,

and to try to conduct different scenarios with the use of the developed application.

The development of a fleet steering application with mobility support

 - ix -

The result of this project is an application for fleet steering called Mobile Interactive

Navigation Tool. This application, or service, has proven that TAPAS is very much

usable for developing complex systems with short time-to-market demands, but there are

still issues that need to be addressed and investigated further. In order to get the desired

functionality and mobility required by Mint, the MicroTAPAS implementation had to be

extended with support of user mobility. The extensions made can also be used for further

enhancements of mobility functionality in MicroTAPAS.

The development of a fleet steering application with mobility support

 - x -

The development of a fleet steering application with mobility support

 - 1 -

1 Introduction
This report will try to give a thorough description on how Telematics Architecture for

Play-based Adaptable Systems (TAPAS) and the mobility support of this architecture can

be used in making applications with enhanced mobility support.

The first couple of sections of the report will present a brief introduction to the

technology that was used in this project and is meant to give the reader an understanding

of the underlying components that was used. The result of the project is presented later on

in this report.

1.1 Background

Today’s development in the Information and Communication Technology sector creates a

demand for new services that needs to be rapidly developed. The time between idea and

deployment should be as short as possible, but the services still have to be robust, secure

and have the same quality of service as services in the “plain old” telephony systems. The

services developed should also be highly adaptable to changes and evolution of the

surroundings and networks to withstand time. For this purpose the Telematics

Architecture for Plug-And-play Systems or what is now known as Telematics

Architecture for Play-based Adaptable Systems, (TAPAS) has been proposed as a

framework.

To test out functionality regarded to mobility in TAPAS, this project was proposed. The

main goal of this project was thus to develop, implement and experiment with an

application for the mobile user. The application chosen to be developed in this project

was an application for fleet steering of emergency vehicles. This application makes use of

satellite navigation to get the geographical location of the user and then report this to the

emergency central in order to guide the vehicles efficiently.

The major technology used in this project is then of course the TAPAS architecture. This

architecture can be very complex to understand and is of such importance that it is

The development of a fleet steering application with mobility support

 - 2 -

included as an own section in this report (chapter 3). Other related technologies to this

project and to TAPAS in general are presented in chapter 2.

A little knowledge of the emergency communication network in Norway may also be

needed, and this is presented in the following section.

1.1.1 Emergency communication network in Norway

For several years there have been discussions in Norway to replace the existing open,

analogue emergency communication networks with a new more modern, digital and

closed network. In November 2004, the Norwegian government finally decided to

propose for the parliament to establish a joint digital public safety radio network for the

fire department, the police and the health services [19]. This network is proposed to be

completed in 2009 and is estimated to cost about 440 million Euros.

Figure 1: Changeover to shared public safety network [19]

Figure 1 shows the changeover from today’s networks to the new network. It isn’t chosen

what kind of network technology to build, and during 2005 there will be a “beauty-

contest” for developing this network. It is expected that there will be tenders with at least

three different technologies and that seven or eight major companies will participate.

The development of a fleet steering application with mobility support

 - 3 -

The governmental proposal gives guidance in the direction of TETRA or TETRAPOL

technology, since these are recommended within Schengen, although the proposal

principally is technology-neutral. The third alternative expected is a CDMA based service

in the old NMT network (450 MHz), called CDMA 450. There are also other

possibilities, like to make a hybrid network based on the mentioned networks or

GSM/UMTS. The Norwegian newspaper “Teleavisen” [OL14] wrote on the 5th of

November 2004 a comment on the public safety radio network. According to this

comment, whatever network that is chosen, it will be outdated at the time of initiation.

The major drawback will be the lack of possibilities to transfer data like images or video.

1.2 Approach

The goal for this project was in the first place to try to exploit the different kinds of

mobility supported by the TAPAS architecture. Although there have been developed

several different applications using TAPAS over the last couple of years, none of those

have made use of all the types of mobility and aspects that is included in TAPAS and in

the TAPAS mobility framework.

The task emphasizes on the different mobility aspects of the TAPAS mobility

architecture and how this is carried out in the MicroTAPAS implementation. This

required a study of the basic concepts of TAPAS as well as the support for mobility, and

some effort was spent on studying this.

Related technologies that were used in the project were studied to get a more complete

understanding of how the different aspects of the application that was going to be

developed could be fulfilled. Technologies related to TAPAS was also studied in order to

get a better understanding of what TAPAS is and what is tried to accomplish with it.

The next step was then to create models and scenarios of how the application was

supposed to perform, as well as defining the requirements for the application, before the

implementation process could begin. The implementation phase was approached with

The development of a fleet steering application with mobility support

 - 4 -

code generation of the created models, and these were used as guidance for further

implementation of functionality.

The last step was then to test the developed application and try to experiment with the

user environment and conduct scenarios with different user mobility cases.

1.3 Demarcations

This report has no intentions of giving the reader a full introduction to the world of

TAPAS and all the aspects of this architecture. The focus will be on the mobility

architecture of TAPAS, and other aspects will only be briefly discussed if discussed at

all. Focus will also be on one of the current implementations of TAPAS, MicroTAPAS

that is designed for wireless PDAs.

The application made in this project is only made for testing purposes and certain parts of

this application has not been prioritized to implement. This goes especially for the server

or central side of the application where there is only implemented a text-based interface

for performing the different aspects of the service.

The reader should be familiar with basic processes of developing applications and with

the Java programming language in general. Some basic knowledge of the concepts of

telecommunication systems can also be an advantage.

1.4 Structure of this report

Chapter 2, Related technologies: This chapter gives an overview of technologies related

to this project and to TAPAS in general.

Chapter 3, The TAPAS Architecture: This chapter gives an introduction to the TAPAS

architecture including TAPAS mobility architecture and a section about one

implementation of TAPAS, called MicroTAPAS.

The development of a fleet steering application with mobility support

 - 5 -

Chapter 4, The Mobile Interactive Navigation Tool (Mint): This chapter gives an

introduction to the application developed during this project. Some scenarios are sketched

out to give an impression of how Mint can be used.

Chapter 5, Design of Mint: This chapter gives a more detailed description of how the

application was designed, and also includes some UML diagrams and XML file.

Appendix E: CD will have more details on these diagrams.

Chapter 6, Implementation of Mint: This chapter describes the implementations process

and implementation issues that occurred during the project.

Chapter 7, Testing and experimentation: This chapter describes some of the tests that

were performed in order to test functionality. This is both the given functionality of the

implementation of TAPAS and functionality of the Mint application.

Chapter 8, Discussion: This chapter tries to wrap up the report with an overview of faced

challenges, an evaluation of the work and suggestions for further work.

Chapter 9, Conclusion: This chapter concludes the report and summarizes the project.

The development of a fleet steering application with mobility support

 - 6 -

The development of a fleet steering application with mobility support

 - 7 -

2 Related technologies
This chapter will give a brief introduction of some technologies that is used in this project

and some that are related to TAPAS in general. Some of the technologies mentioned here

are also given a more thorough introduction in appendixes. Section 2.3 and 2.4 tries to

give the reader an overall view of the field that TAPAS is in, and will not go in details on

specific technologies.

2.1 Satellite navigation

Mankind has always tried to figure out a way to find out where they are, and how to

guide them to a destination and back again. Seafarers have used stars for navigation for as

long as humans remember and when the Sputnik rocket was launched in 1957, it became

clear that these “artificial stars” could also be used for navigation. The Americans figured

out that they could locate Sputnik quite precisely just by tracking the radio signals that

Sputnik sent. Then they figured out that this could be used the other way around, to get

an exact position on the ground using radio signals from satellites. This resulted in what

was known as the TRANSIT system, which was used by US submarines in the early

1960s. The TRANSIT system was not very accurate and had its flaws (e.g. the receiver

could not move in order to get the location) and even though they tried to upgrade the

system it was simply not precise enough. So in the early 1970s, the U.S. Department of

Defense launched a program called Navstar Global Positioning System. The first satellite

was launched in 1978 and in the mid-1990s the system was fully operative with 24

satellites. Although it took over 20 years to establish the system, the potential of the

system was clear quite early on. Professor Bradford W. Parkinson wrote in 1980: “With

the quiet revolution of NAVSTAR, it can be seen that these potential uses are limited only

by our imaginations.” [18]

2.1.1 Global Positioning System

The Navstar Global Positioning System is more commonly known just as GPS. GPS is,

as stated above, controlled and operated by the U.S. Department of Defense and has

therefore several issues is discussed in Appendix C: Satellite Navigation Systems. GPS

The development of a fleet steering application with mobility support

 - 8 -

consists of three different segments; the space segment, a control segment and a user

segment as described in Figure 2.

Figure 2: The GPS segments [3]

The space segment consists of 24 satellites, where 21 of them are active at all time and 3

are reserve in case of failure. These satellites transmit low power signals that allow any

user with a GPS receiver in the user segment to determine their location on the surface of

earth. The control segment is used to control and correct the data from the satellites. The

signal from the satellites will pass through clouds, glass and plastic, but not through more

solid objects like buildings and rocks.

There are also other systems used for satellite navigation, and these plus a more thorough

description of GPS are given in Appendix C: Satellite Navigation Systems.

2.1.2 Car Navigation System

The increased use of satellite navigation systems has also entered the car industry. It is

getting more and more common to buy a designated navigation system to be used with

the car. In addition to telling the user the current location, car navigation systems also tell

the user where to drive. The systems make use of roadmaps and extra info about the

The development of a fleet steering application with mobility support

 - 9 -

roads (i.e. speed limits, one way traffic, etc.) and can therefore tell the user the best way

to get to a desired destination.

Several designated systems are on the market today, often integrated with the car stereo

or on more high tech cars, the cars multimedia platform. These systems are then mounted

inside the car and can thus not easily be moved to another car or vehicle. Another

solution is to use a PDA connected to a GPS receiver. Then the user can freely move the

PDA to another vehicle or use it as a pedestrian. There are several programs that can be

used on the PDA, and the most popular ones are OziExplorer [OL7] and TomTom

Navigator [OL8].

2.2 J2ME

Java 2 Micro Edition (J2ME) is a version of Java for running Java code on devices with

limited capabilities. Although J2ME is a quite new technology, some say that this is a

return to the very origins of the Java technology. Java was originally developed for

programming consumer electronic devices, but has evolved to being primarily used for

desktop and server-based applications [OL9].

J2ME is divided into two different configurations; Connected Limited Device

Configuration (CLDC), for devices with very little system resources like cell phones, and

Connected Device Configuration (CDC) for devices that have a bit more resources like

PDA or set-top boxes. The CDC configuration has focus on achieving as much

compatibility as possible with Java 2 Standard Edition (J2SE) as possible, and this

implies that CDC can be used to develop applications pretty much the same way as with

J2SE. On the other hand, the CLDC configuration focuses on limiting the resource usage

as much as possible and the code is very limited compared to J2ME.

Appendix D: J2ME gives a thorough introduction of J2ME and the process of developing

new Java technologies.

The development of a fleet steering application with mobility support

 - 10 -

2.3 Ubiquitous computing

“Ubiquitous computing enhances computer use by making many computers available

throughout the physical environment, while making them effectively invisible to the user”

[21]. Ubiquitous computing is called the third wave of computing, in the sense that it

follows mainframe computing, that involved many people on one computer, and personal

computing with one person on one computer. Ubiquitous means thus that there are one

person and many computers, and is thought of being the post-PC world and computing

for the 21st Century [20].

Ubiquitous computing is an approach to human-computer interaction, and is about

distributing computation in the environment, as opposed to keeping it bottled in a

desktop-bound personal computer. Ubiquitous computing can be seen to be roughly the

opposite of virtual reality. In stead of putting people inside a computer generated world,

ubiquitous computing forces the computers to live out here in the world with people. This

omnipresent computing needs integration of human factors, computer science,

engineering and social sciences.

In other words, ubiquitous computing means that the computer as we know it today

disappears into everyday objects all around us with a natural interface. This will thus

support everyday activity without the users actually thinking about that there are

computers doing the work. This is no longer science fiction, and more and more devices

are produced with the aim of being ubiquitous. The thought of hundreds of computers

surrounding everyday life can also be frightening, and brigs up thoughts from George

Orwell’s book “1984”. Several issues with protection of personal privacy have to be

solved before the vision of ubiquitous computing can be fully implemented.

Xerox Palo Alto Research Centre (PARC) had a project from 1988 to 1994 that initially

came up with the phrase ‘ubiquitous computing’ [21].

The development of a fleet steering application with mobility support

 - 11 -

2.4 Adaptable networking

The phenomenal growth of today’s information technology networks has led to

exceptional levels of complexity. This growing complexity is leading to problems, and

dealing with these problems “… is the single most important challenge facing the IT

industry” [OL18]. The network growth, and thus the complexity, is rapidly outgrowing

the growth of people that can manage the networks, and this calls for the need of

networks that are adaptable or self-configuring. The main challenge is thus not to keep

pace with Moore’s Law any more, but to deal with the consequences of its decades-long

reign.

Imagine a network that is capable of recovering from faults and actually ‘learn’ from the

failure before any user notices that the network has been inaccessible. Or that Windows

after installation actually will improve performance over time, without any human

interaction! “In the evolution of humans and of human society, automation has always

been the foundation for progress” [OL18] and this will most probably apply for moving

forward in the ICT sector too.

Adaptable networking means thus that the network-based services are capable of

handling dynamic changes. These changes can be in both time and position related to

resources, users and changes in service requirements [1]. Adaptability basically implies

flexibility. This flexibility can be related to software, services, configuration of resources

and interoperability with different kinds of architectures and with issues of mobility.

IBM has a project called autonomic computing [OL19], which approaches this problem

with inspiration from the human body and the autonomic nervous system. Within the

human body, the autonomic nervous system controls the basic functionality that keeps us

humans going. This includes functions like controlling heart rate, breathing and making

the body recover from “breakdowns” or diseases, but without using our consciousness.

The development of a fleet steering application with mobility support

 - 12 -

The development of a fleet steering application with mobility support

 - 13 -

3 The TAPAS Architecture
Telematics Architecture for Play-based Adaptable Systems (previously known as

Telematics Architecture for Plug-and-Play Systems) (TAPAS) is a research project at the

Department of Telematics at the Norwegian University of Science and Technology

(NTNU). At the first international conference on information and communication

technology (ICT) in 2003 the project was presented with the aim of “… developing an

architecture for network-based service systems with

A: flexibility and adaptability,

B: robustness and survivability, and

C: QoS awareness and resource control.

The goal is to enhance the flexibility, efficiency and simplicity of system installation,

deployment, operation, management and maintenance by enabling dynamic configuration

of network components and network-based service functionality.” [1]. The project is

under constant development and the different perspectives of the project are dealt with in

several PhD and Master thesis as well as in scientific researches and projects. Results and

reports are published at the TAPAS website [OL1]. TAPAS is basically a concept for

developing services, and it is not fully implemented. There are at the moment two

different models of TAPAS implemented. One fully scaled version called TAPAS Core

Platform, and one reduced version for devices with limited resources like Personal

Digital Assistants (PDA) called MicroTAPAS.

The development of a fleet steering application with mobility support

 - 14 -

3.1 Functional architecture

Figure 3: The TAPAS theatre metaphor [1].

The functional architecture of TAPAS is based on a theatre metaphor presented in Figure

3. This metaphor defines the functionality as plays with actors performing different roles.

The actors are generic object that, dependant of its capability, can perform different role

figures which are described in manuscripts. The different actors interact with each other

in role sessions and a play is conducted by a director, which is an actor performing a

specialized role for this purpose. One director supervising actors is also representing a

domain. The repertoire is finally a collection of plays that can be performed at the theatre,

which is a metaphor for the definition of concepts and functionality.

3.2 Basic architecture

The basic architecture covers the basis of TAPAS functionality. Figure 4 shows the

object model of this basic architecture as explained in [1].

The development of a fleet steering application with mobility support

 - 15 -

Play

Role

Service Component

Service System

realized_by

Role_figure

Manuscript

defined_by

Actor

Capability Component

plays

uses

managesDirector

Domain

requires

Role Session

describes

projects

defined_by

consists_of

realised_by

manages

can_move_to executes

composed_of

composed_of

1

*

Figure 4: Object model of the TAPAS basic architecture [1]

Figure 4 shows an object model of the basic architecture of TAPAS. This architecture

gives the basic support that is needed in TAPAS, and the mobility architecture that will

be presented later on is based on this. The grey box is the play view of the architecture.

The foundation in this model is the Actor component, which is a generic software

component running on a node in the network. One Actor is modeled as an Extended

Finite State Machine (EFSM) that can download a Manuscript that defines a Role, in

order to play a certain Role Figure. This way the actor component can execute the

different role figures. The Manuscript describes also the different Role Sessions in the

play. The Role requires capabilities defined in the Capability Component in order to run

and these capabilities have to correspond with the offered capabilities on the hosting node

in order for the different Roles to be carried out. The Director manages the domain and

the Role Figures that realizes the Play.

3.2.1 TAPAS layered model

From the functionality and support platform point of view, the TAPAS basic architecture

consists of several layers. Figure 5 shows these layers and these are described further in

[6] and [7].

The development of a fleet steering application with mobility support

 - 16 -

Figure 5: TAPAS layered model [6]

• Plug and play Communication Infrastructure (PCI): Lowest layer in the

infrastructure. Constitutes of the Operating System (OS), network communication

(e.g. TCP/IP) and a distributed system solution. Java RMI is used for current

implementation of the TAPAS Core Platform.

• Plug and play Node Execution Support (PNES): Makes it possible to run

TAPAS software on a node and to let actors on different nodes interact. A part of

this layer is static in order to make the system boot on a node.

• Plug and play Actor Support (PAS): Makes it possible to create and execute

actors within an operating system process (or thread). Each PAS is has a separate

Java Virtual Machine instance.

• Director: Manages the plays as described earlier

• Plug and play Extended Management (PXM): Support for extended services

that is not required for TAPAS basic support, but for specified extensions related

to operational quality.

The development of a fleet steering application with mobility support

 - 17 -

• Plug and play Extended Support (PXS): Required for the applications to utilize

PXM functionality.

• Plug and play applications: The collection of application actors.

• Non Plug and play applications: Other functionality that is not defined

according to ApplicationActor requirements but allowed to communicate with

actors and to utilize TAPAS support functionality

Figure 6 shows an example of a TAPAS system distributed over 4 nodes.

Figure 6: Example of TAPAS system [1]

The statically available bootstrap code on each node downloads the necessary code from

the web server, and executes the PNES that is needed in order for the nodes to run

TAPAS software and TAPAS-based services. AEEM corresponds here to a process or

thread that executes a collection of actors with one associated PAS. The web server holds

the manuscripts (e.g. the executable code for a service) and the code for the basic support

system and these will be downloaded whenever needed.

Several defined procedures are introduced in order to give a basic set of functionality to

TAPAS. These are PlayPlugIn, PlayChangesPlugIn, PlayPlugOut, ActorPlugIn,

The development of a fleet steering application with mobility support

 - 18 -

ActorPlugOut, ActorBehaviourPlugIn, ActorChangeBehaviour, ActroBehaviourPlugOut,

RoleSessionAction, ChangeActorCapabilities and Subscribe. The plug-in procedures are

basically used for initializing the different dynamic components in Figure 6, and the plug-

out procedures for removing the instances. For more details about these procedures, see

[16].

The development of a fleet steering application with mobility support

 - 19 -

3.3 The TAPAS Mobility Architecture

The TAPAS platform consists of several architectures in addition to the basic

architecture; mobility architecture, dynamic configuration architecture, capability

architecture and adaptive service architecture. These are meant to support and solve the

different aspects of TAPAS described in chapter 3. For this project the mobility

architecture was used in order to solve mobility issues.

Mobility is regarded as the most important feature to achieve adaptable and flexible

systems [2]. This implies that the system then is capable of handling dynamic changes in

availability of different kinds of resources and to handle users regardless of their physical

location. The TAPAS mobility architecture is based on the basic architecture described in

section 3.2, and adds components and functionality to enhance support for mobility

issues.

Figure 7: TAPAS Mobility Concept [2]

Figure 7 shows how mobility is handled in TAPAS, and gives a description of the terms

used in TAPAS to describe mobility. The terminology framework and definitions are

described in details in [2]. As a result of using two interfaces, a user interface and a

terminal interface, TAPAS gets a flexible way of describing users and terminals

independently. This concept is a quite normal way of distinguish users and terminals and

is used commonly in systems that require user or personal mobility. By using this

concept, there is room for the different kinds of mobility that is supported by the TAPAS

mobility architecture; personal, terminal and role figure mobility. These types of mobility

The development of a fleet steering application with mobility support

 - 20 -

are described briefly in section 3.3.1 to 3.3.3 later on in this report and in more detail in

[5].

Director

Role-Figure

Domain Node

MobilityAgentMobilityManager

UserProfileBase

UserSessionBase

LoginAgentVisitorAgentUserAgent

Terminal

 manages

manages manages

controls

controls

manages

User

 is_at

1

1
handles

1
0..1 handles

1
0..1

handles

1

1
executes_at

Figure 8: Object model of TAPAS mobility platform [2]

The TAPAS mobility platform can be described with an object model like Figure 8. This

resembles very much on the basic architecture described in 3.2, but the main difference is

the colored objects. The Director is now also in charge of handling user profiles and user

sessions which are stored in UserProfileBase and UserSessionBase respectively. These

two objects represent a knowledge base or data repository, and can be implemented as

one or several databases or any other way of storing data. The current implementations of

TAPAS use XML files to store the info.

A couple of new role figures are also introduced. MobilityManager is a role figure that

manages the mobility in a domain. This manager can have contact with several

MobilityAgents. MobilityAgent is controlling the movement and connectivity of a Node,

and there are one MobilityAgent per Node in the net and one MobilityManager per

Domain. The different MobilityAgents keeps contact with the MobilityManager, in order

for this to known whether the Nodes are available, connected or have changed location

(i.e. changed addressable location, e.g. IP address). The MobilityManager must thus be

running at a location known to all other nodes in that domain.

The development of a fleet steering application with mobility support

 - 21 -

The LoginAgent is functionality to support entry of a user to a domain. UserAgent and

VisitorAgent is supporting the User in the user’s home domain and visiting domain

respectively. The home domain of a user is defined as the domain that holds the profile

for that user. For more details on the objects, see [2].

Figure 9 shows the different parts of the mobility architecture within one domain with

four nodes, two terminals and a web server. The users entering a domain are first met by

a LoginAgent that handles authentication of the user based on the user profile and other

preferences that are stored in the UserProfileBase. If the user is entering his or hers home

domain (like on TerminalA), the user gets assigned a user agent that handles the

interactions with the system, service requests and administration of the user profile and

sessions. Is this not the home domain for the user (TerminalB), a visitor agent gets

assigned instead to handle the interactions with this visiting domain as well as the users

home domain.

Figure 9: Engineering model of TAPAS mobility architecture [2]

The MobilityAgents running on the terminals keep contact with the MobilityManager in

order to keep this updated with the status of the terminal. Based on the services that the

user requests, service instances can be set up and plays and manuscripts be downloaded

an executed. These are distributed on the terminals and nodes. The domain management,

The development of a fleet steering application with mobility support

 - 22 -

which comprises the administrative actors (director1, Configuration Manager and

Mobility Manager) supervises the whole process and handles requests from all the user

entries that are within the domain, as well as requests from other domains. This includes

the different mobility aspects that are supported by the domain. The management of

services in TAPAS is based on the main concepts of TINA (Telecommunication

Information Networking Architecture) service architecture [8].

3.3.1 Personal mobility

Personal mobility is in the TAPAS context described as functionality and support for

giving an end-user orientation for the applications or services that is running on the

TAPAS platform. This means that the user shall be able to personify the environment and

that the sessions of the user at any time can be stored or suspended and at a later time be

resumed again. All this is independent of physical location, terminal or equipment. In [2],

personal mobility is separated into two kinds of personal mobility; user session mobility

and user mobility.

3.3.1.1 User Session mobility

User session mobility describes the functionality for suspending and resuming a session,

or to continue an executed service at a later time. The user’s current session is regularly

updated by the UserAgent and the session is maintained by the Director. This way the

UserAgent can send a message to the Director that it shall suspend the session whenever

needed (e.g. the user logs out). Figure 10 shows an example of user session mobility.

UserA is first logged in at TerminalA and the UserAgent there handles the

update_session requests to the Director (director1). The user has two services defined by

Play1 and Play2, which involves Client1, Client2, Server1 and Server2. The red dotted

lines indicates the connections in one user session, and note that Server2 is not

maintained by this session, but by an other session.

The development of a fleet steering application with mobility support

 - 23 -

Figure 10: User Session Mobility [2]

The user suspends its session and moves to another terminal (TerminalA’). Here the user

resumes the sessions via the new UserAgent and the ongoing services are resumed. Since

Server2 was maintained by another user session, this instance was not terminated and

therefore the connection is resumed. Client1, Client2 and Server1 instances as well as the

actor with child sessions is instantiated in order to resume the sessions.

3.3.1.2 User mobility

User mobility is providing the user the ability to roam within different domains and still

get access to its subscribed services. This is where user profiles and maintaining them

comes in to play. The UserAgent or VisitorAgent is responsible for retrieving and

updating the profile via the director in the home domain to the user.

The development of a fleet steering application with mobility support

 - 24 -

Figure 11: User mobility [2]

Figure 11 shows a scenario where UserA is logged in at the home domain for this user,

Domain1. The UserAgent is capable of requesting the user profile and update the same

profile with new info if necessary. It is the director of the domain, here called director1

that handles and updates the profile. When the user roams to another domain, Domain 2,

the user logs on and gets a VisitorAgent assigned for this session since there is no user

profile for this user in this domain. When the user wants to access the subscriptions in the

home domain, the VisitorAgent contacts the director of the visiting domain, director2.

This director makes contact with the director of the user’s home domain, and these two

negotiates the access and authenticates the user so that the VisitorAgent can access the

user profile via the director in the home domain of the user.

Now the user has access to the same services as when the user is in his or hers home

domain.

3.3.2 Role Figure mobility

Role Figure mobility in TAPAS means the capability of moving an already instantiated

actor, i.e. to move running code. Role figures are, if we recollect from section 3.1, actors

performing defined roles. Role Figure mobility can be performed between terminals,

nodes or even between different domains. All the properties, capabilities and role

sessions that the moving role figure has, have to be moved as well so that the complete

movement is transparent for the rest of the system. This type of mobility is also known as

service mobility or program mobility.

The development of a fleet steering application with mobility support

 - 25 -

Figure 12: Role Figure mobility [2]

Figure 12 shows an example of role figure mobility where a role figure is moved between

two different domains. The role figure has two ongoing role sessions, RS1, with a server

called Server1, and RS2 with another role figure that is specific for domain1 (this can be

a type of domain name server, or other domain specific role). When the role figure moves

it notifies the MobilityManager of the domain, MobilityManager1, about its new location.

When other actors or role figures send requests to the moved role figure (or any actor for

that matter), they first check with the MobilityManager to get the location of the role

figure.

When the role figure arrives at the new location, the behavior, capabilities and role

sessions are recovered if possible. In Figure 12, the role session with Server1 was

recovered and a new role session to a new GenericRole (that is domain specific for

domain2) was created. Not all of the child sessions of the role figure could be recovered,

and these are marked with black color in Figure 12. This may be because of different

capabilities at the new location or that they are no longer relevant for the moved role

figure.

There are several reasons to initiate movement of role figures. It can be because of

changed capabilities at the hosting node or terminal, so that the role figure has to move in

order to continue, or because of user input. An example can be that a user has an ongoing

The development of a fleet steering application with mobility support

 - 26 -

service at his stationary terminal at his office. The user wants to continue this service

after work and can thus move the role figure that is performing the service to the his

handheld PDA or cellular phone.

Figure 13: Sequence chart of Role Figure mobility [2]

The actual movement of an actor is possible with the use of several requests. Figure 13

show a possible sequence diagram for moving an actor. When the actor at location1

receives an ActorMove request, it tries to plug in a new actor at the new location before it

transfers its capabilities, interface (where info about this actor can be stored) and the

current behavior to the newly plugged in actor. When this is done, the actor notifies the

MobilityManager with a LocationUpdate request before it terminates itself by performing

a plug out request. As described earlier, other actors and role figures perform an

ActorDiscovery procedure with the MobilityManager in order to get the location of the

actor.

3.3.3 Terminal mobility

The last type of mobility described in TAPAS Mobility Architecture, is terminal

mobility. This is when a terminal changes its location and/or connection point to the

network, but still maintains the services that are running on the terminal. This includes

that the terminal can loose connectivity with the network for some time and returns to the

same connection and that the terminal is moved without loosing connectivity, but that the

actual address to the terminal is changed. This can be done within the same domain (i.e.

with the same director) or between domains.

The development of a fleet steering application with mobility support

 - 27 -

Each terminal executes a MobilityAgent in order to keep track of the current location of

this terminal as described in Figure 8 earlier on. Both the MobilityManager and the

MobilityAgent must be able to discover changes in the connectivity, so that if a terminal

goes out of coverage or looses connectivity in any other way it is picked up by the

system. When a MobilityAgent discovers that it has changed location, it sends an

LocationUpdate to the MobilityManager with the new location.

domain1 domain2

Capabilities,
Status,

Executing
Actors

Capabilities,
Status,

Executing
Actors

Domain-specific
information and
requirements

Mobility Manager

Domain-specific
information and
requirements

Terminal
(Location)

Terminal
(Location)

director2director1

Requests from
other Nodes

Node

Terminal Move Terminal Move
Out of

coverage

LocationUpdate,
NodeDiscovery

MobilityAgent MobilityAgent

Mobility Manager

Figure 14: Terminal mobility [2]

Figure 14 shows an example of terminal mobility where the terminal moves from one

domain to another (from domain1 to domain2) and in the time between is out of coverage

for some time. The MobilityAgent keeps the MobilityManager updated until it reaches

the boundary of its domain, and then they loose connectivity and the terminal is marked

as inaccessible. When the terminal enters domain2, it may be allowed to access certain

services that are negotiated between the directors like described with user mobility in

section 3.3.1.2. The MoblityAgent will then execute a LocationUpdate to its home

domains MobilityManager so that other nodes can reach it. The other nodes performs

NodeDiscovery procedures (and ActorDiscovery like described in section 3.3.2) in order

to contact the moved terminal and its actors.

The development of a fleet steering application with mobility support

 - 28 -

3.4 MicroTAPAS

MicroTAPAS is an implementation of TAPAS for devices with limited resources, like

PDAs. As all current implementations of TAPAS, MicroTAPAS is realized with the use

of Java as programming language, but some parts of the code had to be made differently

because of limitations in the targeted devices. MicroTAPAS was implemented by Eirik

Lühr as a project at NTNU [4] and further developed with some mobility support in his

master thesis [9]. Minor changes have been done by others later on, but this project is

based on the work done in [4] and [9].

3.4.1 Differences to TAPAS Core platform

MicroTAPAS is implemented using Java 2 Micro Edition (J2ME) with the Connected

Device Configuration (CDC), which is briefly described in chapter 1.1 and in Appendix

D: J2ME. The TAPAS Core platform was implemented using Java 2 Standard Edition

(J2SE) and made use of Java Remote Method Invocation (RMI) for communication. Java

RMI is an optional package to the CDC profiles, and some features are removed in order

to make it less demanding for the device. Some of these removed features was used in the

TAPAS Core platform, and this implicated that RMI could not be used in MicroTAPAS.

Socket communication was used instead for the communication between the different

nodes.

In order to not use more system resources than necessary on the devices, it was decided

to be a limitation of only running one instance of a virtual machine at any given time on a

device. This opposed to the TAPAS Core platform where it is possible to run several

instances at the same time.

Other major differences in this implementation are within the layered model. It was

decided that there should be only one PaP Actor Support (PAS) (see section 3.2.1)

instance for each node. This led to the decision of merging the PAS layer and PNES layer

to one layer called MicroPNES, and the MicroTAPAS layered model would then look

like Figure 15.

The development of a fleet steering application with mobility support

 - 29 -

Figure 15: MicroTAPAS layered model [4]

A modified version of Figure 6 would then be like Figure 16. This figure also displays

the use of mobility features like MobilityManager and MobilityAgents.

Figure 16: MicroTAPAS example system [9]

The development of a fleet steering application with mobility support

 - 30 -

Node 1 and 4 can for example be PDAs running a CDC JVM, and these are connected to

the network via wireless communication. Node 2 is here an ordinary computer running a

normal JVM. Node 2 is also running the Director and the MobilityManager for this

domain, and Node 1 and 4 is running a MobilityAgent each that is in contact with the

MobilityManager.

3.4.2 Implementation issues

MicroTAPAS is implemented based on the use of PDAs as devices and WLAN as

network technology. This determined how the mobility management mechanisms were

worked out. These features were realized by using plain socket routines and pinging to

check for connectivity. The implementation from [9] is supporting terminal mobility and

role figure mobility, but no support for personal mobility is implemented. Tests of the

existing mobility features were performed and some are explained in chapter 7. Actor

mobility was tested successfully, but terminal mobility failed with the use of PDA.

In [13], Marius Dalsmo addresses an improvement of connectivity by solving a timeout

problem with the java.net.Socket implementation. This code was also found with the

UML specifications described in [14], but execution of this code resulted in an error and

was not used further in the project.

The development of a fleet steering application with mobility support

 - 31 -

4 The Mobile Interactive Navigation Tool (Mint)
This project’s main task was to develop a mobile application using TAPAS and its

mobility architecture. The development of this application comprised of three phases;

design phase, implementation phase and at last a testing phase. This is the normal

lifecycle for developing services or applications, and these phases are described in

chapter 5 to 7.

The application chosen to be developed was an application for fleet steering of

emergency vehicles, and was named Mobile Interactive Navigation Tool (Mint). The

emergency services have the need for knowing the whereabouts of their emergency

vehicles to be able to efficiently guide them. They also need an easy way to guide the

vehicles to their destination, e.g. with the use of car navigation systems. The emergency

services also have the need for transferring different types of documents between the

users and the communication central to keep an updated situational report.

Although this application was developed with the emergency services in mind, there

should be no problems for other services, e.g. transport or delivery services, to use this

application as well.

It is important to notice that this application is meant to be a supplement to the

communication system chosen by the emergency services, and functionality like voice

transmission is not covered here at all. Issues like securing the transmissions and

encryption isn’t covered either, and must be handled by the chosen network.

Since the technology that is going to be used for the emergency network isn’t decided

yet, this project used PDAs as terminals and WLAN as the transport medium, but there

should not be any big problems porting this to whatever type of terminal as long as it

supports Java, J2ME and preferably CDC.

The implementation made is also primarily made for testing purposes, and improvements

might be needed if this is going to be implemented in full scale. But the major functions

The development of a fleet steering application with mobility support

 - 32 -

and functionality should easily be shown from this implementation. Some features are

probably not implemented the most efficient way, e.g. the document sending part which

is further described in section 6.2, but the main reason for this is to utilize most of the

already implemented functionality in MicroTAPAS.

4.1 Scenarios

Scenarios to describe the use and need of the Mint service can be useful for

understanding how the Mint application is supposed to work. The following scenarios

were created early in the process, and have been extended and adjusted during the work

on this project. This leads up to the design phase that is more thoroughly described in

chapter 5.

4.1.1 Speeding scenario

The first scenario involves a speed check where a police officer tries to stop a car that is

driving too fast. The officer reports that he or she now is involved in a car chase to the

central. The central gets the geographical location of the officer and of other users, and

can relocate the other users to intercept the speeding car.

Figure 17: Speeding scenario

The development of a fleet steering application with mobility support

 - 33 -

The scenario is also shown in Figure 17, where UserA is the patrolling officer. This

figure also shows that if UserA has a camera and takes a snapshot of the car he can send

this picture to the central, which can distribute it to the other users that is en route, here

called UserB and UserC.

4.1.2 Busy user scenario

The next scenario is that the mobile user is busy and doesn’t have time to update the

situation with documents or pictures to the central. The central has thus the opportunity to

get updated files, pictures or other documents from the mobile user’s terminal. This can

for example be in the case of a fire, where the firemen needs to concentrate on putting out

the fire or any other type of scenario where the user can’t prioritize to update the central

unit.

Figure 18: Accident scenario

Figure 18 shows a car accident where the two police officers at the scene are busy with

handling the situation. In their patrol vehicle, they have mounted a camera that takes

The development of a fleet steering application with mobility support

 - 34 -

pictures periodically. This camera is connected to a PDA running the Mint application,

and saves the pictures at a given location on the PDA. When needed, the operator can

request updated pictures, and can thus decide whether e.g. a fire truck or an ambulance is

needed for assistance.

4.1.3 Disaster scenario

Disaster is here understood as a major accident, where several emergency units are

involved. At this time there is no need for geographical location updates, and these

updates will only use resources and bandwidth that might be needed for other purposes.

Since the central already knows where the units are, it can tell the mobile units to not

transmit location updates any more, or to change the frequency of the updates.

At a later time, if the users e.g. are moving away from the disaster area, the

communication central might find it useful to start the geographical updates again or

change the update frequency.

At a major disaster, like terrorist attack or train accident, the rescue work will be

organized with some sort of local administration. At this time the local administrator have

more need for updates on the situation, and the other users in the disaster area can thus

send updated info like pictures, video and other information directly to the administrator

or to someone else in the administration (e.g. there might be assigned a special

communication officer for this task).

The development of a fleet steering application with mobility support

 - 35 -

5 Design of Mint
The design of Mint was carried out with the use of the UML templates made in [14].

These templates were for some strange reason made using Rational Rose RealTime. This

tool is a powerful, expensive and proprietary tool for developing real time applications in

Java or C++. In addition to normal UML diagrams, Rational Rose RT contains

functionality for using State Diagrams and other diagrams used for real time system

development. It also includes functionality for code generation and to compile the code.

None of these ‘extra’ functionalities can be used for development of TAPAS

applications. The department of Telematics at NTNU does not have licenses for using

this tool either, so this had to be borrowed from the department of Engineering

Cybernetics. This department does not have license for the latest version of Rational Rose

RT (now named IBM Rational Rose Technical Developer) and the version used was

version 6.4 from 2002.

The system will consist of two different parts that are distributed over an unknown

geographical area. One part is the mobile unit, which can be located in an emergency

vehicle, and the other part is a central unit which works as the server and can be located

within some sort of communication central.

5.1 Functional requirements

There will be different requirements for the mobile unit and the central unit, so these

requirements are divided in to two sections.

5.1.1 Mobile unit

The mobile unit will typically be placed within an emergency vehicle. The main function

of this unit will be to send its geographical location to the server, receive a destination

position from the server and handle other features. This unit should either contain a car

navigation system or be in touch with a map program to be able to show the desired route

to the destination. The geographical info can be sent periodically or by initiation from

either the central user or the mobile user.

The development of a fleet steering application with mobility support

 - 36 -

Other features of this unit can be sending or distributing different kinds of data like

pictures, video clips or written documents and reports. These can be sent to the central

unit to give an overview of the situation of e.g. an accident. The central unit can then

forward relevant material to expertise for help, to another emergency unit which is

currently en route to the accident, to a hospital for preparing the personnel or similar

cases. The mobile units may also have the need for exchanging data directly if required.

To get these kinds of services there has to be possible to log on with different user

profiles. There could e.g. be a default/basic user profile that handles the position

functions, a more advanced profile for sending/receiving data and another for local

administration of an accident, which of course needs the have more or less the same info

as the central. These profiles have to be configurable to fit in with different

organizational structures.

5.1.2 Server/Central unit

The server unit will typically be co-located with the communication central. This unit is

not mobile and should contain functionality for displaying the positions of the mobile

units, sending coordinates or destination addresses to the mobile units, manage user

profiles and handle data from the mobile units.

This unit shall be capable of requesting the geographical position of a mobile user at any

time. The central user can also send a waypoint to the mobile user to get the mobile users

car navigation system or other navigational tool to guide the mobile user to a destination.

The central user shall also be capable of requesting documents from the mobile user if

needed. For example if the mobile user is busy with handling the situation at e.g. an

accident, the central shall be capable of getting updated documents like pictures from the

mobile user without the mobile users interaction.

5.2 Non-functional requirements

Some non-functional requirements are also set for the Mint application.

• The user profiles shall be easy to maintain in order to change settings for a user.

The development of a fleet steering application with mobility support

 - 37 -

• The central must be able to control the periodic transmission of GPS locations

from the mobile users. This can be if the central knows that the mobile user is at a

known accident and the central decides to save some bandwidth for other more

important traffic.

• The user interface of the mobile unit has to be intuitive and easy to use, preferably

with working gloves and a fireman’s outfit.

Figure 19 shows a Use Case diagram for the wanted functionality of the Mint application.

Figure 19: Use Case for Mint

The Mobile User represents here a user with a mobile unit and the Central User is within

the communication central.

The development of a fleet steering application with mobility support

 - 38 -

5.3 Class diagrams

Figure 20: Class diagram of Mint

Figure 20 shows a class diagram for Mint. The mobile unit is represented by three classes

or role figures, MintClient, GpsLocationRoleFigure and MintDocumentRoleFigure, and

the central unit is represented by two, MintServer and GetDocumentsRoleFigure. All role

figures are extended from MobilityApplicationActor, which is in the

MicroTAPAS.mobility package.

The MintClient role figure is the basic starting point for the application at the mobile unit.

This role figure takes care of the login process for the user and has the basic functionality

for Mint. According to the response of the login request to the director, this role figure

can instantiate GpsLocationRoleFigure and/or MintDocumentRoleFigure.

MintServer is the role figure that handles server functionality, and is located within the

communication central. This role figure will most probably be running on the same node

as the director and the MicroTAPAS domain management. MintServer can instantiate

GetDocumentsRoleFigure in order to get documents from a client’s terminal. This role

figure will actually be instantiated at the client’s terminal, but will request an actorMove

procedure in order to move back to the server with the documents requested.

Figure 21 shows a more detailed class diagram for the MintClient role figure. This role

figure has two windows for Graphical User Interface (GUI), one logon window to get the

The development of a fleet steering application with mobility support

 - 39 -

users name and password from the user and one window for handling the rest of the

functionality for the Mint application.

Figure 21: Class diagram of MintClient

For more detailed class diagrams of the other classes, see Appendix E: CD.

The development of a fleet steering application with mobility support

 - 40 -

5.4 State diagrams

Figure 22: State diagram for MintClient

Rational Rose RT gives the opportunity to model state diagrams. These are used by the

program to generate real-time code, and can thus not be used directly to generate TAPAS

or MicroTAPAS code. But still it can be used to show some functionality. Figure 22

shows the state diagram created for MintClient. The isMoved test is used to not initiate

the role figure if it is moved, but wait for the creation of the interface that contains the

current state.

The development of a fleet steering application with mobility support

 - 41 -

5.5 Sequence diagrams

Figure 23: Sequence diagram for logging on

Figure 23 shows a sequence diagram for starting up the application at the mobile unit.

When the MintClient is plugged in, it opens the LogOnWindow in order to log on the

user to the system. The client tries to plug in the MintServer role figure if this is not

already running, and sends the username and password to the director in a LoginRequest.

If the login is correct, the director returns the user’s properties that are retrieved from the

user profile base. If these properties say that the user is supposed to send GPS positions,

the MintClient tries to plug in the GpsLocationRoleFigure for handling this. The

GpsLocationRoleFigure will then send locationUpdates to MintServer according to the

profile. The login process ends with the MintClient opening the MainClientWindow,

which is the main interface towards the user.

The development of a fleet steering application with mobility support

 - 42 -

5.6 XML file

In order to handle user mobility, different user profiles was created. These profiles are

stored in an XML file called UserProfiles.xml that is located in the bootstrap root

directory for the director. See also Appendix E: CD.

<UserProfiles>

 <User>

 <Username>user1</Username>

 <Password>1</Password>

 <BackgroundColor>102 51 255</BackgroundColor>

 <WindowLocation>422 55</WindowLocation>

 <WindowSize>522 358</WindowSize>

 <SendDoc>false</SendDoc>

 <SendGpsPos>true</SendGpsPos>

 <SendGpsAutoTimer>10</SendGpsAutoTimer>

 </User>

</UserProfiles>

Table 1: Example of user profile

Table 1 shows an example of a user profile used by Mint. The user with the username

“user1” has properties for the background color, window location and window size. (Note

that window location and window size is not used on PDAs, since these always show the

windows in full screen). The user isn’t authorized to send documents, but is supposed to

send its GPS location and this is by default set to be sent periodically with 10 seconds

intervals.

The development of a fleet steering application with mobility support

 - 43 -

6 Implementation of Mint
The UML diagrams that were designed in chapter 5 were used to generate “code shells”

of the classes using Rational Rose RT, and these classes was later used as a framework

for developing the application. These shells were then imported in to NetBeans, which is

an open source, free Java IDE sponsored by Sun that can be downloaded from the

NetBeans web page [OL16].

Although the application was mostly implemented using a normal J2SE IDE, the

application was targeted for J2ME, CDC configuration with the Personal Profile (see

Appendix D: J2ME for information about J2ME).

Some parts of the program were implemented using IBM WebSphere Studio Device

Developer [OL4], which was useful because the JVM used on the targeted PDA was

IBM’s J9. WSDD has also the capability of porting the code directly to the PDA for

testing. This was useful when the GPS support code was developed.

A dynamic link library file was made in C++ for interfacing TomTom Navigator. This dll

was made using Microsofts eMbedded Visual C++ 3.0 [OL21], but due to problems

described in section 6.3, this was never finished.

Some issues that occurred during this phase and solutions made are described in more

detail in this chapter.

6.1 Location API (JSR 179)

There are several optional packages to J2ME. One of these is the Location API or JSR

179. This is primarily developed for the CLDC configuration, but it is designed to also

work with CDC. The only problem with this API is that it only contains classes with

abstract methods, which means that the functionality of this API is to make a standard

interface. It is up to the user to implement how the location is retrieved, but by using this

API the implementations will have the same interface and methods.

The development of a fleet steering application with mobility support

 - 44 -

Nokia was the prime mover behind this JSR, and Nokia have developed a Reference

Implementation (RI) to JSR 179 that includes an example using GPS. It was hoped that

this could be used in this project but this example used the MIDP profile of CLDC, and

this proved to be impossible to use with CDC. The alternative was now to make the code

from scratch, getting the input directly from the serial port and parsing the info.

Instead, it was chosen to use an existing NMEA parser and serial port driver made by

James Nord [OL17]. These classes use a dynamic link library (dll) to get the serial port

data, and this meant that this dll had to be ported to the PDA. The different classes made

by Nord are also made in separate Java packages, and this proved to be difficult to import

“the TAPAS way”, i.e. to download it from the web server. It is believed that this is

because of the way that package names are used when plugging in a play. Instead the

needed classes was ported to the targeted PDA, and stored in the classpath for the JVM

on the device.

6.2 Sending and getting documents

MintDocumentRoleFigure and GetDocumentsRoleFigure were implemented with the

use of role figure mobility. This was mainly to show that it is possible to use role figure

mobility for this type of transfer, but this choice also sets some restrictions. Using role

figure mobility proved to be very easy and quick to implement, because this then lets

MicroTAPAS handle all the transfer. There is no need to set up a socket connection

between the two peers to transfer the files, because this is done by MicroTAPAS when

transferring the interface of the role figure (see Figure 13 for how this transfer is

performed).

The drawback is that the files have to be read in to memory and stored as a variable in

the interface of the role figure prior to the movement. This implies that transfer of large

files can take up a lot of memory, and cause problems on a device with limited

resources. The JVM will probably prevent this from doing any damage to the system, but

it is important to know about this issue.

The development of a fleet steering application with mobility support

 - 45 -

MintDocumentRoleFigure is implemented so that the user selects the documents he or

she wants to send, while GetDocumentsRoleFigure searches for documents with given

parameters (i.e. folder, file type and/or date modified) and this search will include files in

subfolders.

6.3 Sending waypoint

This functionality was meant to be implemented with the use of a car navigation system

for the PDA. For this purpose, TomTom Navigator [OL8] was chosen to be the targeted

system. TomTom Navigator has implemented an interface for third party programs

through an extra package called TomTom Navigator SDK. This SDK only has interface

for C++ or Visual Basic, but this could have been solved with Java Native Interface

(JNI).

6.3.1 Problem #1

TomTom Navigator 3 was the newest version available at the start of this project, but

TomTom hadn’t released any SDK for this version. This was due to be released in mid

November, and would have been too late for this project. The available SDK was for

TomTom Navigator 2, so this was ordered.

6.3.2 Problem #2

TomTom Navigator SDK 2 was only available to purchase online, via handango.com or

amazon.com. To order online from these web sites, Visa or other credit cards have to be

used. This isn’t easy for an institution like NTNU, and the order was stopped due to

different names on the credit card and the purchaser. The IT department at the institute of

Telematics has been working to solve this, but unfortunately without luck.

There was, however, made a JNI class and a simple dynamic link library (dll) to test if

MicroTAPAS was able to use C++ code, and this worked fine. The current

implementation just prints to the mobile user that is should navigate to certain

coordinates, and the user now has to put this coordinates in to the navigation system

manually.

The development of a fleet steering application with mobility support

 - 46 -

6.4 MintServer

To get a running server for the Mint application, there is need for dynamically updated

maps to show the presence of the different mobile users. This task would have included a

lot of GUI programming, and this was thought to be little bit on the side of the purpose of

this project. A simple, text-based role figure was implemented instead, using

MicroTAPAS’s own debug window for this. All the necessary commands have been

implemented in MintServer’s drop-down menu for commands.

6.5 Screenshots

This section will show some screenshots of the Mint application, as it is viewed at the

targeted PDA. Other screenshots are provided in Appendix B: Screenshots of Mint and

on the CD supplied as Appendix E: CD.

Figure 24: Login window

Figure 24 shows the logon window of the MinClient as it is displayed the first time a user

logs on. If the typed username or password is incorrect, an error message will be

displayed. If the user presses “Cancel”, the MintClient will try to perform an

actorPlugOut procedure and exit.

The development of a fleet steering application with mobility support

 - 47 -

Figure 25: Four different users, with different profiles

Figure 25 shows that the different users have different background color set in their

profile. User3 was maybe not too lucky with its choice of color, though.

The development of a fleet steering application with mobility support

 - 48 -

The development of a fleet steering application with mobility support

 - 49 -

7 Testing and experimentation
Testing and experimentation of functionality is a major part of any programming cycle.

During the process of making the Mint application described in chapter 4, and after the

completion of the service, several tests were conducted. After installing MicroTAPAS on

both a PC and a PDA (see Appendix A for info about MicroTAPAS on PDAs), the first

test was to be carried out. This was a simple test of terminal mobility that was already

supported by MicroTAPAS.

7.1 Terminal mobility test

This test was basically a recreation of a test described in [9], and was tested with moving

a PDA between different WLAN access points on different subnets. There was only one

director and MobilityManager involved, so the test was just to check how MicroTAPAS

handled changes of IP address and connectivity. Two APs were configured in addition to

an open AP at the department of Telematics, and these were on separate IP subnets in

order to make the PDA change IP and not just roam between the APs.

The test was set up with the following configuration:

Hardware Connection Virtual Machine Role

1 PC, Windows XP LAN Sun JVM 1.4.2_05-b04 Director/MM

2 PDA, iPAQ 3870, PocketPC

2002

WLAN IBM J9 MA

3 Laptop, WindowsXP WLAN Sun JVM 1.4.2_04-b05 MA

4 Student web server, Linux LAN Web server

5 AP, tapas LAN/WAN Subnet 200.X

6 AP, tapas2 LAN/WAN Subnet 209.X

7 AP, itemwlan LAN/WAN Subnet 66.X

Table 2: Configuration of terminal mobility test

The development of a fleet steering application with mobility support

 - 50 -

Figure 26: Terminal mobility test

Figure 26 shows the setup for this test. The PDA did not automatically change IP address

when entering a new subnet, but this was solved with using a small tool called

PocketLAN [OL20] that was downloaded from Internet. Manually changing the IP was

also tested, like described in [9, section 6.5.2].

7.1.1 Test results

The PDA reported to the consol window when it lost connection, and the MM set the

node status to “not connected” like expected. When the IP address was changed, the MA

did not report the expected TerminalMove, but only that the connection was reestablished

to the director. (This was reported by the MicroPingClient). On the other hand, the MM

did not report any changes, so any actorPlugin requests was not successful and the

director reported that the receiver was not registered. The test was performed several

times, trying to change between different APs, but the result was the same. The change of

IP address was confirmed by the PocketLAN tool and also by accessing

www.whatismyip.com on the Internet.

On the itemwlan network (66.x), there was not made any successful connection at all.

There is apparently hard coded somewhere in the MicroTAPAS code that the 200.x and

The development of a fleet steering application with mobility support

 - 51 -

208.x/209.x networks can be used by the MobilityManager, but this code has not been

found.

The same test was performed with a laptop on the same WLANs. This time the PNES on

the laptop reported a TerminalMove request, and the MobilityManager also reported the

change of IP. However, trying to perform a role session action with existing role figures

on the moved terminal failed with the error message that the terminal was not registered.

Plugging in new actors, however, worked fine and these were registered as normal.

The conclusion of this test must be that terminal mobility is not yet fully implemented

and supported by MicroTAPAS, and the problems that occurred needs further study.

Because of this result, further extensive tests including terminal mobility could not be

performed.

7.2 User mobility test

This test was to ensure that the basic functionality of the application worked and the

different profiles was retrieved correctly. For this test four user profiles were saved in

UserProfiles.xml with the profiles given in Table 3.

Username Background color GPS Send documents

user1 R:102 G:51 B:255 True False

user2 R:153 G:102 B:255 False True

user3 R:100 G:100 B:100 False False

user4 R:100 G:200 B:255 True True

Table 3: User profiles

The test was just to log on with the different users, log off and to try to change user while

logged on. The configuration was the same as in Table 2 and Figure 26, but only

connected to one subnet.

7.2.1 Test results

The log on procedure of the different users worked as expected, and screenshots of

windows with different background color and different functionality can be seen in

The development of a fleet steering application with mobility support

 - 52 -

Appendix B: Screenshots of Mint. If the username or password was mistyped, an error

message occurred in the Logon window. With the proper username and password, the

MintServer role figure was instantiated on the node hosting the director of the domain if

this was not already running, and the main window of the client was opened.

Changing the user while logged on resulted in an error when the currently logged on had

the GPS functionality set to true (user1 and user4). Further investigation of this problem

revealed that the GpsLocationRoleFigure received an exception while trying to plug out.

It was tried to fix this problem, but without success. It is believed that this error is

because of the NMEA parser and serial port driver used, probably because some process

is trying to communicate with the parser or driver while plugging out.

The conclusion of this test is that user mobility is supported by MicroTAPAS, but an

unwanted error occurred while plugging out the GPS location role figure. The reason for

this error was not resolved.

7.3 Geographical position test

This test was performed to test the functionality of sending the GPS position from a

mobile client to the server. The test was performed with user1 from Table 3 adding a

timeout parameter for periodically sending of the GPS location. This parameter was set to

10 seconds. The test was performed with the same configuration as in Table 2 and Figure

26, with the client only connected to one WLAN.

7.3.1 Test results

The test was performed with the following procedure and result:

Test Result (time* in seconds)

1. Wait until the timeout occurred Update received ~ every 12 sec.

2. Send the position explicitly from

the client

2.8s, 2.6s and 2.6s

3. Request the position explicit from

the central

Server reported 0.891s, 0.969s and 1.109 s

to request was sent.

The development of a fleet steering application with mobility support

 - 53 -

Total time was 3.1s, 3.3s and 3,4s.

4. Stop the periodic transmission by

request from the server

Server reported 0.969s, timed to 1,9s

(received at client)

5. Send the position explicitly from

the client

2.4s, 2.3s, and 2.3s

6. Request the position explicit from

the central

Server reported 0.937s, 0.766s and 0.875s to

request was sent.

Timed to 3.4s, 3.3s and 3.3s

7. Start the periodic transmission by

request from the server with new

timer of 20 sec.

Server reported 0.892s to request was sent.

Timed to1.3 s (received at client).

Update received ~ every 23 sec.

Table 4: GPS location test

* If not explicitly said otherwise, the timing was done manually with a stop watch.

Item number 3 and 4 was included to the test to see if it still was possible to send and

request the position when the periodic timer was switched off. Every test, except

switching on and off the timer, was performed three times in order to get some variation.

Preferably each tests should have been performed a number of times, but the main

purpose of this test was to get an impression of the time consumed and to check that the

specified functionality worked.

The reason for the timers being a couple of seconds after what the timer was set to is

believed to be because of processing time at the client. The client first processes the

timeout before it starts a new timer.

The conclusion of this test is that the GPS functionality specified is fully supported in

Mint.

7.4 Document transfer test

This test was performed to test the document features that are implemented in Mint. The

test was performed with user2 from Table 3. This user is only allowed to send documents

according to the user profile. The test was performed with the same configuration as in

Table 2 and Figure 26, with the client only connected to one WLAN.

The development of a fleet steering application with mobility support

 - 54 -

The files used for these test is displayed in Table 5.

Files Type Size

Pocket PC Note Pwi (may be opened with Word) 2 KB

Four bitmap files Bmp 151 KB

Jpeg file Jpg 21 KB

Mobile video 3gp 1811 KB

Total 7 files 2.37 MB

Table 5: Files used in document transfer

These files were with different timestamps, and the mobile video clip was saved the same

day as the test was performed. The Jpeg image was stored in a subdirectory, to test the

get documents functionality, which scans subdirectories.

7.4.1 Test results

Test Result (time* in seconds)

1. Send all documents from client to server 18.1, 17.8, 15.3

2. Send all documents from server to client 14.3, 14.5, failed**

3. Get all documents in folder 18.9, 18.7, 18.8

4. Get all jpeg files in folder 13.0, 12.9, 13.2 (one file)

5. Get all bitmap files in folder 14.9, 14.9, 14.6 (four files)

6. Get documents newer than one day 17.2, 18.0, failed**

Table 6: Document transfer test

* If not explicitly said otherwise, the timing was done manually with a stop watch.
** MicroTAPAS experienced a crash, reason unknown

Every test was performed three times in order to get some variation. Preferably each tests

should have been performed a number of times, but the main purpose of this test was to

get an impression of the time consumed and to check that the specified functionality

worked. Some failures were experienced during this test. The reason for this was not

resolved and can be because of general instability of Pocket PC (e.g. the WLAN card

stopped to work after a soft reset), instability of running Java, instability of MicroTAPAS

as well as failure in the tested functionality. On at least one occasion, the JVM on the

server reported that it failed to connect to the client (java.net.SocketTimeoutException:

The development of a fleet steering application with mobility support

 - 55 -

Read timed out). It was for some time believed that the timeout was because of the code

for GetDocumentsRoleFigure, which does the entire file reading process and actorMove

procedure during the actorPlugin procedure. Modifications of the code to separate this

into two different processes were tried out, but without success.

The conclusion of this test is that the document transfer functionality is working,

although some failures were experienced. The reasons for these failures were not

revealed.

The development of a fleet steering application with mobility support

 - 56 -

The development of a fleet steering application with mobility support

 - 57 -

8 Discussion
The Mint application developed in this project has proven that TAPAS is useful for

developing quite complex distributed systems with extended support for mobility.

However, the process of getting there was not so easy. Several challenges were faced

during this process, and this chapter will try to address them, evaluate the work done and

come with suggestion for further work.

8.1 Faced challenges

One major problem in developing applications is always documentation. In Java there is

provided functionality for generating documentation of the code, called Javadoc. This

documentation is very good in explaining the different classes and methods created, but it

lacks functionality to describe how to use the classes and methods. This problem impairs

with the complexity of the documented code.

This is thus also a major problem for TAPAS and MicroTAPAS, where up to 80 classes

are involved and these classes are supposed to be used by others as a framework for

developing new applications and services. Although that it is simple and quite easy to

implement role figures when the procedure is known, there would have been quite helpful

to have some sort of how-to, tutorial or user manual. What is meant by a how-to is a

simple document that tells the user which classes and methods to use for making new role

figures, in which order the different methods are accessed and what the consequences of

different choices are.

The UML diagrams in [14] are also lacking documentation on how to use them. First of

all, it was discovered that the diagrams were not usable as templates in Rational Rose RT

(that is in the computer term of the word template), but could only be copied and this

resulted in some unwanted linking in the UML diagrams. Secondly, there was no

description in how to use the classes supplemented. A lot of time was used on figuring

out how to use the diagrams and how the code worked.

The development of a fleet steering application with mobility support

 - 58 -

Another problem for the development was that none of the people that have developed

the implementations is in the project today, at least for MicroTAPAS where all the work

has been done by students. There are simply none that have in-depth knowledge of the

functionality that could easily be asked when problems and questions arose.

It took some time before it was understood that enhancements and additions to the

platform (MicroTAPAS) had to be made. This was not explicitly specified in the task,

and it was for a long time thought that only already implemented functionality was to be

used in the application created.

When the proper knowledge of MicroTAPAS and the inner workings were sufficient, it

became clear that it was surprisingly easy to create role figures and functionality with the

use of the MicroTAPAS platform. This indicates the importance of good documentation

and of good models, and a lot of time could probably have been saved here.

8.2 Evaluation of the result

Not all of the listed requirements for the Mint application given in chapter 5 were

completed in the final application. The part with a car navigation system for guiding the

user to the right position, stranded due to administrative problems (see section 6.3 for

more info). Other than that, the functional requirements given were completed.

The solution of using role figure mobility for transferring documents can be discussed.

This procedure leaves it to the MicroTAPAS support system to handle the actual transfer

of the files when it sends the interface to the newly created role figure. But this limits the

possibility of sending large files. Video clips made by a cellular phone were tested and

the clip used when testing file transfer (see section 7.4) was 3 minutes long and there

were no problems transferring this, but lager files may cause problems. The proper way

of handling file transfer is thus to read small parts of the file and send these on the fly.

There are of course issues about non-functional requirements. Time can be essential for

the emergency systems, and MicroTAPAS takes up to over one minute just to start up. If

the PDA had been on and working for some time, things also started to slow down until

The development of a fleet steering application with mobility support

 - 59 -

they eventually stopped working. This is a problem with instability in the PocketPC OS

or the PDA, and most of these problems will presumably be solved when newer and more

powerful devices are developed.

8.3 Changes made to the MicroTAPAS implementation

During the process of making the Mint application described in chapter 4, it became clear

that some additions and some changes to existing code were needed in order to get the

mobility support that was needed. These changes are given in Table 7 with a brief

description. For further description of the classes and methods used, see the updated

Javadoc for MicroTAPAS in Appendix E: CD.

Class/File Package Description

UserProfiles.xml XML file that stores user profiles.

This xml file has to be in the TAPAS bootstrap

root directory of the director.

LoginRequest MicroTAPAS This is a special request used with RequestPars to

handle login requests. Modified version from the

one in [15].

MicroDirector1 MicroTAPAS Reads now UserProfiles.xml and gets the user

profiles.

Method directorActorEntry updated to handle

LoginRequests and check this with the user

profiles.

TimerMessage MicroTAPAS A simple timer in order to make automatic or

periodic actions.

Session MicroTAPAS.util The same is in [15], but currently not used.

UserProfile MicroTAPAS.util Modified version of the one in [15]. Used to store

a user profile.

UserProfileBase MicroTAPAS.util Modified version of the one in [15]. Used to store

a collection of user profiles. Used by

MicroDirector1

XMLFileUtil MicroTAPAS.util File utility that can read and write xml files. This

The development of a fleet steering application with mobility support

 - 60 -

class handles UserProfiles, SessionDescriptions

and RoleList xml files, and is basically the same

as in [15]

Table 7: Changes and additions to MicroTAPAS

8.4 Further work

8.4.1 Implementation of lacking mobility features

The additions to MicroTAPAS that is listed in Table 7 are mostly taken from Lars Erik

Liljebäcks master thesis [15], and functionality from that thesis that is not currently

implemented in MicroTAPAS (i.e. the use of LoginAgents, VisitorAgents, RoleLists,

SessionDescription etc.), can easily be implemented with the use of these additions.

Terminal mobility also failed to work as specified in the test performed in section 7.1.

This needs to be investigated further, because this type of mobility is very important for

mobile systems. In fact, this can bee seen as the basis for a system being mobile at all.

8.4.2 Handling of Non-TAPAS code

There were experienced problems when trying to use Java classes that used other

packages than the play names during this project. There should absolutely be

implemented support for this, in order to enhance the usability of MicroTAPAS. Whether

this can be done by doing a playPlugin with the full package name has not been tested out

during this project.

8.4.3 Better model support for developing role figures

It should be possible to use even better model support for developing role figures in

TAPAS. With the use of e.g. Model Driven Architecture (MDA) or supplements to UML

2.0, it may be possible to generate developed code directly, generate XML or any other

machine interpretable language. This will probably be a very demanding task, but it

would also have been of great help for developing new applications with TAPAS.

The development of a fleet steering application with mobility support

 - 61 -

9 Conclusion
This project has proven that it is possible to develop an application with quite complex

functionality in a relatively short period of time with the use of the TAPAS and its

mobility architecture. The idea of using code on demand enables a simple way of

distributing new or updated code without having to update every terminal, but it has been

shown in this project that it also can cause problems and limitations. This regarding the

way that code on demand is performed in TAPAS. One major paradox when trying to

make things simpler is that the complexity of the new technology often increases,

although the end result for the users is much simpler.

The Mobile Interactive Navigation Tool (Mint) application was developed to make use of

the mobility support within TAPAS, with the use of the MicroTAPAS implementation.

This project has been the first to try to make an overall and comprehensive application

design, specification, implementation, and testing work using all the features of the

TAPAS/MicroTAPAS mobility framework. This includes both the architectural concept

and the support framework.

It is very important to notice that neither Mint nor the MicroTAPAS implementation are

finished and ready to use. They are just used to show how the overall ideas of TAPAS

may be implemented.

The development of a fleet steering application with mobility support

 - 62 -

References
[1] Finn Arve Aagesen, Bjarne E. Helvik, Chutiporn Anutariya and Mazen Malek

Shiaa, ”On Adaptable Networking”, The First International Conference on
Information and Communication Technologies, ICT 2003, Assumption
University Thailand, April 2003.

[2] Mazen Malek Shiaa, “Mobility Support Framework in Adaptable Service
Architecture”, IFIP - IEEE Conference on Network Control and Engineering for
QoS, Security and Mobility, NetCon'2003, Muscat-Oman, October 2003.

[3] Garmin Corporation, “GPS guide for beginners”, Part Number 190-00224-00
Rev. A, December 2000.

[4] Eirik Lühr, “TAPAS for wireless PDA”, Project at department of Telematics,
NTNU, Spring 2003.

[5] Mazen Malek Shiaa and Finn Arve Aagesen, “Mobility management in a Plug
and Play Architecture”, IFIP TC6 Seventh International Conference on
Intelligence in Networks, Saariselka, Finland, April 2002. Published by Kluwer
Academic Publishers.

[6] Finn Arve Aagesen, Bjarne Helvik, Ulrik Johansen and Hein Meling. ”Plug and
Play for Telecommunication Functionality -- Architecture and Demonstration
Issues”, The International Conference on Information Technology for the New
Millennium (IConIT), Thammasat University, Bangkok, Thailand, May 2001

[7] Mazen Malek and Finn Arve Aagesen. “Mobility management in a Plug and
Play Architecture”, IFIP TC6 Seventh International Conference on Intelligence
in Networks, Saariselka, Finland, April 2002. Published by Kluwer Academic
Publishers.

[8] Berndt H., Darmois E., Dupuy F., Inoue Y., Lapierre M., Minerva R., Minetti R.,
Mossotto C., Mulder H., Natarajan N., Sevcik M., and Yates M., “The TINA
Book”, Prentice Hall Europe, 1999.

[9] Eirik Lühr, “Mobility support for wireless devices – within the TAPAS
platform”, Master thesis at department of Telematics, NTNU, 2004.

[10] Philip Yam, “Everyday Einstein”, Scientific American, Volume 291, Number 3,
September 2004.

[11] European Union Council Conclusions on GALILEO, 7282/02, 25./26. March
2002.

The development of a fleet steering application with mobility support

 - 63 -

[12] David Last, “GPS and Galileo: where are we headed?”, European Navigation
Conference, GNSS2004, May 2004.

[13] Marius Dalsmo, “Plug-and-Play services for PDA and Java-enabled phones”,
Project at department of Telematics, NTNU, Autumn 2003.

[14] Fred Inge Henden, “Developing Role Figure Model based on UML
Specification”, Master thesis at department of Telematics, NTNU, 2004.

[15] Lars Erik Liljeback, “User and Session mobility in a Plug-and-Play
architecture”, Master thesis at department of Telematics, NTNU, 2002.

[16] Finn Arve Aagesen, Bjarne Helvik, Vilas Wuwongse, Hein Meling, Rolv Bræk
and Ulrik Johansen, “Towards a Plug and Play Architecture for
Telecommunications”, IFIP TC6 Fifth International Conference on Intelligence
in Networks, Bankok, November 1999, Kluwer Academic Publishers, ISBN 0-
7923-8691-4.

[17] Ronald Ashri, Steve Atkinson, Danny Ayers, Marten Haglind, Bill Ray, Rob
Machin, Nadia Nashi, Richard Tatlor, Chanoch Wiggers, “Professional Java
Mobile Programming”, Wrox Press Ltd, ISBN 1-861003-89-7, 2001

[18] Bradford W. Parkinson and James J. Spilker Jr, “Global Positioning System:
Theory and Applications, vol. I”, American Institute of Aeronautics and
Astronautics, ISBN 1-56347-106-X, 1996

[19] Proposition No.1 to the Storting – Supplement No.3, 2004 – 2005, For the
budget period 2005, “Future radio communication for the emergency and
preparedness services”, 5 November 2004.

[20] Mark Weiser, “The Computer for the 21st Century”, Scientific American,
Volume 265, Number 3, September 1991.

[21] Mark Weiser, “Some computer science issues in ubiquitous computing”,
Communications of the ACM, Volume 36, Issue 7, pp. 75 – 84, July 1993

The development of a fleet steering application with mobility support

 - 64 -

Online references
[OL1] Telematics Architecture for Play-based Adaptable Systems (TAPAS),

http://tapas.item.ntnu.no/, [Accessed September 2004]

[OL2] GlobalSecurity.org, Beidou (Big Dipper),
http://www.globalsecurity.org/space/world/china/beidou.htm, [Accessed
September 2004]

[OL3] Java Technology, Sun Microsystems, http://java.sun.com/, [Accessed
November 2004]

[OL4] IBM Workplace Client Technology, Micro Edition, http://www-
306.ibm.com/software/wireless/wctme_fam/, [Accessed October 2004]

[OL5] Federal Aviation Administration, Satellite Navigation Product Team,
http://gps.faa.gov/Library/waas-f.htm, [Accessed November 2004]

[OL6] Official Galileo Website, EUROPA - Energy and Transport – GALILEO,
http://europa.eu.int/comm/dgs/energy_transport/galileo/index_en.htm,
[Accessed October 2004]

[OL7] OziExplorer, http://www.oziexplorer.com/, [Accessed November 2004]

[OL8] TomTom, http://www.tomtom.com/, [Accessed November 2004]

[OL9] Enrique Ortiz, “A Survey of J2ME Today”, dated October 2004,
http://developers.sun.com/techtopics/mobility/getstart/articles/survey/,
[Accessed November 2004]

[OL10] Sun, Whitepapers on J2ME, http://java.sun.com/j2me/reference/whitepapers/,
[Accessed November 2004]

[OL11] Sun, “J2ME Technologies Overview Data Sheet”,
http://java.sun.com/j2me/docs/j2me-ds.pdf, [Accessed November 2004]

[OL12] Sun, “CDC: An Application Framework for
Personal Mobile Devices”, http://java.sun.com/products/cdc/wp/cdc-
whitepaper.pdf, [Accessed October 2004]

[OL13] Norwegian Public safety radio project,
http://www.nodnett.no/english/index.htm, [Accessed November 2004]

[OL14] Teleavisen AS, http://www.teleavisen.no/, [Accessed November 2004]

The development of a fleet steering application with mobility support

 - 65 -

[OL15] Russian Federation, Ministry of Defence, Coordinational Scientific
Information Center, GLONASS, http://www.glonass-center.ru/, [Accessed
September 2004]

[OL16] NetBeans.org, http://www.netbeans.org/downloads/index.html, [Accessed
September 2004]

[OL17] Teilo, http://www.teilo.net/, [Accessed November 2004]

[OL18] Autonomic Computing: IBM’s Perspective on the
State of Information Technology, IBM Corporation (2001), http://www-
1.ibm.com/industries/government/doc/content/bin/auto.pdf, [Accessed
November 2004]

[OL19] IBM Research, Autonomic Computing,
http://www.research.ibm.com/autonomic/, [Accessed November 2004]

[OL20] PocketLAN, download page,
http://www.pocketgear.com/software_detail.asp?id=2825, [Accessed
November 2004]

[OL21] Pocket PC 2002 SDK, downloadable from
http://www.microsoft.com/downloads/, [Accessed September 2004]

The development of a fleet steering application with mobility support

 - 66 -

The development of a fleet steering application with mobility support

 - I -

Appendix A: Running TAPAS on a PDA
In [3, Appendix A.2] Lühr gives a short explanation of how to create a link for Pocket PC

2000. Due to the fact that running Java applications on PDAs can be very troublesome,

the following appendix will give a bit more extensive guide on how to get your java

application running.

A.1 JVM for PDA
One idea behind Java as a programming language is that the created code is platform1

independent. In order to make this work, there has to be an interpreter on the platform

that translates the Java code to machine code that the OS understands. This interpreter is

for the Java environment called Java Virtual Machine (JVM). This “virtual machine” is

created in some kind of natural code (usually C++), and cannot be moved seamless

between different hardware and operating systems, although the code that they are

interpreting can.

That the Java code is platform independent is actually a truth with many modifications,

due to the fact that different kinds of hardware have different runtime demands, and that

there are several different vendors out there that create JVMs. This problem comes

especially to place when we talk about J2ME, which is designed for devices with limited

resources. Sun Microsystems, which is the sponsor for Java, have a webpage [OL3]

where people can find information about Java and the Java Technology. Here you can

find several JVMs for different uses, but for the CDC Technology, which is used in

MicroTAPAS, they have only released a version for Linux OS and not for Microsoft

Pocket PC.

The task of finding a proper JVM can be demanding, especially since the vendors tend to

demand fees for their implementation. Several PDAs are delivered with JVM that can be

installed, like Jeode from Insignia or Jbed CDC from esmertec, but none of these are free

for users that have not bought a PDA with the software. IBM has developed a JVM that

1 Platform is in this context viewed as the operating system

The development of a fleet steering application with mobility support

 - II -

free for development purposes called J9, and this can be downloaded from IBM together

with IBM WebSphere Studio Device Developer (WSDD) [OL4]. There is no need for

using WSDD, only run the installation and select “Install Micro Environment” and follow

the instructions given on the screen and J9 will be installed on the PDA.

A.2 Creating link for Pocket PC
To be able to run java applications in any environment, the JVM has to be executed first

with the application to run as an argument. This can be fixed using links or scripts, i.e.

.bat-files in the windows environment. This is the same for PPC, but here links is the

appropriate way. Creating links for PPC can be tricky, and has to be done on a PC and

transferred using Active Sync to the PPC if there has to be additions, like arguments,

added to the link.

To make the link, just open a text editor like notepad and type in the file path and

arguments. The first characters declare how many characters to be used. Maximum is 255

and by setting this to 300, there is no need to count the characters. Table A1 shows an

example of a link created for starting MicroTAPAS.

300#"\Program Files\J9\PPRO10\bin\j9w.exe" "-jcl:ppro10" "-cp"
"\MicroTAPASBoot\StartMicro" "MicroTAPAS.startMicroTAPAS"
"MicroTAPAS.MicroPNES" "tapas.cfg"

Table A1: Example of link file for Pocket PC

The options used here are –jcl, which indicates what profile to use (here Personal Profile

1.0) and –cp which is indicates the classpath, i.e. the path to where the java classes are

located.

When the link is placed on the PPC, only tap the link and MicroTAPAS will load

according to the specified configuration file. Java code takes some time to load and

especially when starting MicroTAPAS due to the fact that it has to download code from

the web server, so patience is important. If there are problems with getting the service

started correctly, a soft reset of the PDA might be needed. Also note that running PPC

can be quite unstable and you can get many strange errors with programs that normally

work ok.

The development of a fleet steering application with mobility support

 - III -

Appendix B: Screenshots of Mint

Figure B1: Different profiles have different functionality

Figure 25 on page 47 shows that User1 does not have the privileges of sending
documents and here Figure B1 shows that User2 does not has this privilege, but GPS
functionality. User4, on the other hand, has the privileges of both GPS and sending
documents.

The development of a fleet steering application with mobility support

 - IV -

Figure B2: Sending documents from mobile client

Figure B2 shows screenshots of when a user wants to send documents. The top-left

window shows the basic window with two buttons, one for selecting files, and one for

sending to the central. To send to another user, the user can choose this from the menu

(top-right window). Selecting files is done by clicking on the wanted file (bottom-left).

The text area displays the selected files (bottom-right).

The development of a fleet steering application with mobility support

 - V -

Figure B3: GPS window

The GPS window can be opened from the menu at the MainWindow (Figure B1). This

window displays the current GPS location of the terminal with an associated time-stamp

(top-left). The user can toggle to view the GPS log and settings, as well as sending the

current position to the central from the menu (top-right). The settings are displayed and

can be changed in a new dialog (bottom).

The development of a fleet steering application with mobility support

 - VI -

Figure B4: Received files

Figure B4 shows windows for received files. The windows on the top show the window

on the PDA, and the menu for saving (Top right). On a PC (central unit) the received files

windows is like bottom left, and bottom right window shows the result of the get

documents transfer test in section 7.4

The development of a fleet steering application with mobility support

 - VII -

Figure B5: Screenshots from PC

The windows on the left side in the top picture, shows the debug windows for (from the

top) MicroPNES, MobilityManager and MicroDirector1. On the right side is MintServer,

MintClient (with user2 logged in) and the last window is for sending documents (also

given at the bottom.

The development of a fleet steering application with mobility support

 - VIII -

Appendix C: Satellite Navigation Systems
This appendix is provided to give a more thorough introduction to satellite navigation

than the one given in section 2.1.

C.1 Global Positioning System

The Navstar Global Positioning System is more commonly known just as GPS. GPS is

controlled and operated by the U.S. Department of Defense and has therefore several

issues which will be discussed later on. As described in Figure 2 on page 8 of this report,

GPS consists of three different segments.

The satellites in the space segment orbit the earth in 6 different orbital planes in an

intermediate circular orbit (ICO), or medium earth orbit (MEO), which means at an

altitude of 20200 km above the surface, and each satellite circle the earth twice a day.

The satellites are spread out so that a receiver at any time anywhere on the surface is able

to receive signals from at least 4 satellites, given that there are no obstacles between the

receiver and the satellites.

Each satellite carries an atomic clock and constantly transmits the precise time according

to their clock along with some administrative information, and the receiver uses this

information to calculate its latitude, longitude and elevation. The radio signals is

transmitted on 1575.42 (L1) and 1227.60 MHz (L2) and the signals follows thus ‘Line of

sight’. The L2 frequency is mainly used to transmit an encrypted signal for military use,

but several vendors have developed techniques to utilize this signal even without the

encryption key.

The control segment controls the satellites by tracking them and providing them with

correct orbital data and clock information. In fact, according to Scientific American [10],

GPS proves Einstein’s Theory of Relativity. Due to the speed the satellites are traveling

in, the onboard clocks run about seven microseconds slower per day than ground clocks.

On the other hand, the weaker gravitational pull makes the clocks run 45 microseconds

The development of a fleet steering application with mobility support

 - IX -

faster, so in order to correct the relativistic errors each onboard clock has to be turned

back 38 microseconds per day. There are five control stations located around the world,

four that are unmanned and one master control station that controls the other ones. The

master station monitors the satellite position and collects data from the satellites and

corrects it if necessary via a couple of uplink stations.

The user segment is then of course all the users with a GPS receiver, both military and

civilian users.

C.1.1 How GPS works

In order for the receiver to know its whereabouts on the earth surface, it has to know two

things. It has to know where the satellites are (the satellites location) and how far away

from the receiver they are (the satellites distance).

To know the location of the satellites, the GPS picks up two kinds of coded information

from the satellites. The first is called the “almanac” data, and contains an approximate

location of the satellites. This data is constantly transmitted and stored in the memory of

the receiver, so that it will know the orbits of the satellites. This almanac data is updated

periodically with new information.

The second kind of coded information the receiver needs is called the “ephemeris” data.

This data is correction data due to leeway of the satellites. Any satellite travels slightly

out of orbit so the control segment keeps track of the leeway and the master station sends

this ephemeris data up to the satellites. The ephemeris data is valid for about four to six

hours.

With the almanac and ephemeris data, the GPS receiver knows the location of the

satellites at all times.

The development of a fleet steering application with mobility support

 - X -

The next thing to figure out for the receiver is the distance to the satellites in order to

determine its position on earth. The formula used for this is the simple:

 Velocity x Travel Time = Distance

The radio waves travel with the speed of light minus any delay of the signal due to the

earth’s atmosphere. The travel time is calculated from coded signals from the satellites,

which is coded with pseudo-random code. The receiver generates the same code and tries

to mach it with the code from the satellite. By comparing the two codes, it knows how

much it needs to shift (or delay) its own code to make a match and this is the travel time.

With the knowledge of distance and location to a satellite, the receiver knows that it is

somewhere on an imaginary sphere surrounding the satellite. With knowledge of two

satellites, it is somewhere on a common circle where the two spheres are intersecting

(Figure C.2).

Figure C1: Determination of position, part 1 [3]

With a third satellite, the receiver will now have two points where all three spheres are

intersecting. These two positions differ greatly, but if the user adds an approximate

altitude, it is possible to calculate the latitude and longitude of the position (Figure C.3).

The development of a fleet steering application with mobility support

 - XI -

Figure C2: Determination of position, part 2 [3]

With a fourth satellite there will only be one common position, and the GPS receiver can

thus calculate a three-dimensional position (latitude, longitude and altitude).

There are several sources for getting errors or position with low accuracy. Examples of

these are signal multi-path due to buildings, structures or rock surface, receiver clock

error, number of satellites visible or intentional degradation of the signal. Intentional

degradation was originally used by the US military in order to prevent military

adversaries to get an accurate GPS signal. This is now turned off, but it is fully possible

for the US DoD to turn on this functionality if they find the need for it. And also, since

the GPS system is fully operated by the US DoD, they have the possibility to only

transmit encrypted signals and blocking out other users if needed.

C.1.2 Differential GPS (DGPS)

In order to get a more accurate position, several services have arisen. Differential GPS is

a service that makes use of a known, fixed location. If two GPS receivers operate in the

same area, many of the same errors apply to both. If one of the receivers is at a known,

fixed location, it is possible to determine errors in the received signal from the satellites.

The differences for each satellite is collected and transmitted to DGPS receivers via radio

transmitters on the surface. By using this “differential correction”, the receiver can now

The development of a fleet steering application with mobility support

 - XII -

remove errors and improve accuracy. DGPS is normally limited to separations between

users and reference stations to approximately 100 km. To carry out the same over a wider

area, wide area augmentation service (WAAS) was evolved.

C.1.3 Wide Area Augmentation Service (WAAS)

Another way of improving accuracy has been implemented by the US Federal Aviation

Administration (FAA), and it is called WAAS. This system is according to [OL5],

intended to improve the safety and capability for civil aviation. The system consists of

several reference stations distributed over a wide area that collects the GPS information

and relays it to a WAAS wide area master station. These master stations use the info to

develop corrections, and this is then sent to an uplink station that transmits the

corrections to a geostationary satellite. This satellite broadcast the signal at the same

frequency as GPS and the FAA claims that it improves the accuracy from 20 to

approximately 1.5 - 2 meters for GPS/WAAS receivers. Users, on the other hand, report

the improvement to be less.

C.2 Galileo

Due to the fact that GPS is owned and operated by the American military and to ensure

European economies independency from other states systems, the European Union (EU)

has founded a project called Galileo [11]. It is designed to be the first satellite positioning

and navigation system designed for civilian purposes. Galileo is a cooperative project

between the EU and the European Space Agency (ESA), where EU is responsible for the

political dimension and high level mission requirements and ESA handles definition,

development, and in-orbit validation of the space segment and related ground element.

The EU and ESA want to ensure that Europe has a full role in the development of the

next generation of Global Navigation Satellite System (GNSS), and Galileo is their

contribution. Galileo will consist of totally 30 satellites, and is according to the plans

going to be more accurate than GPS. The plan is to make Galileo interoperable with both

GPS and the Russian GLONASS system explained later on, and this will further increase

the accuracy of the system.

The development of a fleet steering application with mobility support

 - XIII -

As a precursor to Galileo, the European Geostationary Navigation Overlay Service

(EGNOS) has already been launched. EGNOS consists of three geostationary satellites

and a network of ground stations and augments the existing military satellite systems of

the US and Russia. In addition to transmit corrected signals to both GLONASS and GPS,

the EGNOS system informs the users of errors in position measurements. EGNOS will

also do the same thing to correct Galileo signals when this system is operable.

The Galileo project also includes nations outside of Europe and the EU. India, China and

Canada are among the contributors [12], and this makes the project outward-looking

compared to GPS. There are other differences between Galileo and GPS too. There will

be some differences in modulation, frequencies used and codes, but the main difference

will be on operational level. GPS is the property of a single nation, military operated and

currently free of charge. Galileo will be multinational, operated by a public-private

partnership and will also include a commercial service, where the users can pay to get

higher accuracy, higher data rates or extra messages.

According to the Galileo website [OL6], Galileo is to be fully operable in 2008, and the

first transmissions will according to plan take place in 2005.

C.3 Other systems

The Russians have developed their own satellite navigation system, called GLONASS

[OL15], and launched the first operational satellite in 1983, five years after the US. The

system has been suffering from lack of foundation from the Russian government and in

the time of writing (September 2004) only 10 out of 24 satellites are operational. The

situation in Russian economy is improving, and there are plans to have the system back in

full operation in 2007.

China has also developed an independent satellite navigation system called the Beidou

navigation system. The first satellite was launched in 2000 and the third in 2003. This

system differs from the other systems by not being global and that it is covered by only

The development of a fleet steering application with mobility support

 - XIV -

three geostationary satellites. GlobalSecurity.org [OL2] speculates that this system is

compatible with the WAAS system mentioned in 0, and this could enable China to

continue to use the American GPS system, even in the face of American efforts to deny

GPS to adversaries in wartime.

The development of a fleet steering application with mobility support

 - XV -

Appendix D: J2ME
This appendix is provided to give a more thorough description about Java 2 Micro

Edition and the process behind the development of this technology.

J2ME as a technology was launched in 1999, but the evolution has been going on since

the early 1990s in different projects. Now J2ME is one of three editions of the Java 2

platform as seen in Figure D.1.

Figure D1: Java editions [OL11]

The fourth technology in the figure, Java Card (actually an older technology, launched in

1996), is an independent Java platform based on smart cards.

As seen in Figure D.1, J2ME is divided in two separate configurations [17], [OL12]:

The development of a fleet steering application with mobility support

 - XVI -

Configuration Device Examples

Connected Limited Device

Configuration (CLDC)

Cell phones and simple, low-end PDAs. These

devices typically have 16- or 32-bit CPU and

somewhere between 128 KB and 512 KB memory

available for the Java implementation.

Connected Device Configuration

(CDC)

More capable devices with better network

connectivity, e.g. TV set-top boxes, in-vehicle

telematics systems and high-end PDAs. These

typically have 32-bit CPUs and at least 2 MB

memory available for the Java implementation.

Table D1: J2ME configurations

The difference between CLDC and CDC is that CLDC was designed around limited

memory requirements and CDC was designed to achieve as much J2SE compatibility as

possible within constrained device resources. CDC 1.0a is based on J2SE 1.3.1 and CDC

1.1 is based on 1.4.2.

The KVM in the CLDC configuration stands now for Kilobyte Virtual Machine and

indicates that it only uses a couple of kilobytes of memory. Originally the ‘K’ stood for

Kuaui, which was a codename for the project, but it was changed to Kilobyte since this

was the design goal for use of memory.

This project used the CDC configuration of J2ME, and this will thus be the focus in this

report. J2ME and especially CLDC is evolving rapidly as new technologies arrive, so for

info on this configuration, see [17] (or preferably a newer book..) or online references

like [OL3], [OL9] and [OL10].

D.1 Connected Device Configuration (CDC)

CDC was, as mentioned earlier, designed around two major goals; J2SE compatibility

and support for resource constrained devices. This allows developers to leverage their

investments in J2SE technology, including libraries, tools and skills, while still allow

device vendors to offer a feature-rich Java application environment that can support

The development of a fleet steering application with mobility support

 - XVII -

mobile enterprise applications with security [OL12]. The CDC configuration is backward

compatible with CLDC, which means that applications designed for CLDC also can run

on CDC, but not necessarily the other way round.

CDC uses class libraries that have been optimized for small memory environments, and

to save resources some J2SE-based class libraries have modified interfaces and some

have been removed entirely. This means that it is possible to use an ordinary J2SE

Integrated Development Environment (IDE) tool and a regular java compiler (e.g. javac

from Sun). But the developer has to pay close attention to the API for the profile that is

targeted, to not use a class that is not supported.

Some annoying differences might be useful to know about. In the java.awt.Color class,

for example, the static Color objects have for some reason changed from uppercase to

lowercase (e.g. Color.BLACK is equivalent to Color.black). This can lead to some

unwanted errors and hours of debugging, and the J2SE compiler does not compile the

lowercase version.

Sun has now released a fully compliant Java Virtual Machine, called Connected Device

Configuration HotSpot Implementation. This replaces the earlier virtual machine known

as CVM, and indicates that this now is a fully part of the HotSpot VM family of Sun

known from J2EE and J2SE. However, this JVM implementation is currently only

available for Linux, Solaris and VxWorks, which means that this cannot be used by i.e.

Microsoft’s Windows CE PocketPC operative systems. See appendix A.1 JVM for PDA,

for more info about JVM and PDA.

D.1.1 Profiles

Figure shows the available profiles for the CDC configuration, and these are described in

Table D.1 [OL12]:

Profile Description

Foundation Profile Foundation Profile is the most basic profile. In combination

with the class library provided by CDC, Foundation Profile

The development of a fleet steering application with mobility support

 - XVIII -

provides basic application-support classes such as network

support and I/O support. In particular, it does not include any

support for graphics or GUI services.

Personal Basis Profile Personal Basis Profile provides a structure for building

lightweight component toolkits and support for the Xlet

application programming model. In addition, Personal Basis

Profile includes all of the Foundation Profile APIs.

Personal Profile Personal Profile provides full AWT support, applet support and

limited bean support. In addition, Personal Profile includes all

of the Personal Basis Profile APIs. Personal Profile also

represents the migration path for PersonalJava technology.

Table D2: CDC profiles

These profiles give a product designer a flexible way to design a product the most

efficient way according to what the product is supposed to do, instead of providing

separate APIs.

Optional packages are also included under the CDC technology to give additional choices

for supporting specific technologies. Currently these packages are for RMI and JDBC.

Several optional packages that are made for CLDC can also be used with CDC.

D.2 Java Community Process (JCP)

The development in the Java world is lead and sponsored by Sun Microsystems, and the

Java technology is evolved though the Java Community Process (JCP). JCP is an open,

community-based standards organization with a formal process for defining and revising

Java technology specifications [OL9]. While concentrating on the process of how J2ME

will be developed, Sun allows industry leaders and experts to create flexible groups of

like-minded individuals and companies to develop and define general configurations, and

specific profiles, of J2ME [17].

JCP is “by-invitation-only”, meaning that anybody that wants to join the process can’t,

only those invited by Sun. This of course leaves Sun in control of how the process

The development of a fleet steering application with mobility support

 - XIX -

evolves and Sun Microsystems retains all Java-related trademarks, and remains the

ultimate authority of the Java platform. On the other hand, this way of selecting members

keeps the process controlled and ensures that people with relevant expertise develop the

product.

There are four main steps in the JCP [17]. Firstly a specification is submitted by members

of the Java Development Community to the Process Management Office (PMO) within

Sun. Is the specification approved by the Executive Committee (EC) for development it

will receive a Java Specification Request (JSR) code. Secondly, an expert group is

formed to develop a first draft. This expert group gets feedback from the Java community

on the draft and can update the draft if needed. Together with the EC the expert group

decides whether the specification is ready to proceed to public draft. Thirdly, the draft

specification is reviewed by the public. That means that everyone with Internet access

and wishes to comment or participate on the draft can do so. The expert group uses this

feedback to further refine the specification. Once the EC is satisfied, the specification

receives a final approval and the expert group is disbanded. The fourth step is

maintenance, and this means that the specification, reference implementation and

compatibility tests are maintained and developed if needed.

This dynamic approach has proven to be more efficient than the traditional standards

development cycle. The whole process is set (by Sun) to take between 150-250 days, but

still some are worried that this is to slow and that Java can loose terrain to other

technologies, like Microsoft’s .Net that is totally controlled by one corporation.

The development of a fleet steering application with mobility support

 - XX -

Appendix E: CD

Contents:

Folder Description

/Documents This report in word and pdf format, the project assignment and a

project plan made early in the process.

/Javadoc Java documentation of the code.

/MicroTAPAS Bootstrap directories for PC and PDA and

Java classes to be ported to a webserver.

/ Screenshots Screenshots used in this report, plus additional screenshots and

mobile video.

/Source_code Source code for both java and C++ code.

/UML Rational Rose RT UML files for this project.

