Automatic Translation of Service Specification
to a Behavioral Type Language for Dynamic
Service Verification

Shanshan Jiang, Cyril Carrez, and Finn Arve Aagesen

Department of Telematics
Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway
{ssjiang, carrez, finnarve}@item.ntnu.no

Abstract. Networked services, constituted by the structural and behav-
ior arrangement of service components are considered. A service compo-
nent is executed as a generic software component, denoted as an actor,
which is able to download and execute different EFSM (Extended Fi-
nite State Machine) based functionality. The functionality of an actor is
denoted as its role, while a role session is a projection of the role with re-
spect to the interaction with one other actor. We propose an approach for
verification of the services, based on interface verification techniques for
the verification of the role sessions. The service component specifications
used for actor execution are based on XML representations, while the
verification of the role sessions is based on a behavior type language. This
language has a sound theoretical basis, and is used to avoid ”message-
not-understood” errors. Rules are given for automatic translation from
the XML manuscripts to this behavioral type language. This translation
first makes projection to the role session, using hidden actions. Those
hidden actions are then removed so a sound verification can take place.

1 Introduction

Networked services constituted by service components are considered. A service
component is executed as a software component in nodes, which are physical
network processing units such as servers, routers or switches, and user terminals
such as phones, laptops and PDAs. Traditionally, the nodes and the service com-
ponents have a predefined functionality. Concerning both the nature of nodes
and the software engineering principles, changes are taking place. From being
a static component, the service component can be based on generic software
components, which are able to download and execute different functionality de-
pending on the need. Such generic programs are from now on denoted as actors
(by analogy with the actor in the theatre). The functionality of an actor is de-
noted as its role, while a role session is a projection of the role with respect to
the interaction with one other actor. Role and role session need the power of
Extended Finite State Machines (EFSMs) in order to describe a complex proto-
col of interaction (which is not the case with most Web-based services as they
are request-reply services specified as procedure calls).

There are basically two different approaches to service verification. One is
to model the composite behavior of the whole service [Hol90], but it leads to
state explosion and has limited applicability for complex systems. Another ap-
proach is the decomposition of the service system and isolated verification of
the decomposed parts (new services that reuse existing components can take full
advantage of this compositional verification). Within this approach we have the
sub-approach focusing on the interfaces between the service components, with
interface type languages [CFN05,L.X04]. Most of these approaches use behavioral
type systems [Nie95,NNS99,RV00], where a type specifies a non-uniform inter-
face, meaning the set of operations (or messages) the interface accepts depends
on the context. Indeed, this type is viewed as an abstract behavior of the compo-
nent, and is used during compositional verification to ensure liveness and safety
properties of the application. We aim for a quick compositional verification, re-
stricted to the compatibility verification of connected interfaces. This will keep
the number of states very low, instead of verifying the compatibility of the whole
behavior of the components. We used the type language developed in [CFNO5],
preferred because of its high level of abstraction. In this setting, each component
must satisfy a contract, which specifies the behavioral type of its interfaces; an
assembly of components is sound if connected interfaces are compatible.

This work is part of the TAPAS project (Telematics Architecture for Play-
based Adaptable System), which goal is to enhance the flexibility, efficiency and
simplicity of system deployment, operation and management by enabling dy-
namic configuration of network-based service functionality. See [AHAS03] and
the URL http://tapas.item.ntnu.no. We propose an approach to verify the ser-
vices, based on interface verification techniques for the verification of the role
sessions. We provide an automatic translation from XML-based EFSM service
component specification to the behavioral type language applied. The projection
process has two steps. First, make projections that preserve the binding between
the role sessions related to each service component by using hidden actions. Then
remove the hidden actions so a sound verification can take place.

The paper is organized as follows. The context of our service specification is
described through the related TAPAS concepts (Sect. 2). The behavioral type
language used in the verification is described in Sect. 3. Section 4 gives the
methodology of translation. Related work and Conclusion end the paper.

2 Some TAPAS Concepts

Part of the TAPAS architecture relevant for the verification is illustrated in Fig-
ure 1. For a more comprehensive description of the architecture, see [AHAS03].
Concepts such as service, service components, actor, role and role session were
defined in Section 1. The concepts of actor, director, role and manuscript are
concepts from the theatre, where actors play roles according to manuscripts and
a director manages their operations. An actor has two kinds of interfaces (Fig. 2):

Specifies *

Is_defined_by

1
* | Is_realized_by Defines_the_|superposition_of
* 1 *

manages Behaves_according_to

— projects e
m Actor Role RoleSession

1 * * * 1 *

Fig. 1. Some TAPAS concepts related to the verification

Home Interface. This is a control interface between an actor and its director.
Each actor is associated with one Director, who manages the performance
of the actor through this control interface.

Application Interface. This is an interface where the role sessions between
actors take place.

Homelnterface1 _——_——— Home Interface
~

Application Interface

Applicationinterface1

Homelnterface23

N Applicationinterface2
Homelnterface11

Fig. 2. Actor interfaces

Figure 3 shows the basic data structure of an XML manuscript. This manuscript
is the specification of the EFSM based behavior of an actor. It contains the name
of the EFSM, its initial state, data and variables, and a set of states. The state
structure defines the name of the state and a set of transition rules for this state.
Each transition rule specifies that for each input, the EFSM will perform a num-
ber of actions, and/or send a number of outputs, and go to the next state. The
actions are functions and tasks performed during a specific state: calculations on
local data, method calls, time measurements, etc. The <actions> list specifies
only the action type (method name), parameters and action group (the classifi-
cation of action types). This XML manuscript therefore specifies parameterized
behavioral patterns. The detailed platform support and example implementation
for XML service specification can be found in [JA03].

EFSM_nam

string =

string

¥ [~ state_nam.
string

—& input
‘string Action Type Q'
‘?. fl string
[
parameter|
eimg

s
T

Fig. 3. Manuscript data structure

A fragment of an example XML manuscript is given in Fig. 4. This frag-
ment comes from an example application called TeleSchool, which we used as an
experiment of our approach. For lack of space, we only show simplified behav-
ior description for one state. This service component specification will serve as
example to demonstrate the translation rules later.

<state name="stInitUserInterface” > <ActionType>setVariable
<input msg="LogonEventInd” </ActionType>
source="v_interface” > <param>

<actions>
<ActionType>ActorPlugln
</ActionType>
<param>
<name>role</name>
<value>SchoolServer</value>
</param>
<ActionGroup>G1</ActionGroup>
<store_return>v_server
< /store_return>
</actions>
<actions>
<ActionType>setVariable
</ActionType>
<param>
<name>value</name>
<value>INPUT_MSG.school
</value>
</param>
<ActionGroup>G2</ActionGroup>
<store_result>v_currentSchool
< /store_result>
</actions>
<actions>

<name>value</name>
<value>INPUT_MSG.user</value>
</param>
<ActionGroup>G2</ActionGroup>
<store_result>v_currentUser
< /store_result>
</actions>
<output>
<msg type="UserVerify AccessReq” >
<param>
<name>message</name>
<value>INPUT_-MSG</value>
</param>
<dest>v_server</dest>
</msg>
</output>
<next_state>stPasswordIdentify
</next_state>
</input>
<input msg="CancelEventInd” source=...>
<actions>...</actions>
<next_state>stInit</next_state>
</input>
</state>

Fig. 4. Fragment of an example XML manuscript

3 Behavioral type language

We adopt the behavioral type language introduced in [CFNO05]. This language
describes messages that are exchanged on interfaces. We chose this language
because it has a well defined semantics, and is based on a component model
which is rather close to the Actor model of TAPAS. A component in [CFN05] has
a set of ports. Each port interacts with a so-called partner, with which it sends
and/or receives messages. Communication is asynchronous, and is made through
an abstract communication medium containing FIFO queues (one for each port).
A port will then be mapped to the interface in TAPAS, the main difference being
that each port has its own queue, whereas in TAPAS there is one queue for the
whole component. However, we think the two models are equivalent: retrieving,
in a global queue, a message destined to an interface is similar to picking up the
first message in the queue of that interface. The strong formal framework of the
language in [CFNO05] also allows us to avoid ”message-not-understood” errors,
and to ensure external deadlock freeness properties'. Moreover, a type not only
imposes constraint on the interface it specifies, but also on its environment: it
is possible to enforce the environment to send a message by specifying that the
interface ”must receive a message”. Although this feature has not been used
yet, we think it has an important impact on liveness properties when composing
services.

In this paper the details of this language are not presented; the interested
reader should consult [CFN05,CFN03], where a BNF table is developed, as well
as semantics description and examples. However, we present an example of a
bank account specification. The following type specifies the operations interface
through which a client might perform credits and withdrawals:

operations = may ? [deposit (real); must ! [balance (real); operations]
+ withdraw (real); must ! [balance (real); operations
+ neg_balance (real); negbal_operations]]
negbal_operations = must ? [deposit (real);. ..+ withdraw (real);...]

This type is read as follows: operations may receive (may?) deposit and
withdraw messages. After receiving one of the two messages, the interface must
send (must!) the balance of the bank account: message balance is sent when
balance is positive, and the type becomes operations again. Message neg_balance
is sent when the user is debtor, and then the type becomes negbal_operations. This
latter type is similar to the operations type, with the exception of the modality:
type operations may receive messages, whereas negbal_operations must receive
messages. Hence, the client must perform some operations as long as he is debtor.

For the time being, we concentrate on the choice operator "+4” and the
sequence operator ”;”, so the resulting type is an abstract behavior of the com-
ponent, which is roughly a projection of its behavior to a specific interface.

! The ” message-not-understood” error avoidance is mainly due to the compatibility of
the types of the interfaces. The deadlock freeness property is due to constraints on
the internal behavior of the components, mainly on dependencies between interfaces
(i.e. an interface waiting for a result on another one).

4 Translation methodology

The actions that an actor can perform are classified into three types:

Control functionality through Home Interface: management functionality
including ActorPlugIn, ActorPlugQut, etc., defined in [JAHB99]. A request
is sent to the Director and the Actor must wait for the result.

Role session through Application Interfaces: the application interactions
use asynchronous message sending through Application Interfaces.

Internal actions: they are invisible in the interface descriptions.

The translation from service specification to interface language uses pro-
jection. Projection is an abstraction technique, which can produce a simplified
system description or viewpoint by aggregating some of the system’s function-
alities while hiding others. It has been used in previous works [L.S84,F1003] to
simplify the verification of protocols and validation analysis. In our approach,
the projection process basically consists of two steps. The first step extracts
the inputs and outputs for a specific interface. All other actions are considered
as hidden (internal actions and interactions occurring at other interfaces). The
second step removes those hidden actions so a sound verification can take place.

The automatic translation algorithm is as follows. It scans the XML manuscript
once and extracts the interface interaction information, the translation proce-
dure being carried out state by state. Each interface has a unique identifier
(for example I1), which is assigned dynamically when the interface is created.
For each interface, every state has a type name assigned, which is composed
of the interface identifier and a number. For example, interface types I1_* are
used for all the interactions with the Homelnterface (Director), where I1_1 is
the type of the first interaction, which will be transformed to I1_2 after some
I/0O interaction. This dynamic creation of interface type is flexible and easy for
implementation. Each behavior description will be translated to the equivalent
interface type description (using the translation rules described hereafter), af-
fecting one interface at a time. Finally, gathering of silent transitions and states
(Sect. 4.3) is applied on the interface type descriptions. In order to simplify the
translation, each state will receive only messages from one single interface (i.e.
all the inputs for one state are from the same source). If inputs are from different
interfaces, we create new states for processing them. In our first implementation,
must and may modalities are not distinguished: all actions will be "must”.

4.1 Messages

In TAPAS, all communications are through asynchronous message passing. The
input and output operations are the visible actions through interfaces and are
translated directly into interface types. An input message means a receiving
interface type ”?”, while an output message means a sending interface type ”1”.
Synchronous communication can be implemented by an output followed by an
input message, thus translated into a sending interface type ”!” followed by a
receiving one 7?7,

We consider only the types of the parameters, not their values. The resulting
message types are then finite, so the validation will be a finite-state verification
(our verification is an optimistic one: it does not handle the cases where values
are received outside the scope of their type).

The XML message structures are input, output, and control functionality.

<input> structure. The parameter ”source” identifies the role session, and
distinguishes the interface for this input operation. This structure is translated
to 7?M,;”, with M; the message type.

Ezample 1.

XML manuscript Interface type

<input msg="LogonEventInd” 12.2 = must ? [LOgOHEVGHtIHd; 123]

source="v_interface” > . . .
I12_x is used for the interface ”v_interface”

<output> structure. The parameter ”dest” identifies the role session for this
output operation, and is used to find the binding interface. If it represents a
new destination, a new interface will be created. This structure is translated to
"IM;”, with M; the message type.

FEzxample 2.

XML manuscript Interface type

<output> — | 3 .
g type="UserVerifyAccessReq” > 13_1 = must! [UserVerify AccessReq;13_2]

<param> I3_x is used for the interface ”v_server”
<name>message</name>
<value>INPUT_-MSG< /value>
</param>
<dest>v_server</dest>
</msg>
</output>

Control functionality in <actions> structure. This is identified by a
method name starting with ” Actor” in <ActionType> substructure. This should
be translated to ”! M;; ? M;” for the Homelnterface.

Ezample 3.

XML manuscript:
<actions>
<ActionType>ActorPlugln</ActionType>
<param>
<name>role</name>
<value>SchoolServer</value>
</param>
<ActionGroup>G1</ActionGroup>
<store_return>v_server</store_return> </-of type “roleSessionld”—>
</actions>

Interface type:

I1.2 = must ! [ActorPlugln (role); must ? [RequestResult (roleSessionld);11.3]]
I1_% is used for the interface ”Homelnterface”

4.2 Deactivation of interfaces

Interfaces can be dynamically created and deleted (deactivated). Deactivation is
reflected by the ” ActorPlugOut” control functionality. It plugs out an interacting
actor, thus placing the corresponding role session into inactive state 70”. The
interface can then be deleted, the deletion being an internal behavior.

4.3 Hidden actions and their removal

The first step of our projection on one interface replaces internal actions and in-
teractions occurring at other interfaces by hidden actions, also called 7-transitions.
The next step in the projection is to remove those hidden actions, by combining
T-transitions and states, as in Floch’s work [Flo03].

(d) Correct behaviour

Fig. 5. Combination of 7-transitions

All the successive T-transitions can be replaced by one single 7-transition, and
the states are combined into one state, as shown in Fig. 5(b). If input and output
sequences are the same for two states, these states may be combined. However,
some ambiguous behavior may result, as shown in Fig. 5(c): from state 2’ message
M2 or M3 can be received, while originally M2 can be received only in state
6, and M3 in state 5 (This ambiguity may be due to some hidden parameter
values, or to dependency between interfaces). We eliminate this ambiguity by
adding state information in the name of the message (Fig. 5(d)): ! M1{S54}”
means ”output a message type M1 at the state S4”. The final translated type
for Fig. 5(a) could be expressed as follows, referring to Fig. 5(d):

I1 = must ! [M1{S4}; must ? [M2; I7] + MI{S3}; must ? [M3;17]]
I1 and I7 are the interface type description for Statel and State7 respectively.

As states and input types (messages) are finite, our types have finite states,
thus avoiding the infinite state verification problem. We also provide a more ac-
curate description of interface behavior than the traditional interface definitions,
which specifies signature of methods but not complex interface behavior.

5 Related work

Floch’s PhD thesis [Flo03] provides a validation approach for dynamic service
composition, which is similar to our work. Floch models the behavior of the ser-
vice components as state machines using SDL; projection is used to transform
it into interface behavior (also described as state machines using SDL-like nota-
tion). Our service specification has a higher level abstraction of behavior, as only
action types are defined. Therefore, implementation details of the internal actions
are already hidden, while at the same time keeping all the information about
interface interactions. This simplifies the translation process. Another difference
is that we provide translation by directly analyzing the XML data structure,
whereas the transformation in Floch’s work is based on state graphs.

The behavioral type language we used was first issued in [CFNO03], and further
developed in [Car03,CFNO05]. Many type systems exist to capture the behavior
of processes, actors or components, most of them based on process algebras like
m-calculus. The closest type system to the one we used is the one of Najm et
al. [NNS99]. The authors propose an actor calculus featuring regular or infinite-
state behavior. Although they detect ”message-not-understood” errors, commu-
nications are one-way. Ravara and Vasconcelos, in [RV00], were also inspired by
Najm et al., but they did not make any distinction between inputs and outputs,
hence their notion of error is rather loose and did not fit in our needs. They
corrected this with Gay, providing so-called ”session types” [GVRO02], but dis-
tinguishing internal and external choice between actions (respectively client and
server choices), which means we have to add messages to make sure those choices
are made accordingly. De Alfaro and Henzinger provide another way of speci-
fying interface behavior, using Interface Automata [dAHO1]. Those automata
specify the sequence of input/output allowed on an interface, but the compat-
ibility they develop is too weak for our architecture. Indeed, two components
are compatible if there exists an environment that can interact with the product
automaton of the components’ types; we believe this does not allow detecting
”message-not-understood” in a plug-and-play environment such as TAPAS.

6 Conclusion

We have presented an approach for verification of the services, based on inter-
face verification techniques for the verification of role sessions. We also provide
an automatic translation from XMI-based EFSM service specification to the
behavioral type language applied. This language has a sound theoretical ba-
sis, and provides formal framework for compositional verification of component

based systems. Especially, it allows us to capture "message-not-understood” er-
rors while plugging a new component. The automatic translation provides an
efficient and reliable way to extract interface types. An experiment has been
carried out on an example application called TeleSchool.

For further work, the translated interface description can be used to compare
specifications of behavior / service, so that dynamic service discovery can be
done based on more accurate semantic interface behavior description comparison
instead of simply signature matching. Furthermore, the dynamic assembly of
components for validation needs to be further developed so as to provide safe
plug-and-play techniques for components. Finally, we did not use all the features
provided by the behavioral type language, and put aside the may and must
modalities on the actions. We think about using the latter modality ("I have to
send/receive”) together with service-goal developed by Sanders and Braek [SB04]:
some actions can be specified as obligatory (must), so the service goal is fulfilled.

References

[AHASO03] F. A. Aagesen, B. E. Helvik, C. Anutariya, and M. M. Shiaa. On adaptable
networking. In ICT’03, Proceedings, Assumption University, Thailand, 2003.

[Car03] C. Carrez. Contrats Comportementauz pour Composants. PhD thesis,
ENST, Paris, France, December 2003.

[CFN03] C. Carrez, A. Fantechi, and E. Najm. Behavioural contracts for a sound
composition of components. In FORTE’03, volume 2767 of LNCS. 2003.

[CFN05] C. Carrez, A. Fantechi, and E. Najm. Assembling components with be-
havioural contracts. Annals of Telecomms, 2005. To appear. Ext. of [CFNO03].

[dAHO1] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC/FSE-01,
volume 26, 5 of Software Engineering Notes. ACM Press, 2001.

[Flo03] J. Floch. Towards Plug-and-Play Services: Design and Validation using
Roles. PhD thesis, NTNU, Trondheim, Norway, February 2003.

[GVRO2] S. Gay, V. T. Vasconcelos, and A. Ravara. Session types for inter-process
communication. Preprint, Dept. of Computer Science, Univ. of Lisbon, 2002.

[Hol90] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, November 1990.

[JAO3] S. Jiang and F. A. Aagesen. XML-based dynamic service behaviour repre-
sentation. In NIK’03, Proceedings, Oslo, Norway, Nov. 2003.

[JAHB99] U. Johansen, F. A. Aagesen, B. E. Helvik., and R. Braek. Design spec-
ification of the PaP support functionality. Technical Report 1999-12-10,
Department of Telematics, NTNU, 1999.

[LS84] S. S. Lam and A. U. Shankar. Protocol verification via projections. IEEE
Transactions on Software Engineering, 10(4):325-342, July 1984.

[LX04] E. A. Lee and Y. Xiong. A behavioral type system and its application in
ptolemy ii. Formal Aspects of Computing, 16(3):210-237, August 2004.

[Nie95] O. Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99—121. Prentice-Hall, 1995.

[NNS99] E. Najm, A. Nimour, and J.-B. Stefani. Infinite types for distributed objects
interfaces. In FMOODS’99, Proceedings, Firenze, Italy, February 1999.

[RV0O] A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent objects.
In CONCUR 2000, volume 1877 of LNCS, pages 474-488. Springer, 2000.
[SB04] R. Sanders and R. Brak. Discovering service opportunities by evaluating

service goals. In EUNICE’04, Proceedings, Tampere, Finland, June 2004.

