
 1

On Adaptable Networking

Finn Arve Aagesen, Bjarne E. Helvik, Chutiporn Anutariya and Mazen Malek Shiaa
Department of Telematics (ITEM)

Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway

{finn.arve.aagesen, bjarne.e.helvik, chutiporn.anutariya, mazen.malek.shiaa}@item.ntnu.no

Abstract
Adaptable networking means that the provided network-
based services are capable of handling dynamic changes
in both time and position related to resources, users and
changed service requirements. This paper is discussing
several aspects of adaptability. Adaptability implies
flexibility, and comprises features related to various
aspects of the functionality of a network-based service
system such as: 1) software flexibility, adaptability and
mobility, 2) personal mobility, 3) dynamic configuration
of resources and service software, and 4) flexibility in
the interoperating with other architectures. These
aspects are discussed with basis in TAPAS (Telematics
Architecture for Plug-and-Play Systems).

1. Introduction

Network-based services have during more than one

decade been is an important research topic. Example
topics include Intelligent Networks [1], TINA (Tele-
communication Information Networking Architecture)
[2], Mobile Agents and Active and Programmable
Networks [3,4,5,6]. Focus has been on service
architecture solutions that give flexibility and efficiency
in the definition, deployment and execution of the
services. This focus is now slightly changing into focus
on adaptability and evolution of such services. An
example that demonstrates this is The IBM autonomic
computing project (http://www.research.ibm.com/
autonomic). This new research focus is generally caused
from development trends such as:

• increased networking complexity and
heterogeneity,

• increased number of parties,
• omnipresent computing and communication,
• decreased hardware and transmission cost,
• increased operation and management workload

and cost.

 The TAPAS project (TAPAS = Telematics
Architecture for Plug-and-Play Systems) is a research
project which aims at developing an architecture for
network-based service systems with A): flexibility and
adaptability, B): robustness and survivability, and C):
QoS awareness and resource control. The goal is to
enhance the flexibility, efficiency and simplicity of
system installation, deployment, operation, management
and maintenance by enabling dynamic configuration of
network components and network-based service
functionality. See [7,8,9,10,11,12] and the URL:
http://www.item.ntnu.no/ ~plugandplay.

Another objective is to gain experiences and
knowledge by implementing those various features, both
for demonstrating the implementation possibility and for
validating the feature applicability. The goal is not to
develop a complete executing architecture, but is to set
the various features coming from the above defined
requirements in a context related to totality.

The TAPAS architecture requires a support system for
software development, deployment, execution and
management. Moreover, the support is also needed for
generic user functionality to enable the flexibility features
of the system. This support system is denoted as the
TAPAS platform. Parts of the specified support
functionality have been implemented using JAVA RMI
and Web technologies as a means for service definition,
update and discovery. New versions of the TAPAS
platform will use XML as a common representation
language.

This paper gives an overview of the status and
prospect of the TAPAS architecture and platform, but
with focus on the architecture. Section 2 presents the
TAPAS basic architecture, which presently is supported
by the TAPAS platform. Section 3 presents the mobility
handling architecture. Section 4 describes the developed
XML-based dynamic configuration architecture, which
is not yet implemented as part of the platform. Section 5
presents an infrastructure which enables multiple cross-
platform interoperation by employment of Semantic
Web technologies.

 2

2. TAPAS basic architecture

The TAPAS basic architecture, illustrated in Figure 1,
is based on generic actors in the nodes of the network that
can download manuscripts defining roles to be played [8].
These nodes are network processing components, such as
servers, routers and switches, and user terminals, such as
telephones, laptops, PCs, PDAs, etc. The model is
founded on a theatre metaphor, where actors perform
roles according to predefined manuscripts, and a director
manages their performance. Actors are software
components, which represent functionality to be executed
at different nodes within the network. Roles are modelled
as Extended Finite State Machines. A director is an actor
with supervisory status regarding all other actors’ plug-in
and plug-out phases. A director also represents a domain,
which is a set of nodes managed by a single director.

A service system consists of service components,
which are units related to some well-defined functionality
defined by a play. A play consists of several actors
playing different roles, each possibly having different
requirements on capabilities and status of the executing
system. A role-session is a projection of the behaviour of
an actor with respect to one of its interacting actors. An
actor is a generic object, which will constitute a role
figure by behaving according to a manuscript defining
the functional behaviour of that particular role in a play.
A service component is realised by a role figure based on

a role defined by a manuscript. A role figure, however, is
realised in an executing environment in a node and is
utilising capabilities. A capability is an inherent property
of a node. A node may have several capabilities. These
capabilities are offered to actors, which constitute role-
figures in various plays. The ability to play roles depends
on the defined required capability and the matching
offered capability in a node where an actor is going to
play. Examples of capabilities are processing, storage
and communication resources (e.g., CPU, hard disk and
transmission channels), standard equipment (e.g., printers
and media handling devices), special equipment (e.g.,
encrypting devices), and data (e.g., user login and access
rights).

A short description of the support functionality for the
TAPAS basic architecture is found in [8]. For details see
[13,14,15]. Figure 2 gives an example, which illustrates
the structure of the support functionality. The Actor-
environment-execution-module (AEEM) is a process or
thread that executes a collection of actors with associated
Plug-and-Play Actor Support (PAS). A collection of
actors is here one or more actors constituting application
role-figures or director role-figures. The TAPAS platform
basic functions supported are provided by the procedures:
PlayPlugIn, PlayChangesPlugIn, PlayPlugOut,
ActorPlugIn, ActorPlugOut, ActorBehaviourPlugIn,
ActorChangeBehaviour, ActorBehaviourPlugOut,
RoleSessionAction, ChangeActorCapabilities and
Subscribe.

ServiceSystem

ServiceComponent

ApplicationRoleFigure

Role

Play

Manuscript

Status

NodeActor

Capability

is_realized_by

constitutes

is_defined_by

uses
is_defined_by

executes User
is_at

uses

has behaves_according_to

has

has has

requires

offers

Director

DirectorRoleFigure

constitutes

manages

RoleFigure

RoleSession

describes_the_superposition_ofprojects

Domain

manages

executesoffers

Figure 1. TAPAS basic architecture (Object model)

 3

3. TAPAS Mobility Handling Architecture

3.1. General

TAPAS will comprise four basic mobility features:

user, user session, actor and terminal mobility [9]. A
terminal is a node operated by a user. Terminal mobility
is the physical movement of a terminal. Terminal
mobility assures the continuity of service access while on
the move or at location change. This is a complex and
rather circumstantial issue that depends heavily on
network configuration and node capabilities.

Actor mobility is the movement of actors including its
role sessions, state and variables. User mobility is
physical change of the access point of a user, while user
session mobility is the movement of the user sessions
used by one user from one access point to another access
point. These four categories is the consequence of the
attempts to fulfil the general TAPAS flexibility
requirement and to support personal mobility. Personal
mobility, which will be discussed in Section 3.2, is both
related to user, user session, terminal and actor mobility.

Figure 3 presents a model to be used to differentiate
and to relate these different types of mobility. A user,
according to this concept is represented by its personal
contents and can be related to a terminal (T) and be
tracked and accessed via a representation of the user (user
object) within the architecture. This double interface
approach (User Interface (UI) and Terminal Interface
(TI)) provides a flexible mechanism to represent users
and terminals independently of each other. A user may be
represented by a name, while a terminal by a network
address. A user may interact with the system, or services,
within a defined user session. The movement of user
sessions also involves the movement of actors.

Personal
content

User T User
Representation

UI TI

A
A

AA

User
Session

Figure 3. TAPAS basic concept of Mobility

Solutions to all four mobility features are discussed in
[9], and recommended solutions are also given. Figure 4
shows an extension of the TAPAS basic architecture
illustrated in Figure 1, with emphasis on mobility. These
new mobility related concepts will be explained in the
next Section 3.2.

Some of the mobility features have been implemented,
while others undergo redefinition and partial
implementation. User and user session mobility have
been implemented and demonstrated in both fixed and
wireless environments [11,12]. The present actor
realisation based on JAVA RMI does only give a
simplified Actor mobility. However, a new and more
powerful actor model is being developed. In addition to
being an Extended Finite State Machine, the actor will
have methods that can be activated. The state of the actor
can be made available by activating such a method.

Terminal mobility has been so far limited to the
introduction of two kinds of objects: MobilityManager
and MobilityAgent, in order to track and control terminals
and their location change. This mobility handling
functionality will be extended to reason about terminal
capabilities and status of the networking environment
based on the methodology of the architecture in Section
4.

Node 1 Node 4

AEEM1 AEEM1

Node 3 (Web-server) Node 2

AEEM1 AEEM2

A1 A2

PAS

A3

PAS

PNES

PCI

D1

PAS

PNES

PCI

AEEM2

A4

PAS

D2

PAS

PNES

PCI

web-server

PCI

 Ai : Actor no i , Di: Director no i, B: Plug-and-Play Boot
 AEEMi: Actor-environement-execution-module no i
 PAS: Plug-and-Play Actor Support,
 PNES: Plug-and-Play Node Execution Support
 PCI: Plug-and-Play Communication Infrastructure

Manuscipts
and TAPAS

Support System

B B B

 Static available

 Dynamic available

Figure 2. Example view of TAPAS platform for software execution

 4

ApplicationRoleFigure

Role

Play

Manuscript

Node

Capability

is_realized_by

uses
is_defined_by

executes

uses

behaves_according_to

requires

offers

DirectorRoleFigure
manages

Domain

manages

offers

ServiceSystemUserProfileBase SessionBase

controls controls

MobilityManager MobilityAgent UserAgent VisitorAgent LoginAgent

Terminal

manages

manages

handles
Figure 4. Complete view of mobility handling within TAPAS (object model)

Server4

A4

User session description:
A1{data,A2,client}
A2{data,server}
A3{data,A4,client}
A4{data,server,session}

User Profile
{GUI settings,application
settings,Personal
information}

User

Visitor

Domain I

MobilityAgent
Terminal B

Actors

MobilityAgent
Terminal A

Plays/Manuscripts
Capability Requirements
Web Server

Playing baseServer1

User profile base

User session base

Director

Server2
Mobility Manager

Actors
Server3

{to directors
of other

domains}

UserAgent

VisitorAgent

A2

G
U
I

{User login phase,
interactions}

Figure 5. An illustration of TAPAS mobility framework

 5

3.2. Personal Mobility

Personal mobility can be defined by: “the utilization

of services that are personalized with end user’s
preferences and identities independently of both physical
location and specific equipment”. Figure 5 illustrates the
solution to Personal mobility in TAPAS:
• A User is referred to by an ID and User Profile, that

is active through a User Interface (or GUI).
Additionally, user-to-terminal relation is defined at
login phase. Director maintains User Profiles, which
might contain information on user settings,
preferences and personal data.

• Interactions between users and application actors are
controlled by a UserAgent, which is unique for one
user session.

• Personal content is defined by user applications and
user profiles.

• Terminals and nodes are characterized by different set
of capabilities. Thus, certain application components
run at network nodes instead of user terminals.

• UserAgent is keeping track of any actor created or
used in a User session.

• Multi-domain environment is achieved by allowing
the domain’s director, one director in one domain, to
contact other directors inquiring about visitor user’s
ID and profile. Visitors are assigned a VisitorAgent to
control their interactions while they are in the system.
Two types of login are defined: local and visiting.

• User sessions are maintained by the director in the
User Session Base, that contains user session
descriptions. These are detailed sketch of running
services, actors and their related data.
Figure 5 also illustrates how a user session is

managed by the UserAgent, and consequently maintained
by the director’s data base. The connectors between the
Actors in Terminal A and the actors A2 and A4 in Server
4 show that they are inter-related and correspond to the
same user. The dotted connectors from UserAgent to
these actors represent one user session. An example is
provided for a session description and a user profile. In
this example, actors are distributed on the user’s terminal
and a network node; a typical example is a chat client and
a server. When a user session is suspended, information
on every actor’s data, e.g. user name, connections, type of
application and information for child sessions should be
stored. User’s login phase is central to the definition of
user identity, characterisation of device capabilities,
resumption of user sessions, and transfer of personal
contents. As mentioned earlier, users can have either
local or visiting login. However, visitor users can access
their home domain if inter-director negotiation and
authentication is possible with their home domain.

4. TAPAS Architecture for Dynamic
Configuration Handling

Due to dynamic availability of nodes in the network

as well as changes in their capabilities and status,
configuration and reconfiguration of nodes to constitute
particular service components must not be predetermined
but be computed on the fly. To deal with such a
requirement, Figure 6 illustrates the extended TAPAS
architecture for dynamic (re)configuration of plug-and-
play (PaP) systems, which comprises the following
primary elements:
1. Capability & Status Repository (CSRep) maintains

capability and status information of components in
the system. Capability information characterises
inherent properties of each component and is
classified into resources, functions and data, while
status information reflects the situation of a PaP
system at a particular time, which can be, for instance,
certain environment conditions, observable values of
the current QoS characteristics as well as their
calculated measures. With an emphasis on the use of a
standard schema for modelling capabilities and status,
the developed architecture uses and extends CIM
(Common Information Model) [16]a fundamental
yet comprehensive object-oriented schema for
describing network resources in XML format. Based
on this modelling concept, capability and status
information of a particular component is modelled as
a corresponding CIM instance, and the CSRep is then
represented as a collection of CIM instances which
together describe the available capabilities and status
of the components in the running PaP system. This
capability and status information is typically analysed
by the Configuration Manager when computing
(re)configuration plans for the system.

2. Play Repository (PlayRep) stores a collection of play
definitions, each of which defines requirements and
functional behaviours of a corresponding PaP service
system. In particular, a play definition is an
aggregation of the four specifications:
(i) Manuscripts define the entire functional

behaviour of each role in a play which not only
includes its internal behaviour, but also the
interactions and cooperation with other roles.

(ii) Role specifications identify the capability and
status requirements of each role.

(iii) Play configuration rules describe system
configuration constraints which must always be
maintained, such as the maximum number of
roles allowed to install at a specific node in order
to avoid an overload situation, the desired or
acceptable QoS levels of the system.

 6

(iv) Reconfiguration rules define application-specific
reconfiguration policies for handling significant
reconfiguration-related events, such as a service
component failure, a decrease in system QoS and
resource unavailability. Instead of providing
merely a general reconfiguration mechanism,
which is applicable to any trouble encountered in
an application. These reconfiguration rules let
different applications encode their individual,
customised policies, and hence allowing them to
handle the same trouble in different but
application-specific manners.

While a manuscript is specified by an EFSM
(Extended Finite State Machine), a role
specification, play configuration rule and
reconfiguration rule are uniformly formalised
within a single representation schema, i.e., XML
Declarative Description (XDD) [17,18], as a
corresponding XDD description.

3. Data Messages, encoded in RDF (Resource
Description Framework) [19,20]the W3C
recommended metadata and the Semantic Web [21]
languageprovide means to communicate among
various entities in the architecture. Basically, each
message carries its URI (Universal Resource
Identifier), information of the actor who sends the
message (i.e., the sender) and the date/time of
composing it. A sender’s information includes its
URI, the installing location and the playing role.
Other message attributes can also be encoded

depending on the purpose of the message. In the
architecture, messages are classified into: requests,
trouble reports, configuration plans and
reconfiguration plans.
(i) Requests are further divided into: a service

request and a service component request. The
former is a request for installation and execution
of a particular PaP service system, which has not
yet been installed in a PaP system. It encodes the
service request URI, the requester information,
date/time, and the requested play URI
identifying the type and version of the service to
be installed. The latter is a request for
instantiation of a particular service component in
a running PaP service system, which contains the
request URI, information of the actor who makes
the request, date/time and the name of the role
for realising the desired component.

(ii) Trouble reports play a vital role in the
architecture by providing each component in a
running system as well as the Capability, Status
& Event Monitor with the ability to report a
problem that demands an immediate system
adaptation to the Configuration Manager.
Examples of trouble reports are actor
unreachable report, insufficient capability report
and QoS degradation report.

(iii) Configuration plans consist of lists of
appropriate locations for initialising actors and

Capability, Status
& Event Monitor

(CSEMon)

Capability
& Status
(CSRep)

Not-
installed
capability

Configuration
Manager (CM)

Service
Installer

Service
Reconfigurator

PlayRep

Capability
require-
ments

Status
require-
ments

Teleservice
providing PaP
and non-PaP

capability
system

Node

Config.
plans

Reconfig.
plans

Service
requests

Service
comp.

requests

Trouble
reports

Trouble
reports

Play
config.
rules

Manu-
scripts

Role
spec.

Reconfig
rules

System

Data/knowledge
repository

Data, message,
knowledge

Executable entity

Legend

Figure 6. TAPAS dynamic configuration architecture

 7

installing manuscripts of each specific role in a
given play version.

(iv) Reconfiguration plans are generated by the
Configuration Manager in order to cope with
certain troubles occurred in a system. Possible
plans include: no action, actor initialisation,
actor termination, actor re-initialisation, actor
relocation and play reconfiguration.

4. Capability, Status & Event Monitor (CSEMon)
monitors PaP system capabilities/status and maintains
the CSRep. Moreover, it listens to certain events
indicating changes to the system and its environment,
which would prevent the system from getting the
desired level of services. In response to such events, it
notifies the Configuration Manager for further proper
reactions, in order to keep the system functioning with
an acceptable QoS level.

5. Configuration Manager (CM) is responsible for:
(i) Generation of appropriate configuration plans

for composing new services:
In response to a given service request, the

CM fetches a corresponding play definition from
the PlayRep and retrieves the system capabilities
and status from the CSRep. Valid configuration
plans for such a service are then computed, and
an appropriate one will be selected based on the
specified selection criteria, e.g., system
performance and QoS, user preferences and cost.
The selected configuration, defining which
nodes in the system should execute actors
constituting certain roles, will be forwarded to
and executed by the Service Installer.

(ii) Determination of a location for executing a
particular role:

In the running PaP service system, a request
for instantiation of a particular service
component, i.e., a service component request,
may arise. In response to such a request, the CM
dynamically determines the best location (node)
for its installation, based on the current system
configuration, available capabilities and status as
well as the component’s requirements. It then
notifies the Service Installer to load a
corresponding manuscript from the PlayRep and
instantiate it on the suggested node.

(iii) Computation of reconfiguration plans for
dynamic reconfiguration of the executing
services:

Upon the receipt of a trouble report
indicating a problem in a running PaP system,
the CM analyses the problem, fetches related
information from the CSRep and the PlayRep,
and produces a service reconfiguration plan to be
executed by the Service Reconfigurator.

Selection of an appropriate plan depends on the
defined reconfiguration rules, their priority
information as well as the nature of a problem
(e.g., whether it is hardware or software failure,
significant or ignorable).

6. Service Installer is responsible for the installation of a
service into the PaP system by creating corresponding
actors for execution of certain roles, according to an
obtained play configuration generated by the CM.
Allocation of capabilities as well as instantiation of a
manuscript for each role are also performed by this
entity.

7. Service Reconfigurator initiates and performs
reconfiguration of a service system based on an
obtained reconfiguration plan.
It is seen from the architecture that the Configuration

Manager is the primary entity which dynamically
computes appropriate service (re)configuration plans by
reasoning about the current system’s capabilities & status,
the defined role requirements, play configuration
constraints and reconfiguration rules as well as the given
requests and trouble reports. This mechanism allows, for
a particular service installation, deployment and
execution, a variety of (re)configuration policies to be
defined in a customisable, domain-specific manner, each
possibly resulting in different configuration and
reconfiguration plans, and hence enabling the system to
cope with variations in the environment, achieve
mandated performance levels and meet user satisfaction.
The implementation of the architecture using an effective
XML-based reasoning engine and its integration into the
TAPAS platform is underway.

5. Adaptive Service Infrastructure

In such a global-scale, heterogeneous network

environment as the Web, services are increasingly
complex and diverse in terms of, for example,
availability, capabilities, platforms and technologies.
Moreover, the direction of today’s computing is
decomposition of a highly integrated computing system
into a collection of heterogeneous, distributed and
fragmented systems, possibly implemented using
different platforms and technologies and often operated
by different providers. This trend enables a service
provider to construct a higher-level service from the
composition of multiple lower-level services (or sub-
services), instead of implementing the service as a whole
brand-new dedicated, specific software application. The
realisation of this new trend demands a well-established
infrastructure which provides a set of well-defined
interfaces and enables dynamic and cross-platform
composition, instantiation and interoperation of
heterogeneous, adaptive services regardless of their

 8

programming languages and operating environments.
This section presents such an infrastructure by adopting
the emerging Semantic Web [21] and Web services
technologies, and discusses also how the TAPAS
architecture fits into the big picture.

5.1. Service Definition

A service definition is a specification of how a service

is to be realised. Such a service can be atomic (i.e., a non-
decomposable service) or a composition of multiple sub-
services related to each other by certain control flows and
data flows. This composition structure can be static or
dynamic. In the former case, selection of sub-service
instances and their providers are predefined, while in the
latter case, services are assembled dynamically and the
processes of discovering appropriate sub-service
instances and their providers are determined at runtime.

Here, WSFL (Web Services Flow Language) [22] is
employed to describe the composition structure as well as
the control flow and data flow of a composite service.
The concept ServiceProfile in DAML-S (DARPA Agent
Markup Language for Web Services) [23,24] is extended
with facilities to express the requirements on properties,
capabilities and QoS constraints of each sub-service and
of its provider. In addition, in order to enable dynamic,
automatic service invocation and interaction, WSDL
(Web Service Description Language) [25] is used to
define service interface definitions and access bindings.

Figure 7 presents an example of a dynamic service
composition definition, which specifies that a service X is
a composition of sub-services S1, S2, …, S8, where the
input of the service X will be directed to the sub-service

S1, the output of which will be sent as an input to S2, etc.
In this example, it does not specify how the sub-service
S2 is implemented or realised, instead it merely defines
certain desired properties, capabilities, QoS, input,
output, interfaces or costs of S2, hence allowing dynamic
discovery and binding of an appropriate, available service
that matches the need. The sub-services S3 and S8, on the
other hand, are defined statically by mapping to particular
service implementations, which execute under the
TAPAS and J2EE platforms, respectively. The definition
of the sub-service S7 shows that a sub-service can also be
further decomposed into a set of other sub-services.
Moreover, the example explicitly illustrates that each
(sub-)service provides a WSDL interface in order to
enable a standard invocation and interaction mechanism
among these independently developed and cross-platform
services.

5.2. Service Advertisement and Discovery

To facilitate automatic discovery of available services,

their semantic descriptions should be described in an
unambiguous and machine-comprehensible manner and
be advertised in certain registry services, where other
participants can query and search for services that
provide a set of desired capabilities. In the developed
infrastructure, RDF [19,20] and DAML-S [23,24]
languages are employed and extended with facilities for
describing service capabilities, QoS and access policies,
which enable a service provider to, for example, restrict a
service to a particular group of participants with certain
access time, minimum/maximum service usage duration
and type of service charge, such as free-of-charge, lump-

 Service X

S2

S1

 S7

S8

Service Composition Definition
A Service as a composition of

multiple sub-services

Service Implementation Definition
using PaP Execution Platform

S5

S6

S3

Mapping to concrete service
implementation definition

W
SD

L
in

te
rfa

ce

S4

 S8: Service Implementation

Service Implementation
using J2EE Platform

 S2 Specification of
requirements and
constraints on service
type, capabilities, QoS,
input, output, interface
and service provider of
the sub-service S2.

ServiceProfile

participantCategory

AccessPolicy

minUsageTime

maxUsageTime

startTime

endTime

servicePolicy

Capability

serviceCapability

qosCharacteristic

damls:Service

serviceCharge

xsd:String

ServiceProvider

xsd:String

serviceName

textDescription

providedBy

ServiceCategory

serviceCategory ServiceParameter

serviceParameter QualityRating

qualityRating

presents

titlexsd:String

xsd:String

xsd:String

email

webURL

ParticipantCategory

Time Duration QoSChargeType

xsd:String

name

...

ParameterDescription

xsd:String

Thing

input

output

effect

precondition

parameterName

restrictedTo

 S3 : Service Implementation

Actors without assigned roles

Director

Play

Config
rules

Manu-
scripts

Role
spec.

Reconfig
rules

Actors with assigned roles
and performing particular
well-defined functionalities
by executing manuscripts

Figure 7. Example of a service composition definition

 9

sum-based or duration-based. In addition, using available
registry services, a service consumer can browse through
the service category ontology and search for a service
provider which offers a service that best matches his/her
requirements.

5.3. Service Negotiation, Selection and Service
Contract

Given a service requirement, there might exist various

available services which deliver the desired functionality
with similar capabilities, but differ in terms of service
qualities, prices and providers. The criteria for selecting a
service may vary depending on the nature of the service,
the policies, and preferences of a consumer (e.g., the
cheapest, fastest, most accurate, or a trade-off among
these price-performance issues). Moreover, it is possible
that no available service can fulfil the consumer's need.
Thus, some form of automated negotiation, usually based
on various types of auctions, is required. After the service
provider and consumer both come to an acceptable
agreement, a service contractspecifying, for example,
what the provider should deliver, the guaranteed QoS and
the costis established.

5.4. Dynamic Service Composition, Instantiation
and Adaptation

After having set up a service contract, the provider

instantiates and invokes the service by dynamically
assembling a set of related sub-services according to the
service definition and the service contract. Selection and
instantiation of each sub-service can be an iterative of the
overall process because it can again involve discovering
an appropriate provider, negotiating, setting up a contract
and invoking each sub-service.

In addition, to ensure that the terms, conditions and
the service quality as specified in the contract are
maintained, the executing service must be monitored and
certain appropriate adaptation performed when needed.
To enable this, the TAPAS platform for realising and
delivering services together with its architecture for
dynamic configuration and adaptation can be employed.

Upon the completion of the service, the output is
delivered to the consumer in form of either a simple
message informing the service completion or some
complex contents representing the results of service
execution. The executing service is then terminated.

6. Conclusions

Adaptable networking means that the provided
network-based services are capable of handling dynamic

changes in both time and position related to resources,
users and changed service requirements. This paper has
been discussing several aspects of adaptability, and an
architectural concept TAPAS (Telematics Architecture
for Plug-and-Play Systems) has been presented. This is
the result of a research project which aims at designing
an architecture for network-based service systems with
A): flexibility and adaptability, B): robustness and
survivability, and C): QoS awareness and resource
control. The goal is to enhance the flexibility, efficiency
and simplicity of system installation, deployment,
operation, management and maintenance by enabling
dynamic configuration of network components and
network-based service functionality. The objective of
this work is to simplify and speed up the tasks of
deployment, installation, operation, management,
maintenance and evolution of software related to
telecommunication equipments and services

The TAPAS architecture was presented as four
architectural concepts: 1) the basic architecture, 2) the
mobility handling architecture, 3) the dynamic
configuration architecture, and 4) the adaptive service
infrastructure. The basic architecture is the basis for all
dynamic behaviour functionality, which is based on
generic actors in the nodes of the network that can
download manuscripts defining roles to be played. The
model is founded on a theatre metaphor, where actors
perform roles according to predefined manuscripts, and a
director manages their performance. The roles are
modelled as Extended Finite State Machines. The
mobility handling architecture and the architecture for
dynamic configuration is based on the basic architecture,
but is also enhancing the functionality in the basic
architecture by functionality to meet the requirements
A)-B) as defined above. The fourth architectural concept
is different. Assuming that there never will be only one
and only service architecture. How can different
architectures interoperate with each other? A solution
based on Semantic Web was proposed.

There are basically two different approaches for
meeting adaptability and flexibility requirements. The
philosophy selected here is to use a system that has
knowledge and overview, and to make this system
robust and survivable. An opposite approach is
architectures based on Swarm Intelligence [26], by using
intelligent moving agents and to apply simple biological
models for the behaviour. The TAPAS actor can move,
but the move as well as the behaviour is part of a defined
service functionality. Solving adaptability and flexibility
creates complexity. May be there are easy solutions
some place out there. We do, however, propose a
solution where internal platform complexity, which by
nature itself is flexible and adaptable, can be the
fundament for adaptable and flexible service

 10

functionality. Adaptability and flexibility must reside on
any level of the architecture. From the Actor-to-Actor
level to the Platform-to-Platform level. In between these
levels, we must meet the flexibility and adaptability
requirements of users, services and capabilities.

The basic architecture features as well as most of the
mobility handling architecture have been implemented
and validated. Further work will be on the basic actor
model, the capability handling architecture as well as the
interoperating architecture. The basic actor will be a
generalized Extended Finite State Machine with methods
that can be activated from outside. This is needed to
handle appropriate movements of Actor states and role-
sessions. The work on the capability handling
architecture comprises the use of an effective XML-
based reasoning engine and its integration into the
TAPAS platform. The work on the interoperating
architecture using ideas from the Semantic Web
technologies is in its starting phase.

References

1. ITU-T, Principles of intelligent network architecture,

October 1992.
2. Inoue, Y., Lapierre, M. and Mossotto, C., The TINA Book:

A Co-operative Solution for a Competitive World, Prentice
Hall, 1999.

3. Bieszczad A. and Pagurek B., “Towards Plug- and Play
Networks with Mobile Code”, Proc. ICCC'97, November
1997.

4. Bieszczad A., Pagurek B. and White T., “Mobile Agents for
Network Management”, IEEE Communications Surveys,
Vol. 1, No. 1, 1998.

5. Raza S.K. and Bieszczad A., “Network Configuration with
Plug and Play Components”, Proc. 6th IFIP/IEEE
International Symposium on Integrated Network
Management.

6. Tennenhouse D.L., Smith J.M., Sincoskie D., Wetherall D.J
and Minden G.J., “A Survey of Active Network Research”,
IEEE Communications, Vol. 35, No 1, 1997.

7. Aagesen, F. A., Helvik, B.E., Wuvongse, V., Meling, H.,
Bræk, R. and Johansen, U., “Towards a Plug and Play
Architecture for Telecommunications”, Proc. 5th IFIP Conf.
Intelligence in Networks (SmartNet’99), Bangkok, Thailand,
Kluwer Academic Publisher, November 1999.

8. Aagesen, F. A., Helvik, B.E., Johansen, U. and Meling, H.,
“Plug and Play for Telecommunication Functionality:
Architecture and Demonstration Issues”, Proc. Int’l Conf.
Information Technology for the New Millennium (IConIT),
Thammasat Universit, Bangkok, Thailand, May 2001.

9. Shiaa M.M and Aagesen. F.A. “Mobility management in a
Plug and Play Architecture”, Proc. IFIP 7th Int’l Conf.
Intelligence in Networks (SmartNet’2002), Saariselka,
Finland, April 2002. Kluwer Academic Publishers.

10. Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B.
E., “Support Specification and Selection in TAPAS”, Proc.

IFIP WG6.7 Workshop on Adaptable Networks and
Teleservices, September 2002, Trondheim, Norway,

11. Shiaa M.M. and Liljeback L.E., “User and Session Mobility
in a Plug-and-Play Network Architecture”, Proc. IFIP
WG6.7 Workshop on Adaptable Networks and Teleservices,
Trondheim, Norway, September 2002.

12. Shiaa M.M and Aagesen F.A., “Architectural
Considerations for Personal Mobility In the Wireless
Internet”, Proc. IFIP TC6/ WG 6.8 Conf. Personal and
Wireless Communications (PWC2002), Singapore, Kluwer
Academic Publishers, October 2002, pp. 285-292.

13. Johansen U., Aagesen F.A., Helvik B.E. and Meling H.,
“Design Specification of the PaP Support Functionality”,
Plug-and-Play Technical Report, Department of Telematics,
NTNU, 1999-12-10, ISSN 1500-3868.

14. Johansen U., Aagesen F.A., Helvik B.E. and Meling H.,
“Demonstrator - Requirements and Functional
Description”, Plug-and-Play Technical Report, Department
of Telematics, NTNU, 1999-12-10, ISSN 1500-3868.

15. Johansen U., “Plug-and-play – Software Design,
Implementation and Use”, Plug-and-Play Technical Report,
Department of Telematics, NTNU, 2001-02-10, ISSN 1500-
3868.

16. Westerinen, A. and Strassner, J., “Common
Information Model (CIM) Core Model, Version 2.4”,
DMTF White Paper, 2000.

17. Wuwongse, V., Akama, K., Anutariya, C. and
Nantajeewarawat, E., “A Data Model for XML Databases”,
J. Intelligent Information Systems, Kluwer Academic
Publisher, Vol. 20, Issue 1, 2003, pp. 63-80.

18. Wuwongse, V., Anutariya, C., Akama, K. and
Nantajeewarawat, E., “XML Declarative Description: A
Language for the Semantic Web”, IEEE Intelligent Systems,
Vol. 16, No. 3, May/June 2001, pp. 54–65.

19. Lassila, O. and Swick, R. R., “Resource Description Frame-
work (RDF) Model and Syntax Specification”, W3C Rec-
ommendation, February, 1999.

20. Brickley, D. and Guha, R.V., “RDF Vocabulary Description
Language 1.0: RDF Schema 1.0.” W3C Working Draft, 30
April 2002.

21. Berners-Lee, T., Fischetti, M. and Dertouzos, T.M.,
Weaving the Web: The Original Design and Ultimate Des-
tiny of the World Wide Web by its Inventor, Harpur, CA,
1999

22. Leymann, F., “Web Services Flow Language (WSFL 1.0)”,
IBM White Paper, May 2001.

23. Hendler, J. and McGuinness, D., “The DARPA Agent
Markup Language”, IEEE Intelligent Systems, Vol. 15, No.
2, March/April 2000, pp. 72–73.

24. McIlraith, S. A., Son, T. C. and Zeng, H., “Semantic Web
Services”, IEEE Intelligent Systems, Vol. 16, No. 2,
March/April 2001, pp. 46–53.

25. Christensen, E., Curbera, F., Meredith, G. and
Weerawarana, S., “Web Services Description Language
(WSDL) 1.1.”, W3C Note, March 2001

26. Schoonderwoerd, O. Holland, J. Bruten, and L.
Rothkrantz, “Ant-based Load Balancing in
Telecommunications Networks”, Adaptive Behavior,
Vol. 5, No. 2, pp. 169-207, 1996.

