
Configuration Management System 1�

Configuration Management for an
Adaptable Service System

Finn Arve Aagesen* — Paramai Supadulchai* —
Chutiporn Anutariya** — Malek Mazen Shiaa*

*Department of Telematics
Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway

aagesen@item.ntnu.no
paramai@item.ntnu.no
malek@item.ntnu.no

*Computer Science Program, Shinawatra University
Pathumthani 12160, Thailand

chutiporn@shinawatra.ac.th

ABSTRACT: Adaptable service systems are service systems that are capable of handling
dynamic changes in both time and position related to users, capabilities, nodes and changed
service requirements. The paper presents a formal framework for dynamic configuration and
reconfiguration of services in TAPAS (Telematics Architecture for Play-based Adaptable
Systems). The framework presented in this paper, provides representation and reasoning
mechanisms for semantic description and matching of required and offered capabilities and
status which are required by a particular service system. It employs CIM and RDF based on
XML as well as the XML Declarative Description Language (XDD) to provide human-
readable and machine-comprehensible descriptions of status, capabilities, system
(re)configuration plans as well as the exchange of messages. A reasoning system for
Configuration Management has been developed by use of XET (XML Equivalent Transform).

This system can directly operate and reason about XML elements and XML clauses described
by XDD. The system is demonstrated for a simple Intelligent Printing Management System.

KEY WORDS: Autonomic Communication, Adaptable Systems, Dynamic configuration,
Configuration management.

1. Introduction

A network based service system consisting of services, service components and
nodes is considered. A service is realised by the structural and behaviour
arrangement of service components, which by their inter working provide a service
in the role of a service provider to a service user. Service components are executed
as software components in nodes, which are physical processing units such as
servers, routers, switches and user terminals. User terminals can be phones, laptops,
PCs and PDAs etc.

Network-based services have during more than one decade been an important
research topic. Example topics include TINA (Tele-communication Information
Networking Architecture)� (Inoue at al. 1999), Mobile Agents and Active and
Programmable Networks�(Bieszczad et al. 1998)�(Raza et al. 2004) (Tennenhouse et
al. 1997). Focus has been on service architecture solutions that give flexibility and
efficiency in the definition, deployment and execution of the services. This focus is
now slightly changing into focus on adaptability and evolution of such services.
Traditionally, the nodes as well as the service components have a predefined
functionality. Concerning nodes as well as software engineering principles, changes
are taking place. Nodes are getting more generic. A modern node may offer IP
telephony and can have an MP3 player, video camera, storage etc. In the same way,
the software components are getting more generic. From being static components,
the software components can be generic software components, which are able to
download and execute different functionality depending on the need. Such generic
programs are from now on denoted as actors. The name actor is chosen because of
the analogy with the actor in the theatre, which is able to play different roles in
different plays.

We are entering a generative era, which gives a high degree of flexibility. To
utilise the generative potential, the attributes of services, service components,
software components and nodes must be appropriately formalised, stored and made
available. There must also be generative platform functionality that utilises this
generative data. Generative data and functionality apply to the ordinary service
functionality, but also to the service management functionality. As a first step
towards this formalisation, the concepts capability and status are introduced.

A capability is an inherent property of a node or a user, which defines the ability
to do something. A capability in a node is a feature available to implement services.
An actor executes a program. However, this program may need capabilities in the
node. A capability of a user is the feature that makes the user capable of using
services. Capabilities can be classified into:

� Resources: physical hardware components with finite capacity,

� Functions: pure software or combined software/hardware components, which
perform particular tasks,

Configuration Management System 3�

� Data: just data, which interpretation, validity and life span of which depend on
the context of the usage.

Resource capability examples are processing, storage and communication
resources e.g., CPU, hard disk and transmission channels, standard equipment e.g.,
printers and media handling devices and special equipment e.g., encryption devices.
Function capabilities are functions related to the use of hardware resources, such as
encryption, and special programs or library functions available for general use. Data
capability examples are user login and access rights

Status is a measure for the situation in a system with respect to the number of
active entities, the traffic situation and the Quality of Services (QoS) etc. Status
reflects an instantaneous state of the system. It can comprise observable counting
measures, or calculated QoS measures.

The work presented in this paper has been related to the Telematics Architecture
for Play-based Adaptable System (TAPAS) (Aagesen et al. 1999, 2001, 2002, 2003).�
The TAPAS computing architecture, to be more detailed explained in Section 3,
defines a service system by a play. A play consists of several actors, constituting
role figures by playing roles. A role figure is realised in an executing environment in
a node, and is utilising capabilities, which are inherent properties of the node. A role
can have specific requirements to capabilities and status. Due to the dynamic
availability of nodes in the network as well as changes in their capabilities and
status, it is desirable that configuration of services is done dynamically.
Configuration management is the optimisation of service systems initial
configuration and reconfigurations with respect to capabilities and status. This is the
focus of this paper.

Section 2 discusses related works. Section 3 gives a brief outline of TAPAS
architecture. Section 4 proposes a dynamic configuration framework. Its data model
and reasoning mechanism are presented in Section 5. Section 6 demonstrates a
practical application of the framework together with the reasoning mechanism.
Section 7 concludes and outlines further research direction.

2. Related work

Several configuration management and adaptable architectures have been
proposed so far (Bakour et al. 2004) (Cohen et al. 2004) (D’Antonio et al. 2004)
(Keller et al. 2004) (Sahai et al. 2004) (Solarski et al. 2004). Nevertheless, they are
most likely the architectures to handle a specific task, which either can be the
service creation and deployment functionality (Bakour et al. 2004) (Cohen et al.
2004) (Keller et al. 2004) (Solarski et al. 2004) or the network and resource
management functionality (D’Antonio et al. 2004) (Sahai et al. 2004). Our
architecture is intended to provide a configuration management for any adaptable
system that provides the functionality for both service creation and deployment
network and resource management. This diversity comes from the use of XML
Declarative Description (XDD), a generic knowledge representation. XDD provides

a single uniform formalism to create knowledge that incorporates various capability
and status representations as well as service behavior representations. Moreover, the
ability to effectively handle different kinds of event messages, which are well
categorised in an ontology instance, and the underlying reasoning mechanism
guarantee that an event happening in the system will be handled by rule-based
procedures that can apply to them. The reasoning mechanism transforms an event
message equivalently with the supplied configuration rules until a proper procedure
to handle the event is obtained. The transformation preserves all the semantic in a
service system (Wuwongse et al. 2001).

3. TAPAS architecture

TAPAS intends to be an architecture that gives 1) rearrangement flexibility, 2)
failure robustness and survivability, and 3) QoS awareness and resource control
(Aagesen et al. 2003). The TAPAS architecture is separated into a computing
architecture and a system management architecture as follows:

� The computing architecture is a generic architecture for the modeling of any
service software components

� The system management architecture is the structure of services and service
management components.

These architectures are not independent and can, to some extent, also be seen as
architectures at different abstraction layers. The system management architecture,
however, has focus on the functionality independent of implementation, and the
computing architecture has focus on the modeling of functionality with respect to
implementation, but independent of the nature of the functionality. The nature of the
computing as well as system architecture is described briefly in the following.

3.1. Computing architecture�

TAPAS computing architecture has three layers: the service view, the play view
and the network view as shown in Figure 1. The service view concepts are rather
generic and should be consistent with any service architecture. Likewise, the
network view concepts are generic and should be consistent with any corresponding
network architecture, with exception of the core platform, which is a specific
platform supporting the play view concepts. The network view concepts are the
basis for implementing the play view concepts, which again are the basis for
implementing the service view concepts. In the other way around, the service view
concepts are mapped into the play view concepts, which again are mapped into the
network view concepts.

The play view intends to be a basis for designing functionality that can meet the
requirements related to rearrangement flexibility, the failure robustness and
survivability, and the QoS awareness and resource control. The play view concepts
are seemingly rearrangement flexibility oriented. The capability and status concepts,

Configuration Management System 5�

however, also give a basis for the further design of systems that can meet the failure
robustness and survivability as well as the QoS awareness and resource control
requirements.

In the network view, nodes are typically network processing units such as mobile
phone, desktop computer, laptop, printer and router that possess particular
capabilities. Nodes are installed with core platform. Core platform supports basic
communication infrastructure between nodes. At a specific time point, status is the
state of a system with respect to the number of active entities, traffic situation and
QoS etc.

The play view concepts are founded on a theater metaphor. The TAPAS actor is
a generic software component consistent with the actor definition given in Section 1.
However, the TAPAS actor is specialised as follows. Actors perform roles
according to predefined manuscripts, and a director manages their performance.
Actors are software components in the nodes that can download manuscripts. An
actor will constitute a role figure by behaving according to a manuscript that defines
the functional behavior of that particular role in a play. A role session is a projection
of the behavior of a role figure with respect to one of its interacting role figures.
Actors in TAPAS can be moved transparently between nodes and the role sessions
between them can be re-instantiated automatically (Shiaa 2004).

Figure 1. The Simplified TAPAS Computing Architecture

A director is an actor with supervisory status regarding other actors. A director

also represents a play view domain, which is a set of nodes, which actors are
supervised by a single director. The director chooses a fitting actor for a certain role
figure. For this task the director requests help from the service management
functionality defined in Section 3.2.

Role

Actor

Manuscript

Role FigurePlay Domain

Director Capability

Status

Role Session

has
projects

is defined by

p lays

implements
manages

resides

manages

requires

offers

CorePlatform Node

Net work View
Domain

resides
Communicat ion

i s requires by

has
gives

has

implements interpre ts

resides in

supports

Play View

Network View

Service View
Service Component Service Syst em

constitu tes

Play
is rea lized by

is defined in

executes

consists of

can be

required

has

A service system is defined by a play. A play consists of several actors playing
different roles, each possibly having different requirements on capabilities and
status. An actor will constitute a role figure, based on the role defined by a
manuscript. The ability of an actor to play a role depends on the matching of the
required capabilities and status of the role and the offered capabilities and status in
the node where of the actor is executing. TAPAS Core Platform supports the play
view concepts (Aagesen et al. 2003).

3.2. System management architecture�

The main functionality components of the system management architecture are
illustrated in Figure 2. To fulfill� the failure robustness and survivability
requirements, the architecture must be dependable and distributed. This means that
replication of resources and functionality is needed�� The dependability aspect is
beyond the scope of this paper, and the various functionality components will be
defined as being part of a centralised architecture. The Primary Service Providing
Functionality comprises the ordinary services offered to human users. In addition,
the following functionality components are defined:

� Service Management: Definition of new services, deployment and invocation
of services and service components

� Capability and Status Management: Registration, de-registration, update,
transform and provide access to capabilities and status repository.

� Configuration Management: Optimisation of service systems initial
configuration and re-configuration with respect to the capabilities and QoS.

� Mobility Management: The handling of various mobility types.

Primary Service
Providing

Functionalities

Mobility Management Service
Management

Configuration
Management

Capability and Status
Management

Capability and Status Repository

Required
Capabilities

Required
Status

Additional
Requirements

Play
Repository

User
�

Figure 2. System management functionality components

The functionality of these functionality components is constituted by the
cooperation of role figures. Each of these functionality components has one
dedicated main role figure, acting as the visible interface to the other components.
This main role figure is denoted as the manager. In this paper, a functionality
component is considered to consist of the manager only. The functionality
components defined above are accordingly replaced by the Service Manager, the

Configuration Management System 7�

Capability and Status Manager, the Configuration Manager and the Mobility
Manager, respectively. This paper has focus on Configuration Management and the
Configuration Manager. Aspects of the other functionality components without
relevance to Configuration Management are beyond the scope of this paper.

4. Dynamic configuration framework

Figure 3 describes an architectural framework for dynamic configuration and
reconfiguration of services.

Figure 3. Architectural framework for dynamic configuration

The main entities are the Configuration Manager (CM), the Capability & Status
Repository (CSRep), the Play Repository, the Capability and Status Manager, and
the Service Manager.

The Configuration Manager is responsible for:

� Generation of appropriate configurations for composing new services to be
installed in a system: When there arises a request for installing a new service (i.e., a
service request), the CM fetches a corresponding play definition and retrieves the
system capabilities and status from the Play Repository and the Capability and
Status Repository, respectively. Valid configurations for such a service are
generated and analysed, and an appropriate configuration will be selected based on
the specified selection criteria such as system performance and QoS, user
preferences and cost. The selected configuration (ConfigPlans), defining which
nodes in the system should execute actors constituting certain roles, will be
forwarded to and executed by the Service Manager.

� Determination of a location for executing a particular role: In the running
system, a request for instantiation of a particular service component (i.e., a service
component request) may arise. In response to such a request, the CM dynamically
determines the best location (node) for its installation based on the current system

configuration, available capabilities and status as well as the component’s
requirements. It then notifies the Service Manager to load a corresponding
manuscript from the Play Repository and instantiate it on the suggested node.

� Determination of reconfiguration schemes for dynamic reconfiguration of
existing service systems: Upon the receipt of a trouble report indicating a problem in
a running system, the CM analyses the problem, fetches related information from the
Capability and Status Repository and the Play Repository, and computes a service
reconfiguration plan (ReconfigPlans) to be executed by the Service Manager.
Possible plans include actor relocation, re-initialisation, load balance and
distribution. Selection of an appropriate plan depends on the defined reconfiguration
rules as well as the nature of a problem.

The Capability and Status Manager monitors system capabilities/status and
maintains the Capability and Status Repository. It also listens to certain events
indicating changes to the system and its environment, which would prevent the
system from getting the desired level of services. In response to such events, it
notifies the Configuration Manager for further proper reactions in order to keep the
system functioning with an acceptable QoS level. Capability and Status Manager is
also responsible for installation and de-installation of capability components. When
a new node with not-yet-installed capability components is plugged into the system,
these components will be installed according to certain well-defined procedures, and
their capabilities will be registered as part of the system. Similarly, de-installation of
a component requires an execution of certain procedures and deregistration of the
component’s capabilities.

The Service Manager installs a service into the system by creating corresponding
actors for execution of certain roles according to an obtained play configuration or
reconfiguration plan generated by CM. Allocation of capabilities as well as
instantiation of a manuscript for each role are also performed by this entity.

The Capability & Status Repository stores specifications of capabilities offered
by components in a system and maintains information reflecting the situation and
status of the system. Such status information can be certain environment conditions,
observable values of the current QoS characteristics as well as their calculated
measures, which will be analysed by the Configuration Manager when computing
(re)configuration plans for the system.

The Play Repository is a collection of play configuration definitions and play
execution definitions. A play execution definition consists of manuscripts, which
define the entire functional behaviour of each role in terms of EFSM (Extended
Finite State Machine). A play configuration definition is an aggregation of the three
specifications:

� Role requirements identify, for each role, its requirements on available
capabilities/status.

� Play configuration rules describe system configuration rules and
constraints which must always be maintained, such as the maximum number of roles
allowed to install at a specific node in order to avoid an overload situation, the

Configuration Management System 9�

desired or acceptable QoS levels of the system, optional and mandatory constraints
as well as conflict handling and priority information.

� Play reconfiguration rules define policies for the handling of
reconfiguration related events, such as service component failure, decrease in system
QoS and resource unavailability.

5. Data model

This section presents XML based approaches to the representation of a dynamic
configuration data model. It elaborates machine-comprehensible descriptions for
each component of the configuration framework presented in Section 4 by the
application of standard languages for the Semantic Web (Berners-Lee et al. 1999)
and network management. First, the description of status and capabilities is
discussed, followed by the message specification modelling. Finally formalisms for
play configurations and reconfiguration definitions are presented.

5.1. Capability and status specification

The developed framework proposes the use of standard XML-based metadata
and ontology languages for modelling and providing semantic description of system
capabilities and status. RDF (Brickley et al. 2004) (Lassila et al. 1999), which is a
W3C recommended metadata language and its extensions (e.g., DAML (Hendler et
al. 2000) and OWL (McGuinness et al. 2004)) appear to meet this language need.
However, so far a standard, common ontological schema for describing network
management resources in such languages does not yet exist. Therefore, the
framework employs and extends CIM schema (Westerinen et al. 2000), developed
by DMTF (Distributed Management Task Force) for representing capabilities and
status. CIM is a fundamental, yet comprehensive object-oriented schema, both with
respect to classifications and associations of objects, for describing network
management information in a standard MOF (Managed Object Format) and XML
format. In CIM model, the notions of capabilities and status are represented together
as parts of an object’s properties. Figure 4 gives an example of a CIM instance,
represented in both UML graphical notation and its XML serialisation; it describes
capabilities, status and certain operational attributes of a printer.

Based on these modelling concepts, the Capability and Status Repository is then
represented as a collection of CIM instances which describe the available
capabilities and status of the plug-and-play system. Note that to conform to W3C
standards, CIM schemas and instances encoded in RDF can also be used in the
proposed framework. However, in the open, heterogeneous environment, it is
impossible to assume that every component/system will solely employ CIM model
for semantic description of its capabilities and status. Thus, with this concern,
research on integration of different capability/status ontologies is also part of the
TAPAS project

�

Note: The instance being described is an object of the
class �������	
��. Its ��
����� property, used for
uniquely identifying a device, states that the instance is
identified by �

�������	
����
��������. Its availability
status is Running/Full Power with a low toner error
state. Its printing capabilities include duplex, black &
white, and colour printing. The horizontal and vertical
resolutions are 1200 pixels per inch (this unit of
measurement is predefined by CIM schema). Its marking
technology is laser.

 ������������������ �!"�������	
��"#�
����$%��$�&������!"��
�����"#�
�����'�()�#�

�������	
����
����������'�()�#�
�����$%��$�&#�
����$%��$�&������!"�
����*���
+"#�
�����'�()�#$,		�	��-,�����.����'�()�#�
�����$%��$�&#�
����$%��$�&������!"��
��
�/������
�
�"#�
�����'�()�#(�.���	����'�()�#�
�����$%��$�&#�
����$%��$�&��$$�&������!"����*���
���"#�
�����'�()���$$�&#�
�������'�()�#�,���0����	
�	���'�()�#�
�������'�()�#1���2��	/�3��
�����	
�	���'�()�#�
�������'�()�#���������	
�	���'�()�#�
������'�()���$$�&#�
�����$%��$�&��$$�&#�
����$%��$�&������!"4���5�	
��$����,
��	"#�
�����'�()�#6788��'�()�#�
�����$%��$�&#�
����$%��$�&������!"'��
����$����,
��	"#�
�����'�()�#6788��'�()�#�
�����$%��$�&#�
����$%��$�&������!"���2�	�����	����+"#�
�����'�()�#�(������'�()�#�
�����$%��$�&#�
����������#�

(a) UML representation. (b) XML serialisation.

Figure 4. A CIM instance describing a printer device

5.2. Message specification�

Because CIM does not provide means for representing various types of messages
required by the developed architecture, RDF is exploited. Figure 5 illustrates various
types of messages and gives their primitive attributes. Basically, each message
carries its URI (Universal Resource Identifier), information of the actor who sends
the message and the date/time of composing it. A sender’s information also includes
the installing location and the playing role. Other message attributes can also be
encoded depending on the purpose of the message.

Messages are classified into two main types: requests and trouble reports.
Requests are further divided into: service request and service component request.
The former is a request for installation and execution of a particular service system
which has not yet been installed while the latter is a request for instantiation of a
particular service component in a running service system. Figure 6 gives examples
of both types of requests.

Trouble reports are further classified into: QoS degradation report and actor
error report, which are used for notifying the CM when a QoS-sensitive service
system encounters a decrease in its QoS to an unsatisfactory level and when an
actor-involving problem occurs, respectively. There are two types of actor error
reports: (i) Actor unreachable is used when an actor in a running system wants to
communicate and cooperate with another existing actor which constitutes a
particular role but is somehow unreachable or not responding. (ii) Insufficient
capability is sent by an actor to the Configuration Manager if the node where it is
running has insufficient capabilities.

�

�������	
����
������������������	
���

��
������!��

�������	
����
����������
�
����*���
+�!�"$,		�	��-,�����.��"�
��
��
�/������
�
��!�"(�.���	��"�
����*���
����!�9"�,���0����	
�	�":�"1���2��	/�3��
�����	
�	�":��

�������������"���������	
�	�";�
4���5�	
��$����,
��	�!�6788�
'��
����$����,
��	�!�6788�
���2�	�����	����+�!�"(����"�

Configuration Management System 11�

Figure 5. Message specification modelling

����
���$�<,��
���/=��*�,
!"�

����
��������� ��86"#�
�����	/��#�
�������
����/=��*�,
!"�

����
�����������
���"#�
��������������+�	���/=�����,���!"�

����
�������������$"�#�
�������	�/��	�
����	���/=�����,���!"�

������ �6�
��������"�#��
��������
��#�
������	/��#�
���/�
��� �#6>�68�7887�?���6>�68�88��/�
��� �#�
������+$�<,��
�	���/=�����,���!"�

����
�������������6�8"�#�
�����
���$�<,��
#�

����
����� ��	�	
$�<,��
���/=��*�,
!"�

����
��������� ��87"#�
������	/��#�
���������
����/=��*�,
!"�

����
�����������
��1"#�
����������������+�	����/=�����,���!"�

����
������������	
����	
"�#�
���������	�/��	�
����	���/=�����,���!"�

������ �6�
��������"��#��
����������
��#�
�������	/��#�
����/�
��� �#6>�68�7887�?���6@�68�88��/�
��� �#�
��������$�<,��
�	���/=�����,���!"�

����
���������?���������
��"�#�
�����
����� ��	�	�
$�<,��
#�

(a) ���
���$�<,��
. (b) ���
����� ��	�	
$�<,��
.

Figure 6. A service request and a service component request example.

5.3. Play configuration definition

This section presents the play configuration definition, comprising the following
three parts: role requirements, play configuration rules and play reconfiguration
rules. All definitions are modelled by using the XML Declarative Description
language (XDD) (Wuwongse et al. 2001, 2003) and are denoted as XDD
descriptions. A reasoning system for the Configuration Manager has been developed
by means of XET (XML Equivalent Transformation) (Anutariya et al. 2002). This
system can directly operate and reason about XDD descriptions.

XDD is an XML-based knowledge representation, which extends ordinary, well-
formed XML elements by incorporation of variables for an enhancement of
expressive power and representation of implicit information into so called XML
expressions. Ordinary XML elements, i.e. XML expressions without variable, are
called ground XML expressions. Every component of an XML expression can
contain XML variables. A variable is prefixed with ‘$T:’ where T denotes its type.
Table 1 lists the types of supported XML variables in XDD.�An XDD description is a
set of XML clauses of the form:

H � B1, … Bm {C1, … Cn}
where m, n � 0, H and Bi are XML expressions. And each of the Ci is a

predefined XML constraint��useful for defining a restriction on XML expressions.

Node

Actor

Message DateTime

ServiceRequest ServiceComponentRequest TroubleReport

Play Role

ActorError QoSDegradationReport

ActorUnreachableReport InsufficientCapabilityReport
rolePlaying

unreachableActor insufficientCapabilityActor

nodeInstalling playRequesting roleRequesting

sender dateTime

The XML expression H is called the head of the clause. The set of Bi is the body
of the clause. When the body is empty, such a clause is referred to an XML unit
clause, and the symbol ‘�’ will be omitted. Given an XDD description D, its
meaning is the set of all XML elements, which are directly described by and are
derivable from the unit and non-unit clauses in D, respectively.

�

Table 1 Types of XML variables supported by XDD.
Type Instantiation and examples
�� ��(���� �	
�����

��*,
��	� �� �0� <$N:var1>…</$N:var1>

��	�*���	�
�	
��
�/�
� <actor>...</actor> �� <node>...</node>
�� ��(��
��	� �0� <prop name=”$S:var1”/>

��	�*���	�
�	
��
�/��	
� <prop name=”prop1”/> �� <prop name=”prop2”/>
�� ��<,�	����=�5������� �����

��*,
�A
��,��������

�0: <element $P:var1/> ��	�*���	�
�	
��
�/��	
� <element/> �� <element name=”1”/>
�� ��<,�	����=�5������� ������(��0�������	���0: <element>$E:var1</element> ��	�*���	�
�	
��
�/�

�	
��<element/> �� <element><value>1</value></element>
�� ���
��=���(��0�������	� �0� <$I:var1><attr/></$I:var1> ��	�*���	�
�	
��
�/��	
�

<element><prop><attr/></prop></element> or

5.3.1. Role requirement

Capability and status requirement specification of a certain role in a play is
expressed as XDD descriptions. Its head specifies the role to be played, and its body
describes the demanded capabilities and status of a node for fulfilling such a role.
Recall that the head of an XML clause intuitively models the consequence part,
while the body describes the antecedence or the conditional part. Thus, each XML
clause can be easily interpreted as: deriving the information represented by its head
if all the conditions specified in its body hold. Given a clause representing a role
requirement specification, one can derive a list of available nodes in the network,
which are capable of performing such a role. By means of CIM hierarchical schema,
matching of the required capabilities and status with the offered capability and status
will not only be based on exact match, but will also include a notion of reasoning
through this generalisation-specialisation hierarchy. For example, if a certain role
demands a computer system with a modem, knowing that PC is a subclass of
computer system, and unimodem, ISDN, ADSL and cable modems are subclasses of
modem, then one can derive that any PC having one of these variety types of
modems has sufficient capabilities to fulfil such a requirement. Ranking of available
nodes according to how closely their capabilities match with the requirements is also
expressed as XML clauses. Moreover, in case there are multiple nodes satisfying the
defined requirements, specification of selection preferences is also permissible by
appropriate formulation of conditions in the clause’s body.

5.3.2. Play configuration rules

Play configuration rules are represented as XDD descriptions. Their heads
identify components of the play, while their bodies describe the configuration,
composition and dependency conditions.

Configuration Management System 13�

5.3.3. Play reconfiguration rules

Instead of providing merely a general reconfiguration mechanism, which is
applicable to any trouble encountered in an application, the developed framework
additionally facilitates means for definition of play specific play reconfiguration
rules. Such rules let services encode their individual, customised reconfiguration
policies, and hence allowing them to handle the same trouble in different but
appropriate manners. Each time when CM receives a trouble report, it will find if
there is a reconfiguration rule specifically defined for handling the given trouble or
not. In case that such a rule exists, CM will generate an appropriate system
reconfiguration plan according to that rule. Otherwise, the default reconfiguration,
i.e., to relocate actors that are involving in the problem, will be taken place. Figure 7
defines the possible types of reconfigurations.

Figure 7. Reconfiguration types

The reconfiguration types are: No Action, Play Reconfiguration and Actor
Reconfiguration

No Action: System developers may decide to disregard and perform no action for
certain types of troubles. For instance, one may define that all actor-error reports,
which involve some particular low-priority roles and are submitted during 1 AM-6
AM, will be ignored.

Play Reconfiguration: The whole running service system, defined by the
specified play and consisting of multiple cooperating actors, will be reconfigured.
The best node for executing each actor will be re-determined and the actor will be
relocated to that new location.

Actor Reconfiguration: This requires reconfiguration of some particular service
components constituted by corresponding actors in a system, and can be further
classified into Actor Initialisation, Actor Termination, Actor Re-initialisation, Actor
Relocation.

� Actor Initialisation: The action is decomposed into (i) the instantiation of a
new actor at a specified node, (ii) the installation of the manuscript defining the
actor behaviour which corresponds to the role to be played, (iii) the execution of the
actor’s operation according to the installed manuscript.

� Actor Termination: The specified actor will be terminated and the resources
allocated to and consumed by that actor will be freed.

� Actor Re-initialisation: The specified actor will be terminated and re-
initialised at the same node.

Reconfiguration TroubleReport

NoAction ActorReconfiguration PlayConfiguration

responseTo

Actor

ActorInitialization ActorTermination ActorReinitialisation ActorRelocation

Node

reconfiguringActor

relocationTo

� Actor Relocation: It involves moving of an actor currently executing at one
node to another. In general, this reconfiguration is carried out when an actor has
insufficient capabilities to execute its functions; thus, to proceed with its operation,
the actor must be relocated to a node with sufficient capabilities. The references
(Shiaa et al. 2002, 2004) have already discussed how actor mobility is realised in
TAPAS.

Reconfiguration rules are formalised by using XDD descriptions. Its head
describes the reconfiguration action to be implemented, and its body represents the
types, conditions and details of troubles upon which the described reconfiguration
will be performed. For a given trouble report, there may exist more than one
reconfiguration rule applicable to handle it. In such a case, rule prioritisation
information is needed. Figure 8 summarises the data models applied in the TAPAS
dynamic configuration framework. �

Figure 8. The Representation Layer of the Data Model

6. Demonstration: Intelligent Printing Management System

It is seen from the presented dynamic configuration architecture that CM is the
primary entity which dynamically computes appropriate service (re)configuration
plans by reasoning about the current system’s capabilities and status, the defined
role requirements, play configuration constraints and reconfiguration rules as well as
the given requests and trouble reports. A prototype reasoning system for CM has
been developed by means of XET (See Section 5.3). Here, employment of the
developed architecture and the reasoning engine to, respectively, model and
implement an Intelligent Printing Management (IPM) system is demonstrated along
with a simple application scenario assuming the four different roles:

� DocMaster: a print server role for printing black & white documents.

� GraphicMaster: a print server role for handling colour and graphic documents.

� IPMManager: a role responsible for controlling and distributing print jobs to
appropriate printer roles, depending on the job attributes, the current queues of each
printer and the job owner privilege information. It queries and finds an appropriate
print server role for executing a given job. When there exists more than one print
server role capable of handling the job, a preferred one will be selected.

� PrintClient: an application program to which users use for sending print jobs
to ������	����.

Note that one printer can constitute more than one print server role, and a print
server role can be realised by one or more physical printers. For instance, a high-
speed, laser, colour printer may be configured to play both ������
�� and

��(:���(����� �:��� �������

����

������(� $�-���(�

����

���+���	=��,��
��	���=�	�
��	�

Configuration Management System 15�

?���������
�� roles, while the ������
�� role can be additionally realised by another
black-and-white, laser printer. Moreover, in a real application scenario, there could
be more varieties and more complicated types of print server roles for which
different groups of users have different access controls.

When the system starts up, �����	���� and print server objects will be installed
and configured. These objects receive their actual behaviour in manuscripts. Clients
can be plugged in later on at any possible node running TAPAS platform. What is
important from the point of view of dynamic configuration is the reasoning about
these play and role requirements when installing specific roles at specific nodes.

The demonstration CM system consists of three printers (���	
���, ���	
��& and
���	
��BC and two computers (�� �6 and �� �7). ���	
���, ���	
��& supports duplex
black-and-white printing while ���	
��5 does not. ���	
��� print color documents while
���	
��& and ���	
��B�can only print black-and-while documents. Unlike the other two
printers, ���	
��B does not have duplex-printing capability. While comp1 is installed
with Windows NT, the operating system of comp2 is Windows 98. Note that due to
space limitation and for the sake of simplicity, the paper touches only the play
definition for ������
�� and �����	����. For a more complete demonstration, the
reader is referred to the CM system available at http://tapas.item.ntnu.no/ipm.

6.1. Role requirement

Figure 9 gives an XDD clause C1, formalising capability and status requirements of
������
�� role. Both graphical and textual presentation of the clause is shown.
However, for ease of understanding, only graphical presentations will be used in the
sequel. Recall that a variable in an XML clause is preceded with ‘D’, followed by its
type and name. For example, ���	�/�� denotes a String-variable named 	�/�� and is
instantiable into only a string, while ������	
��������
��� is an Expression-variable
instantiable into a list of XML expressions representing a sequence of objects or
attributes. The given clause C1 can be read as follows:

(A) An actor playing ������
�� role can be installed into D��	�/��, which is an
instance of �������	
��,

if
(B) D��	�/�� is currently available and offers duplex printing and black-and-

white printing capabilities, and laser marking technology,
(C) the following additional conditions on D��	�/��’s capabilities and status are

satisfied:
� 9D������5�	
���#!�6788; and 9D��
��
�����#!�6788;: the horizontal and vertical

resolutions of the print function are at least 1200 pixels per inch,
� 9D������/�#!�7@;: the printing speed is greater than 25 pages per minute,
� 	�
�� *��ED��������
�
�:� F"��� �����":� "��� ��	��":� "����� %��	":� "G� �/":�

"���
��� $�<,��
�/"HC: its current detected error state is not one of the given list.

���
��#�
�����������+�	����/=�����,���!"�

����
���������������
��"�#�
����	�/��	�
����	����/=�����,���!�������	��#��
����
��#�

����������������������������� �!"�������	
��"#�
��������������$%��$�&������!"��
�����"#�
���������������'�()�#�����
���
���'�()�#�
���������������$%��$�&#�
��������������$%��$�&������!"��
��
�/������
�
�"#�
���������������'�()�#���������������'�()�#�
���������������$%��$�&#�
��������������$%��$�&��$$�&������!"����*���
���"#�
����������������'�()���$$�&#�
������������������'�()�#�,���0����	
�	���'�()�#�
������������������'�()�#1���2��	/�3��
�����	
�	���'�()�#�
��������������������������������������
�����������������'�()���$$�&#�
���������������$%��$�&��$$�&#�
��������������$%��$�&������!"4���5�	
��$����,
��	"#�
���������������'�()�#���������������'�()�#�
���������������$%��$�&#�
��������������$%��$�&������!"'��
����$����,
��	"#�
���������������'�()�#���
���������'�()�#�
���������������$%��$�&#�
��������������$%��$�&������!"���2�	�����	����+"#�
���������������'�()�#(������'�()�#�
���������������$%��$�&#�
��������������$%��$�&������!"���	
�	�����/"#�
���������������'�()�#����������'�()�#���
���������������$%��$�&#�
���������������������������������
�������������������#:�
����9��������������#!�6788;:��9���
��������#!�6788;:��
����9���������#!�7@;:�
����	�
�� *��E�������������:��F"��������":�"�����	��":�"�����
%��	":�"G� �/":��"���
����$�<,��
�/"�HC�

(a) XDD description - graphical notation. (b) XDD description - serialisation.

Figure 9. Clause C1. Capability and status requirements for the Role DocMaster.

The clauses C2 of Figure 10 gives a simple example of modelling the capability
and status requirement of the role �����	����. Since �� �7 is installed with
Windows 98, it cannot be selected as an �����	����.

6.2. Play configuration and reconfiguration rule

Figure 11 and Figure 12 present the play configuration and reconfiguration rules
of the demonstrated IPM system, respectively.

6.3. Computing play configuration and reconfiguration plans

The play configuration definition for the IPM system is modeled my XDD
descriptions, comprising the requirement specification of each role in a play as well
as the play configuration constraints and the reconfiguration rule. In addition,
CSRep comprise CIM instances maintaining the capabilities/status of current,
available nodes in a system is needed as input to CM. Assume that the CM receives
the ServiceRequest of Figure 6.a for installing and configuring the IPM system. A
configuration plan computed by the CM by means of the prototype reasoning system
is illustrated by Figure 13. It specifies that: (i) an actor playing the role �����	���� is
to be installed at �� �6, (ii) the role ������
�� at ���	
��� and ���	
��&, and (iii) the role
?���������
�� at ���	
���.

�������	����������	
���

��
������!������
���
���
��
��
�/������
�
��!���������������
����*���
����!�9"�,���0����	
�	�":�"1���2��	/�

3��
�����	
�	�":���������������������;�
4���5�	
��$����,
��	�!���������������
'��
����$����,
��	�!����
��������
���2�	�����	����+�!�"(����"�
���	
�	�����/�!����������
���������������������

B
od

y
of

 th
e

cl
au

se

9��������������#!�6788;:�9���
��������#!�6788;:��

9���������#!�7@;:�

	�
�� *��E�������������:�F"��������":�"�����	��":�� �
������"�����%��	":�"G� �/":�"���
����$�<,��
�/"HC�

(B)

(C)

(A) Head of the clause

�������+�	��

	�/��	�
����	��
����
��

�������	����������	
���
�

 �

����
���������������
�����$����

Configuration Management System 17�

The clause specifies that:

(A) Any instance of the class
������ �,
���+�
� , represented
by D��	�/��, can install an actor for
playing the role �����	����, if the
requirements (B) and (C) defined by
the clause’s body are met. That is:
� The central processor of that
D��	�/�� is either Pentium III or
AMD Athlon families with 800-
MHz minimum clock speed and
the load percentage less than 50.

� The installed operating system is
WINNT with the minimum virtual
memory of 262144 KB (256 MB).

� The computer’s hosted file system
must be NTFS with available
space at least 1073741824 bytes
(1 GB).

Figure 10. Clause C2. Capability and status requirements of the Role IPMManager

�

 An XML clause defining a configuration rule of
the play http://tapas.org/IPM_1.0.

The head (A) expresses that a valid configuration
comprises the realisation of certain roles in the play,
specified by three ����$������
��	 associations. The
first association indicates that there must exist
exactly one actor constituting the role �����	����
at a node D������	�/�. The other two associations,
relating to the objects D��������
����
 and
D��?���������
��, specify that the configuration
also contains installation of actors realising some
particular roles. The conditions on the number of
actors to install and the roles to play are defined by
the clause’s body.

The clause’s body, comprising (B)–(E), specifies
conditions for derivation of the defined
configuration as well as its composition structure.

(B) indicates that the configuration will be
computed upon the receipt of a ���
���$�<,��
 for
installing such a version of the play.

(C) ensures that the node represented by
D������	�/� has sufficient capabilities and status
to install an actor for executing the role
�����	����. Obviously, this expression will be
matched with the head of the clause C2 of Figure 10,
which models the �����	����’s requirement.

(D) specifies that D��������
����
 represents a
set of actors to be installed at nodes that are capable
of playing the role ������
��. That is, these nodes'
capabilities and status must meet the requirement of
the role represented by the clause C1 of Figure 9. In
this example, there can be more than one actor
realising the role ������
��.

Similarly, (E) specifies that
D��?���������
����
�represents a set of nodes
capable of playing the role ?���������
��.

Note that a restriction on the number of roles that
an instance can play is not defined. A particular
printer may realise both ������
�� and
?���������
�� roles at the same time.

Figure 11. Clause C3. A play configuration rule of the IPM service system.

����
��

�

����
��������������	�������$����

	�/��	�
����	��

�������+�	��

����$������
��	

(C)

���+'�����	�

	�/��	�
����	��

���������������

����$������
��	 ����$������
��	

�������+�	��

���
��������

	�/��	�
����	��

������������������������
%=

�

����
���������������
�����$����

�������+�	��

�����������

	�/��	�
����	��

��
�� *���

����������������������������
%=

�

����
���������?���������
�����$����

�������+�	��

�����������

��
�� *���

(A)

(D)

(E)

����
��

�

����
��������������	�������$���� ���
�������

����������� ����������

�����
���$�<,��
�

���+$�<,��
�	��

�

����
�������������6�8������+�

(B)

�

����
�������������6�8������+�

�����+��	=��,��
��	�

�����������������

����
��

����
��

�������	��������� �,
���+�
� �

�������	�����������

���!����"���#�������-����+�
� �

-����+�
� �+���!�"��-�"�
�
����*��������!����������
$��/%	�+�!�-�(���
���!����"���#�����������

 � *��E����$�#��":�F"��	
�, E$C����":�"�����
���	E��C�����������-� ��+"HC:�

9�������%������#!�I88;:�9������&�����!�@8;:��

9���������#!�68JKJ>6I7>;:�9���#�#�#!�7L76>>;��

(B)

����
��
�������+�	��

	�/��	�
����	�

������������%��

%��+���!�"3����"�
��
��'��
,���� ��+��5��!����#�#�
����������������

�����������������������������

$����!�"��	
�������������"�
-� ��+�!�����$�#��"�
�,���	
����2����/�!��������%������
(��/�����	
����!�������&����
�����������������������

(C)

�

����
��������������	�������$����

�������	��������� �,
���+�
� �

(A)

�

The clause models a specific reconfiguration
rule for handling InsufficientCapabilityReport of
an actor playing the role IPMManager.It defines
that:

(A) an ActorRelocation plan, specifying that the
actor $S:actorA is to be relocated to
$S:newNode, will be derive,

if

(B) there arises an
InsufficientCapabilityReport, identified by
$S:reportID and describing that the actor
$S:actorA, currently playing the role
IPMManager at the node $S:node, has
insufficient capabilities to execute its
functionality, and

(C) there exists a node in the system which is
currently available and capable of playing
the role IPMManager, and denote such a
node by $S:newNode.

Figure 12. Clause C4: A dynamic reconfiguration rule of the IPM service system.

(a) The generated XML document representing the computed plan.�

����+��	=��,��
��	#�
������+'�����	��/=�����,���!"�

����
�������������6�8"�#�
���������$������
��	#�
���������
��#�
����������������+�	���/=�����,���!"�

����
��������������	����"�#�
���������	�/��	�
����	���/=�����,���!"�

������ �6�
��������"�#�
����������
��#�
����������$������
��	#�
���������$������
��	#�
���������
��#�
����������������+�	���/=�����,���!"�

����
���������������
��"�#�
���������	�/��	�
����	���/=�����,���!"�

�������	
��&�
��������"�#�

�������
��������	�/��	�
����	���/=�����,���!"�

�������	
����
��������"�#�
����������
��#�
����������$������
��	#�
���������$������
��	#�
���������
��#�
����������������+�	���
����������������/=�����,���!"�

����
���������?���������
��"�#�
���������	�/��	�
����	���
����������������/=�����,���!"�

�������	
����
��������"�#�
����������
��#�
�����������$������
��	#�
�����+��	=��,��
��	#�

(b) Corresponding RDF graph.

�

Figure 13. Calculated configuration plan for the IPM service system.

�

����
�������������6�8������+�

���+'�����	�

�

����
���������������
�����$����

����
��

�

�������	
����
���������

�

����
���������������
�����$����

����
��

�

�������	
��&�
���������

�

����
���������?���������
�����$����

�������+�	��

	�/��	�
����	��

�

�������	
����
���������

����$������
��	�

�������+�	��

	�/��	�
����	��
�������+�	��

����$������
��	�

����$������
��	�

	�/��	�
����	��
����
��

�����+��	=��,��
��	�

����$������
��	�

�

����
��������������	�������$����

�������+�	��
�

������ �6�
���������

	�/��	�
����	��
����
��

�

����
��������������	�������$����

�������+�	��

��������
�

	�/��	�
����	��

��������� ����������

���������
�����	�,==����	
����*���
+$����
�

�	�,==����	
����*���
+��
���

�

����
��������������	�������$����

�������+�	��

�����'(����
�

	�/��	�
����	��

(B)

(C)

�������� ����
��

����
��

�

�������� �����
��

�������+�	��

����	=��,��	���
���

�����	�����

	�/��	�
����	��

������
��	���

�

����
��������������	�������$���� � ��������

(A)

�

�����'(����

���������
��

����
��$�����
��	�
�

Configuration Management System 19�

7. Conclusions

A uniform representational and reasoning framework for dynamic configuration
of service systems in TAPAS architecture has been developed, and its employment
to model an Intelligent Printing Management system has been demonstrated. The
framework enables services to be composed on the fly and the location for executing
service components to be determined dynamically based on the offered capabilities
as well as the current situation in the network. Moreover, during the service
execution, it also permits adaptation of the service composition structure if certain
significant events, such as a service component failure or QoS degradation, occur. In
the framework, the Configuration Manager is the primary entity which reasons about
the current system’s capabilities & status, services’ requirements and
reconfiguration policies in order to dynamically generate appropriate service
(re)configuration, hence enabling the system to cope with variations in the
environment, achieve mandated performance levels and meet user satisfaction. To
verify the framework’s feasibility and potential in real applications, it has been
implemented using the XET reasoning engine.

References

Aagesen, F. A., C. Anutariya, et al. (2002). Support Specification and Selection in TAPAS.
IFIP WG6.7 Workshop and Eunice Summer School on Adaptable Networks and
Teleservices, Trondheim, Norway, Tapir.

Aagesen, F. A., B. E. Helvik, et al. (2003). On Adaptable Networking. Int'l Conf. on
Information and Communication Technologies (ICT 2003), Assumption University,
Thailand.

Aagesen, F. A., B. E. Helvik, et al. (2001). Plug and Play for Telecommunication
Functionality: Architecture and Demonstration Issues. Int'l Conf. Information Technology
for the New Millennium (IConIT), Thammasat University, Bangkok, Thailand.

Aagesen, F. A., B. E. Helvik, et al. (1999). Towards a Plug and Play Architecture for
Telecommunications. 5th IFIP Conf. Intelligence in Networks (SmartNet 99), Bangkok,
Thailand, Kluwer Academic Publisher.

Anutariya, C., V. Wuwongse, et al. (2002). An Equivalent-Transformation-Based XML Rule
Language. Int’l Workshop Rule Markup Languages for Business Rules in the Semantic
Web, Sardinia, Italy.

Bakour, H. and N. Boukhatem (2004). ASMA: An Active Architecture for Dynamic Service
Deployment. IFIP Int’l Conf. Intelligence in Communication Systems (INTELLCOMM
2004), Bangkok, Thailand.

Berners-Lee, T., M. Fischetti, et al. (1999). Weaving the Web: The original design and
ultimate destiny of the World Wide Web by its inventor, Harper, CA.

Bieszczad, A., B. Pagurek, et al. (1998). "Mobile Agents for Network Management." IEEE
Communications Surveys 1(1).

Brickley, D. and R. V. Guha (2004). RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation 10 February 2004. B. McBride.

Cohen, R. and D. Raz (2004). An Open and Modular Approach for a Context Distribution
System. Proc. IEEE/IFIP Network Operations and Management Symposium (NOMS
2004), Seoul, Korea.

D’Antonio, S., M. D’Arienzo, et al. (2004). An Architecture for Automatic Configuration of
Integrated Networks. Proc. IEEE/IFIP Network Operations and Management Symposium
(NOMS 2004), Seoul, Korea.

Hendler, J. and D. McGuinness (2000). "The DARPA Agent Markup Language." IEEE
Intelligent Systems 15(2): 72-73.

Inoue, Y., M. Lapierre, et al. (1999). The TINA Book: A Co-operative Solution for a
Competitive World, Prentice Hall.

Keller, A., J. L. Hellerstein, et al. (2004). The CHAMPS System: Change Management in
Planning and Scheduling. Proc. IEEE/IFIP Network Operations and Management
Symposium (NOMS 2004), Seoul, Korea.

Lassila, O. and R. R. Swick (1999). Resource Description Framework (RDF) Model and
Syntax Specification, W3C Recommendation 22 February 1999.

McGuinness, D. L. and F. Harmelen (2004). OWL Web Ontology Language Overview, W3C
Recommendation 10 February 2004.

Raza, S. K. and A. Bieszczad (2004). Network Configuration with Plug and Play
Components. Proc. 6th IFIP/IEEE Network Operations and Management Symposium
(NOMS 2004), Seoul, Korea.

Sahai, A., S. Singhal, et al. (2004). Automated Policy-Based Resource Construction in Utility
Computing Environments. IEEE/IFIP Network Operations and Management Symposium
NOMS'2004, Seoul, South Korea.

Shiaa, M. M. (2004). Mobility Support Framework in Adaptable Service Architecture.
IEEE/IFIP Net-Con' 2003, Muscat, Oman.

Shiaa, M. M. and F. A. Aagesen (2002). Mobility Management in Plug and Play Network
Architecture. Proc. IFIP 7th Int'l Conf. Intelligence in Networks (SmartNet 2002),
Saariselka, Finland, Kluwer Academic Publishers.

Shiaa, M. M., S. Jiang, et al. (2004). An XML-based Framework for Dynamic Service
Management. The 2004 IFIP International Conference on Intelligence in Communication
Systems (INTELLCOMM 04), Bangkok, Thailand.

Solarski, M., L. Strick, et al. (2004). Flexible Middleware Support for Future Mobile Services
and Their Context-Aware Adaptation. IFIP Int'l Conf. Intelligence in Communication
Systems (INTELLCOMM 2004), Bangkok, Thailand.

Tennenhouse, D. L., J. M. Smith, et al. (1997). "A Survey of Active Network Research."
IEEE Communications 35(1).

Westerinen, A. and J. Strassner (2000). "Common Information Model (CIM) Core Model
Distributed Management Task Force White Paper Version 2.4."

Wuwongse, V., K. Akama, et al. (2003). "A Data Model for XML Databases." Intelligent
Information Systems 20(1): 63-80.

Wuwongse, V., C. Anutariya, et al. (2001). "XML Declarative Description (XDD): A
Language for the Semantic Web." IEEE Intelligent Systems 16(3): 54-65.

