
TAPAS platform messages and procedures Page i

TAPAS platform messages and procedures

Version 1.0

Patcharee Thongtra, Finn Arve Aagesen

Telematics Architecture for Play-based Adaptable System (TAPAS)
Department of Telematics, NTNU

TAPAS platform messages and procedures Page ii

Table of Contents
Table of Contents .. ii
1. Introduction..1
2. TAPAS platform messages..1

2.1 General .. 1
2.2 TAPAS core platform messages descriptions.. 3
2.3 TAPAS management platform messages descriptions .. 6

3. TAPAS core platform procedures..11
3.1 General .. 11
3.2 Procedures descriptions ... 11

TAPAS platform messages and procedures Page 1

1. Introduction

TAPAS platform consists of core platform and management platform. Core platform supports the
functionality of TAPAS computing architecture. Management platform supports the functionality of
TAPAS service functionality architecture. This document describes the messages and procedures of
TAPAS platform. Messages and procedures are intended to be used by the service engineers. The
procedures are meant to be more high level and user friendly than the messages. The usage of the
messages needs more insight to the inner details of architecture. All procedures can be replaced by
messages.

Section 2 gives and overview of the messages. Section 3 and 4 describes in more detail the
messages of the core and management platform, respectively. Section 4 describes the core platform
procedures.

The reader is recommended to read this document together with the TAPAS platform execution
framework and Service systems implementation guideline. These documents can be downloaded
from the TAPAS Platform page at TAPAS web site. Two basic roles in the Tapas execution
framework to be mentioned here are:

• the Director and
• the Play Administrator.

The Play Administrator (PlayAdm) handles the (un-)registration of plays, maintains the location of
executable codes of plays on the Web server, and informs actors who constitutes role figures when
their role manuscripts are updated. The Director manages other actors in a TAPAS node. The
management consists of creating new actors, (re-)assigning roles to the actors, releasing the actors
from roles as well as terminating them. A Director is automatically instantiated in a TAPAS node
when the TAPAS execution framework is instantiated.

2. TAPAS platform messages

2.1 General

The messages are classified into six groups:

• General request
• Trouble report
• Mobility request and report
• Diagnosis
• Configuration
• Capability Monitoring

A message contains message ID, sender ID, receiver(s) ID, system time when composing the
message and message data. The message ID is a unique identifier for a message. The sender ID and
receiver(s) ID are an actor_id and a set of actor_id respectively, where

actor_id = (node_id, port_number, actor_number).

The node_id is defined by the IP address of node, port_number is a port number that is used for the
Java socket, and actor_number is a local counter. Message data consist of message name and

TAPAS platform messages and procedures Page 2

message parameters. Table 1 gives an overview of message names and parameters related to the
various message groups.

Table 1. Messages names and parameters

Message Names Message Parameters Platform
General request group
CheckPlayExistenceRequest
PlayExistenceResponse
PlayNonExistenceResponse
RegisterPlayRequest
UnRegisterPlayRequest
CheckPlayInUseRequest
PlayInUseResponse
PlayNotInUseResponse
GetPlayLocationRequest
PlayLocationResponse
ChangePlayReport
StartServiceComponentOnThisNodeRequest
StartServiceComponentOnThisNodeSuccess
StartServiceComponentOnThisNodeFailure
PlugOutRoleOnActorRequest
PlugOutRoleOnActorSuccess
PlugOutRoleOnActorFailure
ChangeRoleOnActorRequest
ChangeRoleOnActorSuccess
ChangeRoleOnActorFailure
ActorTermination
PlanServiceComponentRequest
PlanServiceComponentResponse
StopServiceComponentRequest
ServiceAdaptationRequest
ServiceAdaptationResponse
RoleFigureDialogue

play_name
play_name, play_version
play_name
play_name, play_version, specification_location
play_name, play_version
play_name
play_name
play_name
play_name, play_version
play_name, play_version, specification_location
play_name, play_version
service_component_id, specification_location
service_component_id, actor_id
service_component_id
actor_id
actor_id
actor_id
actor_id, new_ service_component_id, new_specification_location
actor_id, new_ service_component_id
actor_id, new_ service_component_id
actor_id
service_component_id, specification_location, capability_req_location
role_figure_id
service_component_id, role_figure_id
service_component_id
new_role_figure_id
dialogue_id, {parameter_on_purpose_of_dialogue}

Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Man
Man
Man
Man
Man
Core

Trouble report group
RoleFigureUnreachable
InsufficientCapability
QoSDegradation
NodeNoResponse

role_figure_id
actor_id
service_component_id
node_id

Man
Man
Man
Man

Mobility request and report group
RoleFigureMoveRequest
InformDialogue
SetDialogue
GetEFSMData
EFSMData
SetEFSMData

role_figure_id, new_node_id
dialogue_object
{dialogue_object}
-
curr_state, {curr_var}, {curr_msg}
curr_state, {curr_var}, {curr_msg}

Man
Man
Man
Man
Man
Man

Diagnosis group
RoleFigureFailed
RoleFigureSuspended
RoleFigureContinued
HeartBeat
HeartBeatLost
ConfirmAlive

role_figure_id
role_figure_id
old_role_figure_id, new_role_figure_id
-
role_figure_id
-

Man
Man
Man
Man
Man
Man

TAPAS platform messages and procedures Page 3

Alive - Man
Configuration group
GetNodeCapabilityRequest
NodeCapability
GetCapableNode
CapableNode
StartServiceComponentRequest
StartServiceComponentResult

node_id
{cp_mon_object}
{cp_mon_object}
node_id
service_component_id, specification_location, node_id
role_figure_id

Man
Man
Man
Man
Man
Man

CapabilityMonitoring group
MonitorCapabilityRequest
StopMonitorCapabilityRequest
UpdateMonitoredCapability
InformMonitoringDomain
SetMonitoringDomain
SetMonitoringDomainsUnderMainManager

node_mon_object, monitoring_interval
node_id
node_mon_object
imm_id, domain_mon_object
domain_mon_object
mmm_mon_object

Man
Man
Man
Man
Man
Man

2.2 TAPAS core platform messages descriptions

CheckPlayExistenceRequest (play_name)

Usage: The message is sent to check whether there a specific play name is registered.
Senders: The procedure plugInPlay, the procedure changePlay, Role figures, Users
Receivers: PlayAdm
Parameters: play_name: name of a play

PlayExistenceResponse (play_name, play_version)

Usage: The message is sent as a reply to the message CheckPlayExistenceRequest.
Senders: PlayAdm
Receivers: The procedure plugInPlay, the procedure changePlay, Role figures, Users.
Parameters: play_name: name of a registered play, play_version: current version of a registered
play

PlayNonExistenceResponse (play_name)

Usage: The message is sent is sent as a reply to the message CheckPlayExistenceRequest.
Senders: PlayAdm.
Receivers: The procedure plugInPlay, the procedure changePlay, Role figures, Users
Parameters: play_name: name of a play

RegisterPlayRequest (play_name, play_version, specification_location)

Usage: The message is sent to register a play.
Senders: The procedure plugInPlay, Role figures, Users
Receivers: PlayAdm.
Parameters: play_name: name of a play, play_version: version number of a play,
specification_location: location of a JAR file on Web server

UnRegisterPlayRequest (play_name, play_version)

Usage: The message is sent to unregister a play.
Senders: The procedure plugOutPlay, Role figures, Users

TAPAS platform messages and procedures Page 4

Receivers: PlayAdm.
Parameters: play_name: name of a play, play_version: version number of a play

CheckPlayInUseRequest (play_name)

Usage: The message is sent to check if a play is in use.
Senders: The procedure plugOutPlay, Role figures, Users
Receivers: PlayAdm.
Parameters: play_name: name of a play

PlayInUseResponse (play_name)

Usage: The message is sent as a reply to CheckPlayInUseRequest .
Senders: PlayAdm.
Receivers: The procedure plugOutPlay, Role figures, Users
Parameters: play_name: name of a play

PlayNotInUseResponse (play_name}

Usage: The message is sent as a reply to CheckPlayInUseRequest.
Senders: PlayAdm
Receivers: the procedure plugOutPlay, Role figures, Users
Parameters: play_name: name of a play

GetPlayLocationRequest (play_name, play_version)

Usage: The message is sent to get a location of the latest version of a play.
Senders: the procedure plugOutPlay, Role figures, Users
Receivers: PlayAdm.
Parameters: play_name: name of a play, play_version: version number of a play

PlayLocationResponse (play_name, play_version, specification_location)

Usage: The message is sent as a reply GetPlayLocationRequest.
Senders: PlayAdm
Receivers: The procedure plugOutPlay, Role figures, Users
Parameters: play_name: name of a play, play_version: version number of a play,
specification_location: location of the latest version of a play on Web server

ChangePlayReport (play_name, play_version)

Usage: The message is sent to inform that a registered play is changed and re-uploaded.
Senders: The procedure changePlay, Role figures, Users
Receivers: PlayAdm.
Parameters: play_name: name of a play, play_version: version number of a play

StartServiceComponentOnThisNodeRequest (service_component_id, specification_location)

Usage: The message is sent to start an available actor, on an already selected node, to play a given
role.
Senders: The procedure plugInRole, Role figures, Users
Receivers: Director
Parameters: service_component_id: a service component id, which is constituted by (role_id,
play_name, play_version), where role_id is name of a role, play_name is name of a play, and

TAPAS platform messages and procedures Page 5

play_version is version number of a play, specification_location: location of the role manuscript on
Web server.

StartServiceComponentOnThisNodeSuccess (service_component_id, actor_id)

Usage: The message is sent as a reply to the message PlugInRoleOnActorRequest.
Senders: Director
Receivers: The procedure plugInRole, Role figures, Users
Parameters: service_component_id: a service component id, actor_id: an actor id

StartServiceComponentOnThisNodeFailure (service_component_id)

Usage: The message is sent as a reply to the message PlugInRoleOnActorRequest.
Senders: Director
Receivers: The procedure plugInRole, Role figures, Users
Parameters: service_component_id: a service component id

PlugOutRoleOnActorRequest (actor_id)

Usage: The message is sent to stop an actor playing a role.
Senders: The procedure plugOutRole, Role figures, Users
Receivers: Director
Parameters: actor_id: an actor id

PlugOutRoleOnActorSuccess (actor_id)

Usage: The message is sent as a reply to the message PlugOutRoleOnActorRequest
Senders: Director
Receivers: The procedure plugOutRole, Role figures, Users
Parameters: actor_id: an actor id

PlugOutRoleOnActorFailure (actor_id)

Usage: The message is sent as a reply to the message PlugOutRoleOnActorRequest
Senders: Director
Receivers: The procedure plugOutRole, Role figures, Users
Parameters: actor_id: an actor id

ChangeRoleOnActorRequest (actor_id, new_service_component_id,
new_specification_location)

Usage: The message is sent to make an Actor change to a new role.
Senders: The procedure changeRole, Role figures, Users
Receivers: Director
Parameters: actor_id: an actor id, new_service_component_id: a new service component id,
new_specification_location: location of the new role manuscript on Web server.

ChangeRoleOnActorSuccess (actor_id, new_service_component_id)

Usage: The message is sent a reply to the message ChangeRoleOnActorRequest.
Senders: Director
Receivers: The procedure changeRole, Role figures, Users
Parameters: actor_id: an actor id, new_service_component_id: a new service component id

TAPAS platform messages and procedures Page 6

ChangeRoleOnActorFailure (actor_id, new_service_component_id)

Usage: The message is sent a reply to the message ChangeRoleOnActorRequest.
Senders: Director
Receivers: The procedure changeRole, Role figures, Users
Parameters: actor_id: an actor id, new_service_component_id: a new service component id

ActorTermination (actor_id)

Usage: The message is sent to terminate an actor.
Senders: Role Figures, Users
Receivers: Director
Parameters: actor_id: an actor id

RoleFigureDialogue (dialogue_id, {parameter_on_purpose_of_dialogue})

Usage: The message is sent to communicate with other role figures.
Senders: Role Figures
Receivers: Role Figures
Parameters: dialogue_id: a dialogue id which represents the dialogue purpose,
{parameter_on_purpose_of_dialogue}: list of parameters, which vary and depend on the dialogue
purpose.

2.3 TAPAS management platform messages descriptions

PlanServiceComponentRequest (service_component_id, specification_location,
capability_req_location)

Usage: The message is sent to initiate a service component on some node.
Senders: Role figures, Users
Receivers: Capability Configuration Manager
Parameters: service_component_id: a service component id, specification_location: location of the
role manuscript on Web server, capability_req_location: location of the capability requirement of
the role on Web server

PlanServiceComponentResponse (role_figure_id)

Usage: The message is sent as a response to the message PlanServiceComponentRequest.
Senders: Capability Configuration Manager
Receivers: Role figures, Users
Parameters: role_figure_id: a role figure id, which is constituted by (service_component_id,
actor_id), where service_component_id is a service component id and actor_id is an actor id of
whom constitutes the role figure.

StopServiceComponentRequest (service_component_id, role_figure_id)

This message is not implemented yet. The purpose is to terminate a service component.

ServiceAdaptationRequest (service_component_id, role_figure_id)

This message is not implemented yet. The purpose is to adapt a service component.

ServiceAdaptationResponse (new_role_figure_id)

TAPAS platform messages and procedures Page 7

This message is not implemented yet. The purpose is for the response to the message
ServiceAdaptationRequest.

RoleFigureUnreachable (role_figure_id)

Usage: The message is sent to report that a role figure is unreachable.
Senders: Role figures, Users
Receivers: Fault Diagnosis Manager
Parameters: role_figure_id: a role figure id

InsufficientCapability (actor_id)

This message is not implemented yet. The purpose is to report that an actor does not have inherent
capabilities to constitute a role figure.

QoSDegradation (service_component_id)

This message is not implemented yet. The purpose is to degrade the QoS performance of a service
component.

NodeNoResponse (node_id)

Usage: The message is sent to report that a registered node is unreachable.
Senders: Intermediate Monitoring Manager
Receivers: Capability and Service Administration Manager
Parameters: node_id: IP address of a node

RoleFigureMoveRequest (role_figure_id, new_node_id)

Usage: The message is sent to request the move a role figure to a new Node and then to start the
role figure. Then, the EFSM data of the role figure will be maintained during the movement.
Senders: Users, Role Figure
Receivers: Mobility Manager
Parameters: role_figure_id: a role figure id, new_node_id: IP address of a new node.

InformDialogue (dialogue_object)

Usage: The message is sent to inform about current dialogue between a role figure and its
cooperating role figure. The message is sent out in case a cooperating role figure becomes dead.
Senders: Role Figure
Receivers: Mobility Manager
Parameters: dialogue_object: a dialogue object, which is constituted by (my_role_figure_id,
coop_role_figure_id), where my_role_figure_id and coop_role_figure_id are role figure ids.

SetDialogue ({dialogue_object})

Usage: The message is sent to provide re-instantiated dialogue instances. The message is sent out
after the new role figure has been instantiated.
Senders: Mobility Manager
Receivers: Role Figure
Parameters: {dialogue_object}: list of dialogue objects

GetEFSMData ()

TAPAS platform messages and procedures Page 8

Usage: The message is sent to request EFSM data of a role figure.
Senders: Mobility Manager
Receivers: Role Figure
Parameters: None

EFSMData (curr_state, {curr_var}, {curr_msg})

Usage: The message is sent as a response to the message GetEFSMData.
Receivers: Mobility Manager
Parameters: curr_state: current state, {curr_var}: list of variables, which a variable is constituted by
(variable name, variable value), {curr_msg}: list of input messages, which a message is constituted
by (message ID, sender ID, receiver(s) ID, system time when composing the message, message
data)

SetEFSMData (curr_state, {curr_var}, {curr_msg})

Usage: The message is sent to provide a re-instantiated role figures with its previous EFSM data.
The message is sent out after the role figure has been instantiated.
Senders: Mobility Manager
Receivers: Role Figure
Parameters: curr_state: current state: {curr_var}: list of variables, {curr_msg}: list of input
messages

RoleFigureFailed (role_figure_id)

Usage: The message is sent to broadcast the death of a role figure.
Senders: Fault Diagnosis Manager
Receivers: Role Figures
Parameters: role_figure_id: a role figure id

RoleFigureSuspended (role_figure_id)

Usage: The message is to broadcast about the suspension of a role figure. The message is sent out
when a role figure is being moved
Senders: Mobility Manager
Receivers: Role Figures
Parameters: role_figure_id: a role figure id

RoleFigureContinued (old_role_figure_id, new_role_figure_id)

Usage: The message is broadcasted when a role figure has been re-instantiated after the death or the
suspension.
Senders: Mobility Manager, Fault Diagnosis Manager
Receivers: Role Figures
Parameters: old_role_figure_id: a dead role figure id, new_role_figure_id: a new instantiated role
figure id

Heartbeat ()

Usage: The message is sent to inform that a role figure itself is alive.
Senders: Role Figure
Receivers: Role Figures
Parameters: None

TAPAS platform messages and procedures Page 9

HeartbeatLost (role_figure_id)

Usage: The message is sent to inform Fault Diagnosis Manager that the Heartbeat message from a
cooperating role figure is lost.
Senders: Role Figure
Receivers: Fault Diagnosis Manager
Parameters: role_figure_id: a cooperating role figure id.

ConfirmAlive ()

Usage: The message is sent to check whether a role figure is still alive or not.
Senders: Fault Diagnosis Manager
Receivers: Role Figure
Parameters: None

Alive ()

Usage: The message is sent to confirm that a role figure itself is alive.
Senders: Role Figure
Receivers: Fault Diagnosis Manager
Parameters: None

GetNodeCapabilityRequest (node_id)

Usage: The message is sent to get capabilities of registered nodes.
Senders: Role Figures, Users
Receivers: Capability and Service Administration Manager
Parameters: node_id: IP address of a node

NodeCapability ({cp_mon_object})

Usage: The message is sent to provide information about capabilities of registered nodes.
Senders: Capability and Service Administration Manager
Receivers: Role Figures, Users
Parameters: {cp_mon_object}: list of monitored capabilities, which a monitored capability is
constituted by (cy_type, cp_param_list), where cp_param_list = {(cp_param, cp_param_value)},
and cp_type and cp_param are SNMP MIB OIDs.

GetCapableNode ({cp_mon_object})

Usage: The message is sent to get a registered node whose has required capabilities.
Senders: Role Figures, Users
Receivers: Capability Configuration Manager
Parameters: {cp_mon_object}: list of monitored capabilities

CapableNode (node_id)

Usage: The message is sent to provide IP address of a registered node whose has required
capabilities.
Senders: Capability Configuration Manager
Receivers: Role Figures, Users
Parameters: node_id: IP address of a node

TAPAS platform messages and procedures Page 10

StartServiceComponentRequest (service_component_id, specification_location, node_id)

Usage: The message is sent to request Deployment and Instantiation Manager to deploy and
instantiate a service component in a selected node.
Senders: Capability Configuration Manager
Receivers: Deployment and Instantiation Manager
Parameters: service_component_id: a service component id, specification_location: location of the
role manuscript on Web server, node_id: IP address of a selected node

StartServiceComponentResult (role_figure_id)

Usage: The message is sent as a response to the message StartServiceComponentRequest.
Senders: Deployment and Instantiation Manager
Receivers: Capability Configuration Manager
Parameters: role_figure_id: a role figure id

MonitoringCapabilityRequest (node_mon_object, monitoring_interval)

Usage: The message is sent to request the capability monitoring of a registered node.
Senders: Capability and Service Administration Manager, Main Monitoring Manager, Users
Receivers: Main Monitoring Manager, Intermediate Monitoring Manager
Parameters: node_mon_object: a monitored node object, which is constituted by (node_id,
{cp_mon_object}), monitoring_interval: monitoring time interval.

StopMonitorCapabilityRequest (node_id)

This message is not implemented yet. The purpose is to stop the capability monitoring on a node.

UpdateMonitoredCapability (node_mon_object)

Usage: The message is sent to update the current view of the monitored capabilities.
Senders: Intermediate Monitoring Manager
Receivers: Capability and Service Administration Manager
Parameters: node_mon_object: a monitored node object

InformMonitoringDomain (imm_id, domain_mon_object)

This message is not implemented yet. The purpose is to inform a monitoring domain under an
Intermediate Monitoring Manager to Mobility Manager. The parameter imm_id is the Intermediate
Monitoring Manager id, and domain_mon_object is a monitored domain object, which is
constituted by {node_mon_object}.

SetMonitoringDomain (domain_mon_object)

This message is not implemented yet. The purpose is to set a monitoring domain under an
Intermediate Monitoring Manager.

SetMonitoringDomainsUnderMainManager (mmm_mon_object)

This message is not implemented yet. The purpose is to set list of monitoring domains under a Main
Monitoring Manager. The parameter mmm_mon_object is a main manager monitoring object, which
is constituted by {(imm_id, domain_mon_object)}.

TAPAS platform messages and procedures Page 11

3. TAPAS core platform procedures

3.1 General

A procedure has the general format procedure_name (input_parameter_list, output_parameter_list)
An overview of the procedures and parameters are given in Table 2. A more detailed description of
the procedures is given in Sec 3.2.

Table 2. Procedure names and parameters

Procedure Names Input Parameters Output Parameters
plugInPlay
plugOutPlay
changePlay
plugInRole
plugOutRole
changeRole

play_name, play_version, local_location
play_name, play_version
play_name, play_version, local_location
node_id, service_component_id, specification_location
actor_id
actor_id, new_ service_component_id, new_specification_location

plug_in_play_result
plug_out_play_result
change_role_result
actor_id
plug_out_role_result
change_play_result

3.2 Procedures descriptions

plugInPlay ({play_name, play_version, local_location}, {play_in_play_result})

Usage: The procedure uploads a Java project (JAR file) of a play to Web server. After the JAR file
is uploaded to Web server, the play is registered. The role manuscripts in the play are also ready to
be downloaded and executed by actors.

Parameters: play_name: name of a play, play_version: version number of a play (for example 1.0),
local_location: physical local location of a JAR file to be uploaded, plug_in_play_result: a boolean
representing the procedure result

Conditions: There is no registered play with the same name.

Interactions: This procedure sends a message CheckPlayExistanceRequest to PlayAdm to check
whether there is a registered play with the same name.

• If there is no registered play with the same name, this procedure will get a message
PlayNonExistenceResponse. Then this procedure will upload the JAR file to Web server,
and it will send a message RegisterPlayRequest to PlayAdm to register the play.

• If there is a registered play with the same name, this procedure will get a message
PlayExistenceResponse. So that, this procedure stops processing.

Results:

• On success: A JAR file of a play is uploaded to Web server. The play is registered and it is
ready for use. This means from now the role manuscripts in the play can be downloaded and
executed by actors. The procedure returns output = true.

• On failure: A JAR file of a play is not uploaded to Web server. The play is not registered
and it is not for use. The procedure returns output = false.

plugOutPlay ({play_name, play_version}, {plug_out_play_result})

TAPAS platform messages and procedures Page 12

Usage: The procedure unregisters a play, and it removes an uploaded JAR file of the play from Web
server.

Parameters: play_name: name of a play, play_version: version number of play,
plug_out_play_result: a boolean representing the procedure result
Conditions: The play is not in use. It means that there is no actor executing the role manuscripts in
the play.

Interactions: This procedure sends a message CheckPlayInUseRequest to PlayAdm to check
whether a play is in use.

• If the play is not in use, this procedure will get a message PlayNotInUseResponse. Then this
procedure will send a message GetPlayLocationRequest to PlayAdm to get a current
location of the uploaded JAR file on Web server, and it will get a message
PlayLocationResponse. Finally, this procedure will send a message UnregisterPlayRequest
to PlayAdm, and it will remove the JAR file from Web server.

• If the play is in use, this procedure will get a message PlayInUseResponse. So that, this
procedure stops processing.

Results:

• On success: A play is unregistered, and its JAR file is removed from Web server. The
procedure returns output = true.

• On failure: A play is still registered and for use, and its JAR file is on Web server further.
The procedure returns output = false.

changePlay ({play_name, play_version, local_location}, {change_play_result})

Usage: The procedure re-uploads a JAR file of a registered play to Web server, and informs about
this new version of the play.

Parameters: play_name: name of a play, play_version: version number of a play, local_location:
physical local location of a JAR file to be uploaded, change_play_result: a boolean representing the
procedure result
Conditions: The play has been registered. A play can be changed and re-uploaded to Web server.
However, in case a play is in use, it depends on the nature of services and service components that
whether a new version of that play as well as the role manuscripts in that play can be applied
immediately or not.

Interactions: This procedure sends a message CheckPlayExistanceRequest to PlayAdm check
whether the play has been registered.

• If the play has been registered, this procedure will get a message PlayExistenceResponse.
Then this procedure will upload the JAR file to Web server. Finally, it will send a message
ChangePlayReport to PlayAdm to inform that a new version of the play is re-uploaded.

• If the play has not been registered, this procedure will get a message
PlayNonExistenceResponse. So that, this procedure stops processing.

TAPAS platform messages and procedures Page 13

Results:

• On success: A new version of a registered play is uploaded to Web server. PlayAdm is
aware of the new version. The procedure returns output = true.

• On failure: A new version of a registered play is not uploaded. The procedure returns output
= false.

plugInRole ({node_id, service_component_id, specification_location}, {actor_id})

Usage: The procedure starts a role figure in a selected node. It is to assign a role from a registered
play to an actor on the node.

Parameters: node_id: IP address of a selected node, service_component_id: a service component id,
specification_location: location of the role manuscript on Web server, actor_id: an actor id of
whom constitutes the role figure
Conditions: The play has been uploaded and registered.

Interactions: This procedure sends a message StartServiceComponentOnThisNodeRequest to
Director, which is executing in a selected node.

• If the play has been registered and the role exists in the play, this procedure will get a
message StartServiceComponentOnThisNodeSuccess.

• If the play has not been registered or the role does not exist, this procedure will get a
message StartServiceComponentOnThisNodeFailure.

Results:

• On success: An actor in a selected node is assigned a role. The actor automatically
downloads the role manuscript and starts executing the manuscript. It is also defined as the
actor plays the role, or the actor constitutes a role figure. The procedure returns the actor id.

• On failure: A role is not assigned to any actor. The procedure returns null.

plugOutRole ({actor_id}, {plug_out_role_result})

Usage: The procedure stops an actor playing a role.

Parameters: actor_id: an actor id, plug_out_role_result: a boolean representing the procedure result

Conditions: An actor exists.

Interactions: This procedure sends a message plugOutRoleFromActorRequest to Director in a node.

• If the actor exists, this procedure will get a message PlugOutRoleOnActorSuccess.

• If the actor does not exist, this procedure will get a message PlugOutRoleOnActorFailure.

Results:

• On success: An actor stops playing a role. The procedure returns output = true.

TAPAS platform messages and procedures Page 14

• On failure: An actor, which could be in another node, still plays a role. The procedure
returns output = false.

changeRole ({actor_id, new_service_component_id, new_specification_location},
{change_role_result})

Usage: The procedure makes an actor change from a current role to a new role.

Parameters: actor_id: the identification of an actor, new_service_component_id: a new service
component id, new_specification_location: location of the new role manuscript on Web server,
change_role_result: a boolean representing the procedure result

Conditions: The play, which is composed of the new role, has been uploaded and registered. Also,
an actor exists.

Interactions: This procedure sends a message ChangeRoleOnActorRequest to Director in a node.

• If the play has been registered, the role exists in the play and the actor exists, this procedure
will get a message ChangeRoleOnActorSuccess.

• If the play has not been registered, the role does not exist or the actor does not exist, this
procedure will get a message ChangeRoleOnActorFailure.

Results:

• On success: An actor starts playing a new role. The procedure returns output = true.

• On failure: An actor continues playing a current role. The procedure returns output = false.

