
Support Specification and Selection in TAPAS

Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa and Bjarne E. Helvik
Department of Telematics

Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway

{Finn.Arve.Aagesen, Chutiporn.Anutariya, Mazen.Malek.Shiaa, Bjarne.E.Helvik}@item.ntnu.no

Abstract

A theoretical framework for support specification
and selection in Plug-and-Play (PaP) architecture is pro-
posed with a representation, computation and reasoning
mechanism for semantic description and matching of sup-
port required by a particular PaP service system and
support offered by a running PaP system. By analysing
such given required and offered support, the framework
allows appropriate service system configurations, satisfy-
ing all the specified constraints and requirements, to be
automatically generated. Moreover, its integration with
optimisation rules, resource consumption specifications
and QoS measurement techniques can also lead to gen-
eration of optimal (re)configurations, suggesting which
node in the system should constitute which service com-
ponent, in order to achieve mandated performance levels
and at the same time be able to meet user satisfaction.

1 Introduction

TAPAS (Telecommunication Architecture for Plug
and Play Systems) [1] is based on generic actors in the
nodes of the network that can download manuscripts de-
fining roles to be played. However, the ability to play
roles depends on the defined required capability and the
matching offered capability in a node where an actor is
going to play. Examples of capabilities are processing
and communication resources such as CPU and transmis-
sion channels, standard equipment such as printers and
media handling devices, special equipment such as en-
crypting devices, and data such as user login and access
rights.

Besides matching of offered and required capabili-
ties, the status of the running system and the status re-
quired by a role have to be taken into consideration

A play defining functionality of a particular PaP ser-
vice system consists of several actors playing different
roles, each probably having requirements on both avail-
able capabilities and status, which are here denoted as

required support. Hence, such questions as “where to run
the play and what is the optimal configuration for the
play?” may arise. This paper focuses on development of a
solid XML-based framework for support specification and
selection in TAPAS with a well-established infrastructure
for reasoning, configuration and reconfiguration of the
system by employment of XML Declarative Description
(XDD) modelling language [4].

Sect. 2 introduces PaP systems and defines the con-
cepts of capabilities and status, Sect. 3 discusses signifi-
cant functions in support management, Sect. 4 proposes a
framework for support specification and selection a
support management function, Sect. 5 demonstrates the
mechanisms of the developed approach by means of
TeleSchool application example, and Sect. 6 concludes
and presents further research direction. Appendix recalls
fundamental definitions and concepts of the XDD theory.

2 Capabilities and Status

As illustrated by Figure 1, a PaP system consists of
PaP service systems, which are units related to some well-
defined functionality. A PaP service system can be de-
composed into service components. A service component
is realised by a role figure based on a role defined by a
manuscript and is executed by an actor.

A role figure, however, is realised in an executing
environment in a node and is utilising capabilities. A ca-
pability is an inherent property of a capability component.
These concepts of service components and capability
components reflect two different viewpoints of the PaP
system. A capability component may have several capa-
bilities. These capabilities are offered to actors which
constitute role-figures in various plays.

Basically, capabilities can be classified into:
• Functions: pure software or combined software/

hardware components used for performing par-
ticular tasks,

• Resources: hardware components with finite ca-
pacity, such as processing, storage and communi-
cation units,

 1

ServiceSystem

ServiceComponent

RoleFigure

Role

Play

Manuscript

Status

Node

CapabilityComponentActor

Capability
1

*

1

can_be

1
is_realized_by1

1

1 constitutes1

is_defined_by

1 1

uses

*

*

1

*

is_defined_by1

1

-executes*1

1

*

User
1

is_at

1

uses *

*

-has

*

*

1

behaves_according_to

*

offers *

*

has

*

*

has*
*

has*

*
has**

requires *

*requires

*

*

Figure 1. Basic PaP conceptual model.

negotiable

non-
negotiable

shared

exclusive

Fu
nc

tio
n

R
es

ou
rc

e

D
at

a Arra
ngem

en
t

Primitives

C
om

pl
ex

ity

Figure 2. Classification attributes of capabilities.

• Data: just data, the interpretation, validity and
life span of which depend on the context.

Note that the power of each capability function and
resource is measured by its respective QoS characteristics.

Besides these three primitives, capabilities can also
be classified by their complexities, i.e., whether they are
negotiable or not. For example, transmission function is a
negotiable capability, while access right data is not.
Moreover, capabilities can, by arrangement or use, be
exclusive or shared. For instance, transmission channels
and Web servers are by nature shared resources, a pass-
word is by nature exclusive information, and access rights
are exclusive or shared.

Figure 2 presents such a three-dimensional view of
capabilities.

While both capabilities and plays are specifications
of what can be done, status is, at a certain time instant, the
situation in a PaP system with respect to the actual num-

ber of nodes, playing plays, traffic situation, etc. Status
can both comprise observable counting measures, meas-
ures for QoS or calculated predicates related to these
counts and calculated measures. It reflects the resulting
state of the sytem, which cannot directly be changed and
negotiated.

Capabilities and status are here denoted as support.
Roles can both have requirements on available capabili-
ties and status (i.e., requirements on support). A support
requirement of a play is therefore the resulting require-
ments of the roles constituting it.

3 Support Management

Figure 3 gives an overview picture of support man-
agement functionality, which comprises the following
main functions:

• Capability Installation: for installation and de-
installation of capability components,

• Capability Handling: for updating a view of of-
fered capabilities and for dynamic capability al-
location,

• Status Monitoring: for provision of a view of of-
fered status,

• Support Selection: for determination and optimi-
sation of a PaP service system configuration by
analysing support offered by the executing PaP
system, support required by a play to be installed
as well as QoS of the resulting system, and

• Service Installation: for deployment and invoca-
tion of a service system.

Teleservice
providing PaP
and Non-PaP

Capability
System

Support
Selection

Capability
Installation

Capabilities
offered

Not installed
Capability

These are models defining the Plays
need for capabilities and status.
(Service View)

Status
Monitoring

Status

Capability
Handler

Service
Definition

Play
Manuscripts

Play
Status

required

Play
Capabilities

required

Node

These are models defining
the offered status and
installed capabilities
(Node View)

Play
Manuscripts

Play
Status

required

Play
Capabilities

required

Play
Manuscripts

Play
Status

required

Play
Capabilities

required

Service
Installation

Figure 3. Support management functionality.

 2

Support Selection Engine

Ontology

Extends

PaP-System-Specific
Support Ontology I

Instance of Uses

XML
clauses

XML-based
ontology
language

PaP-System-Specific
Support Ontology II

General Support
Ontology

Node

…

Capability1

Capabilityn

Role

…
Support

Requirementn

Support

Requirement1

PaP System

…

Status1

Statusn

Instance of

Play Configuration

Relationships
among Roles

Constraints
on Roles

PaP System
Configuration

XML-based
ontology
language

XML-based
ontology
language

XML
clauses

Figure 4. A framework for support specification

and selection.

With emphasis on the support selection function, a
framework for modelling support offered by a system and
support required by a play and for generating appropriate
system configurations will be outlined next.

4 Support Specification and Selection

4.1 Overview of the Framework

Figure 4 depicts a framework for support specifica-
tion and selection in TAPAS. It defines General Support
Ontology as a top-level conceptual model for semantic
description of capabilities and status of PaP systems, ena-
bling each application-specific PaP system to extend it by
introducing and defining new domain-specific capabili-
ties, status as well as their properties and relationships.
Therefore, a capability of each node in a PaP system to-
gether with the system’s status can be immediately de-
scribed as instances of the ontology. Both ontology defi-
nitions and instances can be represented by any XML-
based ontology modelling language, such as UML class
and object diagrams or DARPA Agent Markup Language
+ Ontology Inference Layer (DAML+OIL) [2]. However,

these ontology languages merely provide a set of prede-
fined modelling constructs, such as subclassOf, minCar-
dinality, maxCardinality, while lacking an ability to rep-
resent inherent interrelationships and complex constraints
on elements in a domain. Thus, their mechanisms are in-
sufficient for describing support requirement and play
configuration. XML Declarative Description (XDD) the-
ory [4] an expressive XML-based knowledge represen-
tation language with well-defined semantics and reason-
ing mechanisms (cf. Appendix for a review of the the-
ory) is employed to overcome this limitation.

Given a play comprising various roles, XML clauses
can be employed not only to represent support require-
ments of each individual role, but also to describe the
play’s compositional constraints as well as relationships
among those roles. Selection of nodes playing particular
roles is also materialized by appropriate formalization of
XML clauses.

In the next subsections, mechanisms for modelling
each component in the framework and for computing a
list of possible PaP service system configurations will be
elaborated.

4.2 Support Ontology

-complexity : ComplexityType
-arrangement : ArrangementType
-updatable : Boolean

Capability

QoSCharacteristic

+SHARED
+EXCLUSIVE

?enumeration?
ArrangementType

has1

0..*

has1
0..*

Status +NEGOTIABLE
+NON-NEGOTIABLE

?enumeration?
ComplexityType

ResourceFunction
-validity : Boolean

Data

Support

0..*

utilizes

1..*

Node

offers1

1..*

Figure 5. General support ontology.

By means of UML class diagrams, Figure 5 presents
the defined general support ontology. However, due to
space limitation, its corresponding representation in XML
Metadata Interchange (XMI) [3] format will not be given.
The ontology specifies that Status and Capability are sub-
classes of Support, and a node in a system may offer one or
more capabilities. Capability has three important attributes:
complexity, arrangement and updatable, used for characteris-
ing whether a capability is negotiable or non-negotiable,
shared or exclusive, and updatable or not, respectively.
Moreover, as discussed previously, Capability can be spe-

 3

cialised into the three subclasses: Function, Resource and
Data. Function may utilize zero or more Resources, and both
Function and Resource may have certain set of QoSCharacter-
istics. Data, on the other hand, has a boolean attribute: valid-
ity for specifying whether the data is valid or not.

Each specific PaP system can extend this general
support ontology for definition of its own conceptual sup-
port ontology. An example of such ontology will be seen
in next section. Moreover, it should be noted that instead
of defining a new ontology for every PaP service system,
a standard, predefined one, if available, such as those
various IETF MIBs, can also be shared and reused.

4.3 Capability Specification

Specifications of capabilities offered by nodes in a
system are simply modelled as instances of the system’s
support ontology. If UML class diagram is employed to
model a support ontology, these capability specifications
are readily described by object diagrams comprising sets
of related instances or objects of respective capability
classes with appropriate initialised attribute values.

Table 1. PaP support specification and selection.

Modelling Components Modelled by

1. Support Ontology XML-based ontology language
2. Capability Specification XML-based ontology language
3. Status Specification XML-based ontology language
4. Support Requirement

Specification
XML clauses

5. Play Configuration
Specification

XML clauses

** Support Specification and Selection is modelled as an
XDD description, comprising XML documents and XML
clauses representing these components. The declarative seman-
tics of the description yields possible system configurations.

XML, XML Schema, NameSpace

XDD

XML-based Ontology Language
e.g. UML, RDF or DAML+OIL

(4)
Support

Requirement
Specification

(1) Support Ontologies

(2)
Capability

Specification

(3)
Status

Specification

(5)
Play Configuration

Specification

Figure 6. Representation language layer.

4.4 Status Specification

Similar to capability specification, status of a system
at a certain time can also be described by instances of the
system’s support ontology.

4.5 Support Requirement Specification

Support requirement specification of a certain role in
a play is expressed by appropriate XML clauses, the head
of which specify the role to be played and the body of
which describe the required system status and the capa-
bilities of a node for fulfilling such a role.

4.6 Play Configuration Specification

A play configuration specification is represented as a
corresponding set of XML clauses, the head of which
identify components of the play, while the body of which
describe the configuration restrictions.

As summarized by Table 1 and Figure 6, support
specification and selection in a PaP system is modelled as
an XDD description, the meaning of which yields a list of
possible configurations of the system, stating which node
could play which role.

5 Example: TeleSchool Application

This section demonstrates the proposed mechanisms
for support specification and selection by means of
TeleSchool application example. Assume that a
TeleSchool play comprises a set of manuscripts describ-
ing the behaviours and actions of the three roles:

• TeleSchool Server: providing real-time lecture
and archived lecture services,

• Real-time Client: allowing students to participate
available real-time lectures,

• Archived Lecture Client: providing facilities for
students to go through archived lectures.

Moreover, assume that a TeleSchool play configuration
must satisfy the constraints:

• A node in the application can execute zero ore
more actors, each possibly constituting different
role figures;

• There exist exactly a dedicated TeleSchool server
and zero or more clients;

5.1 Capability Ontology

Based on the defined general support ontology of
Figure 5, Figure 7 models a system-specific capability
ontology, specifying TeleSchool-related concept hierar-
chies of the three capability types: resources, functions
and data, and also identifies their inherent properties and
QoS characteristics. Note that the given ontology is only
for a demonstration purpose and does not present a com-

 4

plete model for TeleSchool system, i.e., such capabilities
as transmission channels, CPU, encryption function, for
instance, are omitted.

In this ontology example, there are two subclasses of
Function: TransmissionFunction and ProcessingFunction. The
former has two QoSCharacteristics: Delay and Bandwidth,
while the latter is specialised into MediaProcessing, which is
further specialised into VDOCapture and VDOPlayer. VDOCap-
ture is defined as a negotiable and exclusive capability
with three QoSCharacteristics: CaptureRate (how many
frames per second), CaptureResolution, and AudioCaptureQual-
ity (what are the offered bitQuantisation and kHzSamplin-
gRate).

Focusing on Resource, the ontology defines Physical-
Storage as a type of Resource, having DiskCapacity QoS
characteristic. Harddisk is here defined as a subclass of
PhysicalStorage; hence it will also derive DiskCapacity QoS
characteristic from its superclass.

IPAddress and UserRelatedData are defined as Capabil-
ity Data. User and UserGroup are UserRelatedData with a bi-
nary relation, specifying that a User may be a member of
one or more UserGroups.

5.2 Capability Specification

Figure 8 gives a specification of capabilities offered
by the three nodes n1, n2 and n3 in the system.

Function

TransmissionFunction ProcessingFunction

MediaProcessing

-complexity = NEGOTIABLE
-arrangement = EXCLUSIVE

VDOCapture VDOPlayer

Resource

PhysicalStorage

Harddisk

-max : int
-min : int
-unit : String

CaptureRate

QoSCharacteristic

-horizontal : int
-vertical : int

CaptureResolution
-bitQuantisation : int
-kHzSamplingRate : int

AudioCaptureQuality
-size : float
-freespace : float
-usedspace : float
-unit : String

DiskCapacity

-value
-unit

Bandwidth
-average : int
-min : int
-max : int
-unit : String

Delay

has1
1

has1
1

has

1

1 has11

has

1
1

has

1

1

-ip : String
-domainName : String
-arrangement : ArrangementType = EXCLUSIVE

IPAddress

-validity : Boolean
Data

+id : String
+description : String

UserRelatedData

-name : String
-password : String
-expirydate : Date

User
UserGroup

0..*

is_in

1..*
Figure 7. UML-based TeleSchool capability ontology.

n1 : Node

n1-vdo: VDOCapture

offers

max = 30
min = 1
unit = "fps"

n1-capturerate : CaptureRate

horizontal = 640
vertical = 480

n1-capres : CaptureResolution
bitQuantisation = 32
kHzSamplingRate = 44

n1-bit : AudioCaptureQuality

has

n1_harddisk : Harddisk

size = 100
freespace = 60
usedspace = 40
unit = "GB"

n1-diskcapacity : DiskCapacity

offers

has

ip = 129.241.200.100
domainName = n1.teleschool.no
arrangementType = EXCLUSIVE

n1-ip : IPAddress

offers

has

offers

has

n1-transmission: TransmissionFunction
offers

value = 100
unit = "Mbps"

n1-bandwidht : Bandwidth

has

name = john
password = ***
expirydate = 31/12/2002

n1-user : User

is_in

-validity = true
-id = "Teacher"
-description = "This group is..."

teacher : UserGroup

n2 : Node

n2-vdo : VDOPlayer

offers

ip = 129.241.200.150
domainName = n2.teleschool.no
arrangementType = EXCLUSIVE

n2-ip : IPAddress
offers offers

n2-transmission : TransmissionFunction

offers

value = 10
unit = "Mbps"

n2-bandwidht : Bandwidth

has

name = jack
password = ***
expirydate = 31/12/2002

n2-user : User

is_in

-validity = true
-id = "FullTimeStudent"
-description = "This group is..."

fulltimeStudent : UserGroup

n3 : Node

n3-vdo : VDOPlayer

offers

ip = 129.241.200.155
domainName = n3.teleschool.no
arrangementType = EXCLUSIVE

n3-ip : IPAddress
offers

offers

n3-transmission : TransmissionFunction

offers

value = 10
unit = "Mbps"

n3-bandwidht : Bandwidth

has

name = james
password = ***
expirydate = 31/12/2002

n3-user : User

is_in

-validity = true
-id = "HalfTimeStudent"
-description = "This group is..."

halftimeStudent : UserGroup

Figure 8. Offered capability specification.

5.3 Capability Requirement Specification

XML clauses formulating capability requirements of the
three roles in TeleSchool system will be given. However,
for ease of understanding, these clauses will be presented
graphically using UML class diagram notations instead of
encoding in UML-XMI format. Recall that variables in
XML clauses are preceded with ‘$’, followed by their
types and their names. For example, $S:usergroup denotes
a String-variable instantiable into a string, while
$E:userAttrs an Expression-variable instantiable into a list
of UML classes, objects or attributes. When it is clear
from the context, variable types may be omitted. More-
over, those variables beginning with ‘$?’ represent
anonymous variables. Recall also that the head of a clause
intuitively models the consequence part, while the body
describes the antecedence or the condition part.

 5

$x : Node

$?: VDOCapture

offers

max = $S:maxCapRate
min = $?
unit = "fps"

$? : CaptureRate

is_in

horizontal = $S:horizontal
vertical = $S:vertical

$? : CaptureResolution

[$S:maxCapRate >= 24]
[$S:horizontal >= 640]
[$S:vertical >= 480]
[$S:bit >= 16]
[$S:sampling >= 44]
[$S:freespace > 50]
[$S:bandwidth >= 10]
[$S:date >= $S:todayDate]

bitQuantisation = $S:bit
kHzSamplingRate = $S:sampling

$? : AudioCaptureQuality

has

-expiryDate = $S:date
-$E:userAttrs

$?: User $?: Harddisk

size = $?
freespace = $S:freespace
usedspace = $?
unit = "GB"

$? : DiskCapacity

offers

has

ip = $?
domainName = $?
arrangementType = EXCLUSIVE

$? : IPAddress

offers

-expiryDate = $S:date
-$E:userAttrs

$?: User

has

offers

$x : Node teleSchoolServer : RolecanPlay

has

$?: TransmissionFunction

offers

value = $S:bandwidth
unit = "Mbps"

$? : Bandwidth

has

-id = "Teacher"
-$E:userGropuAttrs

$?: UserGroup

(a) Head of the clause

Figure 9. Requirement for TeleSchoolServer Role.

The clause of Figure 9 specifies a capability re-
quirement for the teleSchoolServer role, which can be read
as follows:

(a) Any instance $x of the class Node can play the
teleSchoolServer role,

if
(b) $x offers the following capabilities

• a logging-on User,
• an IPAddress,
• a VDOCapture function,
• a Transmission function,
• a Harddisk,

(c) the logging-on User is a member of the Teacher-
Group, and

(d) the following conditions on properties and QoS
characteristics of certain capabilities are satisfied:

$x : Node

$?: VDOPlayer

offers

is_in

[$S:bandwidth >= 10]
[$S:date >= $S:todayDate]

-expiryDate = $S:date
-$E:userAttrs

$?: User

ip = $?
domainName = $?
arrangementType = EXCLUSIVE

$? : IPAddress

offers

-expiryDate = $S:date
-$E:userAttrs

$?: User

offers

$x : Node realTimeLectureClient : RolecanPlay

$?: TransmissionFunction

offers

value = $S:bandwidth
unit = "Mbps"

$? : Bandwidth

has

-id = "FullTimeStudent"
-$E:userGropuAttrs

$?: UserGroup

(b)

B
od

y
of

 th
e

cl
au

se

Figure 10. Requirement for RealTimeClient Role.

$x : Node

$?: VDOPlayer

offers

is_in

[$S:bandwidth >= 10]
[$S:date >= $S:todayDate]
isMember($S:usergroup, {“FullTimeStudent”, “HalfTimeStudent”}

-expiryDate = $S:date
-$E:userAttrs

$?: User

ip = $?
domainName = $?
arrangementType = EXCLUSIVE

$? : IPAddress

offers

-expiryDate = $S:date
-$E:userAttrs

$?: User

offers

$x : Node archivedLectureClient : RolecanPlay

$?: TransmissionFunction

offers

value = $S:bandwidth
unit = "Mbps"

$? : Bandwidth

has

-id = $S:usergroup
-$E:userGropuAttrs

$?: UserGroup

(c)

(d)

Figure 11. Requirement for ArchivedLectureClient Role.

• [$S:maxCapRate >= 24] : the VDOCapture func-
tion has at least 24 frame/sec. capture rate,

• [$S:horizontal >= 640] and [$S:vertical >= 480] :
the horizontal and vertical dimension (resolu-
tion) of the VDOCapture function are at least
640 and 480, respectively,

• [$S:bit >= 16] and [$S:sampling >= 44] : the cap-
tured audio quality is at least at 16-bit quanti-
sation and 44 kHz sampling-rate,

 6

• [$S:bandwidth >= 10] : the data transmission
capacity is greater than or equal to 10 Mbps,

• [$S:freespace > 50] : the Harddisk has more than
50 GB free disk-space,

• [$S:date >= $S:todayDate] : the user account has
not yet been expired.

The clauses given by Figures 10 and 11, on the other
hand, model requirements for the realTimeClient and ar-
chivedLectureClient roles, respectively, by restricting that
any node $x can constitute such a role, if it has an IPAd-
dress, a VDOPlayer function, a Transmission function with at
least 10 Mbps, and an unexpired User account. Moreover,
to play the realTimeClient role, the logging-on User account
must be a member of FullTimeStudent group, while the ar-
chivedLectureClient demands that the User must be a Full-
TimeStudent or HalfTimeStudent.

5.4 Play Configuration Specification

Figure 12 formulates TeleSchool play constraints.
The head of the clause C1 defines that a play consists of
three roles: teleSchoolServer, realTimeClient and archivedLec-
tureClient, where there exist

• exactly one node, represented by $x, constituting
the teleSchoolServer role,

• zero or more nodes, represented by $E:realTime-
ClientNodes, playing the realTimeClient role, and

• zero or more nodes, represented by $E:archived-
LectureClientNodes, playing the archivedLectureClient
role.

The body of C1 constrains that such node $x must be
able to play the teleSchoolServer role (i.e., $x must satisfy
all of its capability requirements, defined by the clause of
Figure 9).

The constraints notMember($x, $E:realTimeClientNodes)
and notMember($x, $E:archivvedLectureClientNodes) ensure
that $x will not play other roles, since it must be dedicated
to the teleSchoolServer role.

The configuration of the set of nodes represented by
$E:realTimeClientNodes and $E:archivedLectureClientNodes will
be further restricted by the clauses C2 – C6. These clauses
specify that each node in $E:realTimeClientNodes and
$E:archivedLectureClientNodes must satisfy the requirements
of the realTimeClient and archivedLectureClient roles, defined
by the clauses of Figures 10 and 11, respectively.

5.5 Play Configuration Result

Let an XDD description D comprise XML docu-
ments and XML clauses corresponding to those specifica-
tions given by Figures 5, 7–12. According to the defini-
tion of the declarative semantics of XDD descriptions, the
meaning of the description D yields a list of possible con-
figurations for the TeleSchool play. Figure 13 presents
three of them. Configuration 1, for example, specifies that

the node n1 plays the teleSchoolServer role, n2 realTimeClient,
and n3 archivedLectureClient.

teleSchool : PlayConfiguration

$x : Node $E:archivedLectureClientNodes

$x : Node teleSchoolServer : Role

canPlay

notMember($x, $E:realTimeClientNodes)
notMember($x, $E:archivedLectureClientNodes)

$E:realTimeClientNodes

$E:realTimeClientNodesSetOfRealTimeClientNodes

$x : Node

SetOfRealTimeClientNodes

$E:otherNodes

$x : Node realTimeClient : Role

canPlay

C1:

teleSchoolServer : Role

realised_by

realTimeClient : Role archivedLectureClient : Role

realised_by realised_by

setofArchivedLectureClientNodes $E:archivedLectureClientNodes

SetOfRealTimeClientNodes $E:otherNodes

C2:

SetOfRealTimeClientNodesC3:

$x : Node $E:otherNodes

$x : Node

$E:otherNodes

C4: SetOfArchivedLectureClientNodes

SetOfArchivedLectureClientNodes

archivedLectureClient : RolecanPlay

C5: SetOfArchivedLectureClientNodes

Figure 12. Play configuration specification.

 7

teleSchool : PlayConfiguration

n1 : Node

teleSchoolServer : Role

realised_by

realTimeClient : Role

realised_by realised_by

n2 : Node n3 : Node

archivedLectureClient : Role

Configuration 1

teleSchool : PlayConfiguration

n1 : Node

teleSchoolServer : Role

realised_by

realTimeClient : Role

realised_by realised_by

n2 : Node n3 : Node

archivedLectureClient : Role

Configuration 2

teleSchool : PlayConfiguration

n1 : Node

teleSchoolServer : Role

realised_by

realTimeClient : Role

realised_by realised_by

n2 : Node n3 : Node

archivedLectureClient : Role

Configuration 3

n2 : Node

realised_by

Figure 13. Examples of obtained configurations for

TeleSchool play.

6 Conclusions

The paper has outlined an XDD-based framework for
support specification and selection in TAPAS, which can
formally and uniformly model capabilities and status of-
fered by a running PaP system as well as those required
by a play in terms of XDD descriptions. In addition, the
framework is equipped with a computation and reasoning
mechanism, thus allowing derivation of appropriate play
configurations, meeting all the requirements and con-
straints of a play.

Due to its generality, flexibility and expressiveness,
the framework can be extended by a mechanism for re-
trieval of an optimal (re)configuration, enabling a system
to dynamically and automatically fine-tune itself to best
handle changing environments. Intuitively, such a mecha-
nism demands abilities to

• formulate play optimisation rules,
• describe, for each role, its resource consumption,
• measure the QoS of the resulting configuration.

Elaboration of such interesting research is underway, and
a prototype system demonstrating the efficiency and ef-
fectiveness of the proposed framework is developed.

References

1. F. A. Aagesen, B. E. Helvik, U. Johansen and H. Meling.
Plug and Play for Telecommunication Functionality: Ar-
chitecture and Demonstration Issues. Proc. Int’l Conf. In-
formation Technology for the New Millennium (IConIT),
Thammasat University, Bangkok, Thailand, May 2001.

2. J. Hendler and D. McGuinness. The DARPA Agent
Markup Language. IEEE Intelligent Systems 15(2):72–73,
Nov./Dec. 2000.

3. Object Management Group. XML Metadata Interchange
(XMI) Specification, v1.2, Jan. 2002 [http://www.omg.org/
technology/documents/formal/xmi.htm]

4. V. Wuwongse, C. Anutariya, K. Akama and E. Nantajee-
warawat. XML Declarative Description (XDD): A Lan-
guage for the Semantic Web, IEEE Intelligent Systems,
16(3):54–65, May/June 2001.

Appendix

XML Declarative Description (XDD) [4] is an XML-
based knowledge representation, which extends ordinary,
well-formed XML elements by incorporation of variables
for an enhancement of expressive power and representa-
tion of implicit information into so called XML expres-
sions. Ordinary XML elements—XML expressions with-
out variable—are called ground XML expressions. Every
component of an XML expression can contain variables,
e.g., its expression or a sequence of sub-expressions (E-
variables), tag names or attribute names (N-variables),
strings or literal contents (S-variables), pairs of attributes
and values (P-variables) and some partial structures (I-
variables). Every variable is prefixed by ‘$T:’, where T
denotes its type; for example, $S:value and $E:expression
are S- and E-variables, which can be specialized into a
string or a sequence of XML expressions, respectively.

An XDD description is a set of XML clauses of the
form:

H ← B1, … , Bm, β1, …, βn,
where m, n ≥ 0, H and the Bi are XML expressions, and
each of the βi is a predefined XML constraint—useful for
defining a restriction on XML expressions or their com-
ponents. The XML expression H is called the head, the
set {B1, … , Bm, β1, …, βn} the body of the clause. When
the body is empty, such a clause is referred to as an XML
unit clause, and the symbol ‘←’ will often be omitted;
hence, an XML element or document can be mapped di-
rectly onto a ground XML unit clause.

Intuitively, given an XDD description D, its meaning
is the set of all XML elements which are directly de-
scribed by and are derivable from the unit and non-unit
clauses in D, respectively.

 8

	Abstract
	Introduction
	Capabilities and Status
	Support Management
	Support Specification and Selection
	Overview of the Framework
	Support Ontology
	Capability Specification
	Status Specification
	Support Requirement Specification
	Play Configuration Specification

	Example: TeleSchool Application
	Capability Ontology
	Capability Specification
	Capability Requirement Specification
	Play Configuration Specification
	Play Configuration Result

	Conclusions
	References
	Appendix

