

Policy-based Adaptable Service Systems Architecture

Paramai Supadulchai and Finn Arve Aagesen
Department of Telematics

Norwegian University of Science and Technology (NTNU)
N7491 Trondheim, Norway

paramai@item.ntnu.no, finnarve@item.ntnu.no

Abstract

This paper presents a policy-based architecture for

adaptable service systems based on the combination of
Reasoning Machines and Extended Finite State
Machines. Policies are introduced to obtain flexibility
with respect to specification and execution of adaptable
service systems that give high performance over a range
of system status values. The presented architecture
covers three aspects: service system framework,
adaptation mechanisms and data model. The adaptation
mechanisms can be based on static or dynamic policy
systems. Static policy systems have a non-changeable
set of policies, Dynamic policy systems have a changea-
ble set of policies, which are managed by policies at a
higher level. The data model for the reasoning machine
functionality is based on the rule-based reasoning
language “XML Equivalent Transformation” (XET).
The capability configuration mangement of a service
system with runtime simulation results based on the
proposed architecture is presented with the intention to
illustrate the use of the architecture and discuss the
potential advantages of using dynamic policies.

1. Introduction

Networked service systems are considered. Servic-
es are realized by the structural and behavioral arrange-
ment of service components, which by their inter-
working provide a service in the role of a service
provider to a service user. Service components are
executed as software components in nodes, which are
physical processing units such as servers, routers,
switches and user terminals.

An adaptable service system is a service system
which is able to adapt dynamically to changes in time
and position related to users, nodes, status of capability
and service performance measures, changed service
requirements and policies.

A capability is an inherent property of a node or a
user, which defines the ability to do something.
Capabilities can be classified into resources, functions
and data. A capability in a node is a feature available to

implement services. Examples are CPU, memory,
transmission capacity of connected transmission links,
available special hardware, and available programs and
data. A capability of a user is the feature that makes the
user capable of using services. Capability performance
measures are the set of variables used for the perfor-
mance monitoring and management of capabilities.
Capability performance measures reflect the capabilities
with respect to being idle or allocated, available
capacity, load etc.

Service performance measures are the set of va-
riables used for the performance monitoring and
management of the operation of the service system.
These can be measures reflecting the state of a service
system with respect to the number of active service
components as well as Quality of Service (QoS)
measures. Capability and service performance measures
represent performance measures in two different
viewpoints: the network view, which considers the
concrete physical elements and capabilities and the
service view, which consider the abstract service
elements constituting the service.

Status is the present value of a capability (capability
status) or a service performance measure (service
status). The total set of status measures is denoted as
system status, which then is the sum of capability status
and service status. Service components will have
requirement with respect to system status.

The software mechanisms used for implementing
the functionality of the service components of adaptable
service systems must be flexible and powerful. Service
components based on the classical EFSM (Extended
Finite State Machine) approach can be flexibly executed
by using generic EFSM executing software components
that are able to download and execute different EFSM
based specifications. The TAPAS architecture [1] has, in
addition to a service and network view defined above, a
play view that realizes this feature. In TAPAS the
generic software components are denoted as Actors,
inspired by the actors in the theatre. Actors are able to
play various roles specified in EFSM-based manuscripts
that are dynamically downloaded.

In addition to this type of flexibility constituted by
Actors that are able to play various EFSM-based

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

specifications, the EFSM-based functionality can be
supplemented by Reasoning Machine (RM)-based
functionality, which makes policy-based specification
and operation possible. “Policies represent externalized
logic that can determine the behavior of the managed
systems” [2]. In this paper a policy is technically defined
as a set of rules with related actions. A policy system is
a set of policies, and an RM-based functionality is using
a policy system to manage the behavior of a target
system. A static policy system has a non-changeable set
of rules and actions, while a dynamic policy system has
a changeable set of rules and actions. The target system
for a policy system can be another policy system, so that
one policy system can be controlled by another policy
system. The dynamic policy system is managed by
control rules and actions constituting a policy system at
a higher level.

 The EFSM approach needs careful specification of
all possible events. Policy-based software is based on
rules, and has a specification style, which is expressive
and flexible. Human defined procedures at both business
and customer service levels are often more easily
expressed as policies rather than expressed as EFSMs.
This is because the expressiveness and the flexibility of
rules are often more directly applicable than EFSMs. In
addition to being used at business management and
customer service provision levels, rules can also be at
the service system and service component level as a
supplement to the use of EFSMs. Software functionality
based on policy-based specifications, however, also
needs to be appropriately specified and validated. We
are not claiming that validation is easier for policy-
based specification than for EFSM-based specifications.
The validation aspect, however, is outside the scope of
this paper.

In general, adaptation needs appropriate mechan-
isms to guarantee the wanted results. Stable feedback
loops [3], which control the performance, are needed.
As the capabilities are limited, an adaptable system
needs to limit the access to the system, and there must
also be priority mechanisms that give priority to users
which are willing to pay more and/or are in a higher
need in situations with lack of capabilities. Policy-based
adaptable systems can be based on static or dynamic
policies. In the static case, the feedback loop is related
to the appropriate rules and actions. In the dynamic case,
the system also must have some feedback mechanism
related to policy selection. As a basis for the policy
selection, the system must have goals, goodness criteria
and also the ability to estimate or evaluate the conse-
quences of the use of a policy.

The issues of policy-based adaptable service system
architecture are in this paper classified into 3 main

aspects: A) service system framework, B) adaptation
mechanism, C) data model.

The service system framework issues can be classi-
fied further as: 1) general component structure, 2)
application domain for the RM functionality, 3) the
integration of the RM functionality in the component
structure, and 4) reasoning procedure. The reasoning
procedure is the procedure applied by RM to select
actions to be applied. In the context of this paper the
application domain for the RM functionality is classified
as follows:

i) A traditional procedural service for an EFSM-based
service components to take decisions not involving
the management of system status,

ii) The initial capability configuration of the service
system according to the capability status require-
ments of the EFSM components of a service system,

iii) The adaptation of the behavior of service systems
and/or EFSM-based service components involving
the management of system status. This also includes
capability reconfiguration based on capability and
service status requirements,

iv) The dynamic change of the policies of the policies
used for the items i)-iii) above
The adaptation mechanism aspect (B) concerns the

use of the appropriate policies to control the service
systems when it is entering a state where RM functional-
ity is needed. The data model aspect (C) concerns all
representation of data and functionality related to the
RM functionality.

The papers [1] and [4], have focus on the aspect C)
applied on the issues i) and ii) of the application domain
for reasoning only. This paper comprises all issues of the
aspects A)-C) as defined above.

Section 2 discusses related work. Section 3 presents
a model for a service system framework, Section 4
discusses policy-based adaptation mechanism and
Section 5 presents the data model used for the RM-based
functionality. Section 6 presents four scenarios related to
capability configuration management of a music video
on-demand service to illustrate the use of the proposed
policy-based service system architecture, and the
potential advantages of using dynamic policies. Section
7 gives summary and conclusions.

2. Related work

Most of recent works related to policy-based adapt-
able service systems focuses on the aspects A) and B) as
defined in Section 1. Examples are [5], [6], [7], which
are Garlan et al.’s Rainbow architecture for self-
adaptation, Samaan and Karmouch’s autonomous policy-

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

based management framework and Narsi et al.’s
learning techniques. A work that support the aspect C),
PMAC by Agrawal et al. [2], uses Autonomic Compu-
ting Policy Language (ACPL) as a generic data model,
which is analogous to our XML Equivalent Transforma-
tion (XET). However, this work has a weak focus on the
aspects A) and B).

Considering the application domain for the use of
policies, the application domain of [5] is preliminary
aimed at static policies. The application domains of [6]
and [7] are both static and dynamic policies.

The architecture presented in this paper has the
focus on all aspects A)-C). The service system frame-
work permits the combination of both EFSM and the
RM functionality. Considering the dynamic policy, i.e.
the rule-based modification of the policy managing the
service system (See Sections 4), the system’s policy can
be composed at run-time based on evaluation criteria,
reference inputs and feedbacks. Unlike [6] and [7], the
presented architecture evaluates and composes the best
policy based on broad set of evaluation criteria, which
can be history-based, prediction-based, or logic-based.
Income functions are used as reference inputs, while the
feedbacks are system performance measures.

3. Service System Framework
3.1 General component structure

An executing service system consists of executing

service components. An executing service component is
an instance of a service component type, which in the
context of this paper is modeled by some combination of
EFSM type and RM type. A service component can be a
pure EFSM or some combination of EFSM and RM
based functionality. The main role of the EFSM
functionality is to maintain the state of the service
system represented as EFSM states and variables (see
below), while the main role of the RM functionality is to

take decisions. The interaction between the RM
functionality and the EFSMs will be discussed in Section
3.2.

The service components will have requirements
with respect to capabilities and capability status to be
able to perform their intended functionality (Figure 1).
As a basis for the optimal adaptation, service level
agreements are needed between the service users and the
service provider. The service provider view of this
service level agreement can in this context be considered
as a part of an executing service component. A number
of QoS priority levels can exist. The agreement can
contain elements such as: 1) agreed QoS level, required
capabilities, 2) required service status 3) payment for the
service in case of normal service and 4) payment for the
service in case of reduced service.

The following concepts are defined:
E Functionality set of an EFSM type
Ê Functionality set of an EFSM instance
R Functionality set of a RM type
R̂ Functionality set of a RM instance
C Capability performance measures set

RĈ Required capability status set for an EFSM
based service component type

IĈ Inherent capability status set of an executing
EFSM based service components

AĈ Status set of available capabilities in nodes
S Service performance measures set

RŜ Required service status set for an EFSM
based service component type

IŜ Inherent service status set of an executing
EFSM based service component

 I Income functions set for the service compo-
nents constituting a service.

The set of requirements related to capability and
service performance measures are denoted as required
capability and service status, respectively. The status of
capabilities and service performance measures of the
executing system are similarly denoted as inherent
capability and service status. The income functions will
depend on the system status.

An EFSM type E is defined as:

E ≡ { SM, SI, V, P, M(P), O(P), FS, FO, FV }, (1)

where SM is the set of states, SI is the initial state,
V is a set of variables, P is a set of parameters, M(P)
is a set of input signal with parameters, O(P) is a set of
output signal with parameters, FS is the state transition
function (FS = S x M(P) x V), FO is output function,
(FO = S x M(P) x V) and FV are the functions and
tasks performed during a specific state transition such as

Figure 1 - Service System – General Component Structure

Is the state of Capability
Performance

Measure

 Capability
Status

requires

is of

 Service
Component

Type

 Service
Component

Instance

 Service
Performance

Measure

 Service
Status

Is the state of

requires

has

has

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

computation on local data, communication initialization,
database access, etc.

A RM type R is defined as:

R ≡ { Q, F, P, T, E, Σ } (2a)
P ≡ { X, A }, (2b)

where Q is the set of messages, F is a generic rea-
soning procedure, P is a policy system which consists
of a set of rules X and a set of actions A, T is a set of
system constraints and E is a set of status data. The
status data represents the status of the variables of the
targeted system. The system constraints represent the
variables of the system and the defined constraints and
relationships between variables. The policy rules are
based on the variables of the constraints. Σ is a set of
reasoning conditions, which define the conditions for
the use of RM functionality. The reasoning condition set
consists of: trigger conditions ΣT, and goal conditions
ΣG. RM functionality is activated when a ΣT is detected
until a ΣG is reached. Assuming that a trigger condition
is true, the reasoning procedure transforms Qi to Qj by
using P to match the system constraints T against the
status data E and a set of suggest actions {Ai, Aj, Ak…
} ⊆ A. These actions may also set the next state and
values of the variables of EFSM-based service compo-
nent instances.

The equations (1), (2a) and (2b) describe a generic
model. The concrete modeling of RM-based functionali-
ty will be based on this model.

3.2 Reasoning machine based functionality –
application domain and integration

The application domain of the RM functionality can
be defined by the four cases: i) – iv) as classified in
Section 1. In Case i), an RM is a supplement to the tasks
(FV) of an EFSM. In the second case an RM determines
the capability configuration of the EFSMs constituting
the service system. In the third case an RM influences
the behavior of the service system, but with static
policies. In the fourth case an RM is used as a policy-
based adaptation mechanism for the policies to be
selected.

In addition to having RM functionality as a supple-
ment to the EFSM-based service system, the RM
functionality will also need EFSM support for the
continuous updating of the system constraints, status
data and reasoning conditions: T , E and Σ, as well as
the activation and deactivation of the reasoning machine
based on the present value of Σ. The continuous
updating of T , E and Σ is done by EFSMs and in this
case the T , E and Σ is considered as common data for
the EFSMs and the associated RM based functionality.

A dedicated EFSM associated with the RM-based
functionality denoted as EΣ has the duty to inspect the
reasoning condition and to activate and to deactivate the
reasoning machine.

3.3 Reasoning procedure
The Reasoning Procedure is the procedure applied

by the reasoning machine to select the rule to be applied.
The Reasoning procedure is based on Equivalent
Transformation (ET) [8], which solves a given problem
by transforming it through repetitive application of
(semantically) equivalent transformation rules.

ET consists of sets of ET rules and ET clauses. A
problem must be formulated as a clause for transforma-
tion. An ET clause has the form:

Head of a clause consists of an atom, or the head

atom, which is a message containing a problem with
unknown answer(s)/action(s). The problem in the head
atom will be derived by rules until it eventually contains
a list of suggested action(s).

An ET rule has the form:

It consists of a rule head and a rule body. A body

atom of a clause matching the head atom of a rule can be
transformed into the rule’s bodies. A rule of a policy as
defined in Section 3.1 is modeled by an ET rule

Intuitively, the reasoning procedure begins with a
clause formulated by a message as follows:

 msg(…) ←⎯⎯ msg(…) (3)
The meaning of (3) is that the head msg(…) is true

when the body msg(…) is true, which we don’t need to
prove. The goal of the reasoning procedure is to
transform (3) until no body atom is left. Consider the
following rule (4):

 msg(…), C ⎯⎯→E T B1, B2, … Bn. (4)

The rule (4) can transform the body atom msg(…)
of (3) into B1, B2, … Bn; provided that the atom msg(…)
match the head of (4) and the set of conditions C is not
violated. Clause (3) will be transformed to (5) as follow:

 msg(…) ←⎯⎯ B1, B2, … Bn. (5)

Body

Body atom1, … Body atomn
Head

Condition atom1, …
Condition

Head atom

Body

Body atom1, … Body atomn
Head

Head atom

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

During the transformation, variables in msg(…)
including the unknown list of suggested actions, which
are a subset of the actions A as defined in (2.b), will be
instantiated. The transformation of a clause ends when
either 1) there is no body atom left or 2) there is no rule
that can transform the remaining body atoms.

4. Policy-based adaptation mechanism

4.1 System constraints, status data and reason-
ing conditions

The elements T and E of an RM as defined in Sec-
tion 3, depend on the structuring and the nature of the
reasoning functionality. They depend on which EFSMs
that are related to the RM functionality and also the
nature of the reasoning. A reasoning cluster, which is an
independent unit with respect to reasoning, is a collec-
tion of EFSM-based service components with an
associated reasoning system constituted by one or more
reasoning machines. A reasoning cluster has a set of
associated income functions I. The elements T and E of
a reasoning cluster with available capabilities from NNode
nodes, consisting of K EFSM-based service component
types and Lk instances of an EFSM-based service type k
are defined as follows:

T ≡ Expr {S, C, I, (R , R ,
ˆ ˆ

k k kE ,S ,C ; k = [1,K])} (6)

E ≡ {((I , I ,
ˆ ˆ ˆ

l l l k k kE ,S ,C ; l = [1, Lk]), k = [1, K]) ,

(A , nĈ ; n = [1, NNode]) } (7)

The function Expr{Xi; i = [1, I]} in (6) symbolizes
the set {Xi; i = [1, I]} and also some set of logical
functions based on the elements of the set. The system
constraints T related to a reasoning cluster comprise the
EFSM functionality sets of the EFSM-based service
component types, required capability and service status,
as well as the income functions for the reasoning cluster.
The status data E defined in (7) is a set of the inherent
capability and service status for all instances of EFSM-
based service components in the reasoning cluster, as
well as available capabilities of the nodes that potential-
ly can contribute their capabilities for the EFSM based
functionality of the reasoning cluster.

As stated in Section 1 service system adaptation
also includes capability reconfiguration based on
capability and service status requirements. Capability
configuration management is the service systems initial
capability configuration and reconfiguration. Capability
configuration management goes beyond the boundaries
of an individual reasoning clusters as well as an
individual service system. This means that capability

configuration management must be handled by a
common distributed algorithm or by a centralized
reasoning cluster.

The components constituting the reasoning condi-
tion Σ are the states and variables of Ê , and the
capability and service performance measures C and S
as given in (8).

Σ ≡ Expr {S, C, (R , k R , k
ˆ ˆ

kE ,S ,C ; k = [1, K])} (8)

4.2 Policy-based adaptation using static policies

Service System
Adaptation Manager

Managed
Service System

A1...Ai ∈ A
System constraints Control inputs

Status data

X
Rules Actions

A

E

T

Figure 2 – Policy-based adaptation using static policies

The policy-based adaptation using static policies, as
illustrated in Figure 2, manages the behavior of service
systems based on system constraints T. The managed
service system give its status data E to the Service
System Adaptation Manager R1, which is a reasoning
machine. R1 gives a set of control inputs A1…Ai ⊂ A
(as already defined in Section 3.1) back to the managed
service system. A policy system consists of static rules,
which is unchangeable. Upon service systems enter a ΣT,
R1 is activated and try to lead the system back to a goal
state ΣG. R1 is de-activated when service systems enter
ΣG.

4.3 Policy-based adaptation using dynamic
policies

Service System
Adaptation Manager

Managed
Service System

Policy Composer

A1...Ai ∈
System Constraints Control inputs

Feedbacks

Status data

Evaluation criteria
History-based
Estimation-based
Logic-based

I, X, A
System Constraint

Control inputs

T

Actions
A'

A ⊆A∼X ⊆ X,∼

A∼

E

X'
Control Rules

CI, SIˆ ˆ

Figure 3 - Policy based adaptation based on dynamic policies

The use of static policies has some disadvantages.

Firstly, it has only the priority mechanism to select a rule
when two or more rules are applicable and it is hard to
assign appropriate priorities to rules, especially when the
rule space is large. Secondly, a set of static rules will not
likely solve the problem under all set of different
conditions that an adaptable service system must handle.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

A possible approach is to use dynamic policies as
illustrated in Figure 3, and using two reasoning
machines. In addition to the Service System Adaptation
Manager (R1) a Policy Composer (R2) is used. A
generic rule-based reasoning system with dynamic
policy can be defined by (9a, 9b, 9c and 9d) as follows:

R1 ≡ { Q, F, P , T, E, Σ } (9a)
P ≡ { X , A } (9b)
R2 ≡ { Q´, F, P´, T ´, E´, Σ´ } (9c)
P´ ≡ {X´, A´ } (9d)

where T ´= {I, X, A} and E´ = { I I
ˆ ˆC , S }. Q´ is a

set of messages between 1R̂ and 2R̂ . X´ is a set of
control rules that can re-order the priority of the rules,
activate and de-activate the rules and change rules’
constraints. The policy composer composes the system
policy at runtime based on evaluation criteria, reference
inputs and feedbacks. Evaluation criteria can be history-
based, prediction-based and logic-based. Income
functions are used as reference input, while the feed-
backs are system performance measures.

The history-based evaluation method determines
the consequences of the rules in the past. The predic-
tion-based evaluation determines the consequences of
rules in the future based on mathematical equations
represented by X´. The logic-based evaluation deter-
mines the consequences of rules based on logics such as
fuzzy, business-level or user-defined logics represented
by X´.

5. Data Model

Data Model for the reasoning functionality is based
on XML Equivalent Transformation language (XET),
which is the XML representation of the ET as given in
3.3. XET represents status data, system constraints, and
rules by using Extensible Markup Language (XML),
Resource Definition Framework (RDF), XML expres-
sions and XML rules.

XML and RDF: ˆ ˆ
I IC ,S and ˆ

AC are expressed in the
XML version of Common Information Model (CIM)
denoted as xmlCIM [1]. RDF is used because CIM does
not provide means for representing Q required by the
developed framework [1]. ˆ

IE is modeled by the XML-
based EFSM proposed by [9].

XML Expressions: XML expressions are used for the
data representation of the system constraints T. XML
expressions [3] are ordinary XML elements with
possible six disjoint variable types [1, 4]. XML
expressions can represent implicit information by
expressive XML variables. These variables can be

specialized (or instantiated) into attributes names,
element names, strings, zero or more attribute-value
pair(s), one or more XML expression(s) and parts of
XML expressions depending on their types (see [10]).
An ordinary XML element (or a ground XML expres-
sion) is an XML expression without variables.

XET rule: An XET rule is the representation of an ET
rule in XML. The structure for an XET rule is illustrated
as follows.

<xet:Rule xet:name="…" xet:priority="…" xet:class="…">

 <xet:Meta>…</xet:Meta>

 <xet:Head>…</xet:Head>

 <xet:Condition>…</xet:Condition>

 <xet:Body>

 Body atom1, Body atom 2, …

 </xet:Body>

</xet:Rule>

A head, condition or body atom is represented by a
fragment of XML. For example, the body
<xet:Body><a1/><a2/></xet:Body> contains two body
atoms, which are <a1/> and <a2/> respectively. The
xet:Meta contains additional metadata for rules that will
be used by control rules.

6. Application examples
6.1 The scenarios

MPO

MPO

MPP

MPO

MPP

EMP

EMP

EMP

EMP

EMP

EMS , E∑ , R1 , R2

Waiting clients

Connected
clients

Access link

Internet

Figure 4 – A music video on-demand service system

Four scenarios handling the capability configura-

tion management of a music video on-demand service
are presented with the intention to illustrate the use of
the proposed policy-based service system architecture,
and the potential advantages of using dynamic policies.
Scenario I and II use no policy. Scenario III uses static
policies, while Scenario IV uses dynamic policies. The
service system is constituted by one or more media
servers (MS) streaming media files to media players
(MP) (Figure 4). The numbers of MS used in Scenario I
and II are fixed (one and two respectively), while the

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

number in Scenario III and IV can vary from one to two.
An MP belongs to a QoS_Class. In the example two
classes are applied: premium (MPP) and ordinary
(MPO).

Three different streaming throughput bit-rates (X)
are offered, 500Kbps, 800 Kbps and 1Mbps. MPO
connections are 500Kbps (XO) while MPP connections
can be either 800Kbps or 1Mps (XP).

The capability performance measures used are MS
access link capacity (CAL). The required and inherent
MS capability status sets are defined as follows:

ˆ
RC ≡ { CR,AL } (10)

ˆ
IC ≡ { CI,AL } (11)

where CR,AL is the MS’s required access link capaci-
ty, which is set to 100 Mbit/s.

The number of MPs that can use the service, in this
example, is limited by the MS access link capacity. The
service level agreements comprise maximum waiting
time, required streaming throughput, payment for the
service and penalties for not satisfying the service. The
maximum waiting time for MPP and MPO are 60
seconds and infinite respectively. The required stream-
ing throughput of MPO and MPP are XP and XO
respectively. The payment for the service and the
penalties for not satisfying the service are calculated by
income and penalty functions that will be defined.

The resource management mechanisms used by the
service provider is to disconnect ordinary clients, to
decrease the throughput of the premium clients and to
change the number of media servers.

When the required streaming throughput cannot be
provided, an MP may have to wait until some connected
MPs have finished using the service. This will result in
money payback to the waiting MPs. An MPO can be
disconnected, while an MPP may have to reduce the
throughput. If a client is disconnected, the service
provider pays a penalty. If the throughput is lowered, the
price is lowered.

The service performance measures ˆ
IS consists of

the number of connected and waiting premium and
ordinary clients (NCon,P, NCon,O, NWait,P, NWait,O), the
number of disconnected MPO (NDis,O), the number of MS
(NMS), inherent streaming throughput (XI), the number
of available nodes (NNode) and the accumulated service
time and waiting time of premium and ordinary clients
(TServ,P, TServ,O, TWait,P, TWait,O). These values are
observed per a monitoring interval Δ.

A cost unit is the price paid by an ordinary custom-
er for one second streaming of the rate 500 KBit/s. The
income function for the service provider is
m(QoS_Class, XI) (cost units/second). The penalty
function for waiting is pWait(QoS_Class) (cost

units/second). The penalty function for disconnections is
pDis(QoS_Class) (cost units/disconnection). The cost
function for adding a new server is pSer (cost units per
Node per sec). The total income function (mT) during the
monitoring interval Δ is defined as follows:

mT = m(MPO, XI,O)×TServ,O + m(MPP, XI,P)× TServ,P

− pWait(MPO)×TWait,O − pWait(MPP) ×TWait,P

− pDis(MPO)×NDis,O − pSer ×(NMS-)×Δ (12)

Policy-based adaptation is introduced to maximize
the total income. The service system is realized as one
reasoning cluster. As illustrated in Figure 4, EMS, EΣ, R1
and R2 are in the same node. EMS is the media server
type, EMP is the media player type, R1 is the service
system adaptation manager type and R2 is the policy
composer type according to the definitions in Section 4.2
and 4.3. EΣ, as defined in 3.2, is a delicate EFSM type
for activate and de-activate R1 and R2. It is assumed that
the initial capability configuration, as defined in Section
1, has taken place.

The nature of the service system adaptation manag-
er as well as the need and nature of a policy composer
depends on the difference in income and penalty for the
different QoS classes, as well as the cost for introducing
a new server. If the income and penalty for premium
service class is relatively higher than for an ordinary
class, it can be profitable to disconnect some MPO and
let some MPP get the service instead.

The set of actions A applied for the service system
adaptation manger applied in Scenarios III and IV
consists of Disconnect-Client (AD), Decrease-Bit-Rate
(AB), Initialize-Server (AI) and Remove-Server (AR). A
can be defined by (13) as follows:

A ≡ { AD, AB, AI, AR } (13)

 AD tells MS to disconnect a list of suggested MPO.
AB tells MS to reduce throughput of a list of suggested
MPP for a certain time period. AI tells MS to initiate a
new MS, while AR will remove an MS.

6.2 RM specification
6.2.1 Service system adaptation manager

The reasoning condition set for the service system
adaptation manager is defined as follows:

 Σ ≡ { ΣT1, ΣG1 } (14)

where the reasoning activation condition (ΣT1) is
NWait,P+NWait,O > 0 and the reasoning goal condition
(ΣG1) is NWait,P+NWait,O = 0. The messages sent and
received between MS and the service system adaptation
manager is defined by msg(ΣT, Ai).

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

The rule set X for the service system adaptation
manger in Scenario III and IV is defined as follows:

X ≡ { X1, X2, X3, X4 } (15)

X1 suggests AD for disconnecting a list of suggested
MPO. X2 suggests AB for reducing throughput of a list of
suggested MPP. X3 suggests AI for initiating a new MS,
while X4 suggests AR for removing an MS. X1, X2, X3,
X4 can be further defined by as follows:

X1 ≡ msg(ΣT1, Ai) { pWait(MPO) < pWait(MPP) }

⎯⎯→ Ai AD. (16)

When pWait(MPO) < pWait(MPP), X1 will be executed.
The suggested action Ai will be instantiated () as AD,
The number of chosen MPO will be calculated as:

(W a i t,P P ,1 M b p s

O

N X
X
×)

X2 ≡ msg(ΣT1, Ai)

{ pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP, XP,800Kbps)}

 ⎯⎯→ Ai AB. (17)

When pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP,
XP,800Kbps), X2 will be executed. The suggested action Ai
will be instantiated () as AB. The number of MPP to
decrease bandwidth is calculated from the bandwidth
that the waiting MPO is needed divided by the difference
between the possible bit-rate required by MPP as:

(W a i t,O O

P ,1 M b p s P ,8 0 0 K b p s

N X
X X

×
−

)

X3 ≡ msg(ΣT1, Ai) { P W a i t P O W a i t O

R,A L

X N X N 0 . 1
C

× + ×
> }

 ⎯⎯→ Ai AI. (18)

As given in (18), when the ratio of throughput re-
quired by all waiting MP (as shown in the rule’s
condition) and the capacity of an MS access link is more
than 0.1, X3 will be executed and AI will be suggested.
A new MS can be initialized in a node having sufficient
capabilities, which are CR,AL as defined in (10).

X4 ≡ msg(ΣT1, Ai) { P W a i t P O W a i t O

R,A L

X N X N 0 . 1
C

× + ×
< }

 ⎯⎯→ Ai AR. (19)

X4 suggests AR when additional MS are not needed
based on the ratio of the throughput required by all

waiting MP and the access link capacity. If ratio is less
than 0.1, AR will be suggested.

6.2.2 Policy composer
In Scenario IV, reasoning conditions of the policy

composer are defined as follow:

Σ´ ≡ { ΣT2 ΣT1, ΣG2 ΣG1 } (20)

The policy composer will always be activated
whenever the service system adaptation manager is
activated and will be de-activated whenever the service
system adaptation manager is de-activated.

Upon entering ΣT2, the service system adaptation
manager sends a message msg(ΣT2, Ai) to the policy
composer. The set of messages Q´ sent and received
between them is defined as follow:

Q´ ≡ { msg(ΣT2, Ai) } (21)

The set of actions A applied for the policy composer
in the Scenario IV can be defined as follows:

A´ ≡ {AG(Xi), AT(Xi) } (22)

AG(Xi) is an action for the calculation of the accu-
mulated goodness score of a rule Xi. AT(Xi) is an action
to suspend XI for a certain time period. The goodness
score of a rule (QoXi) during the monitoring time
interval T is calculated by the percentage of the in-
creased or decreased total income (mT). The algorithm to
calculate QoXi is as follows:

QoXi = QoXi + T,t T ,t 1

T ,t

m m
1 0 0

m
−−
× (23)

where mT,t and mT,t-1 are the total income during the
current and previous monitoring interval respectively.

The rule set X´of the policy composer applied in
Scenario IV is defined as follow:

X´ ≡ { X´1, X´2 } (24)

where X´1, X´2 (See Sec. 6.2.3) can be defined by
(25) and (26) as follows:

X´1 ≡ msg(ΣT2, Ai) {X t-1 = Xi }

⎯⎯→ Ai AG(Xi). (25)

When the policy composer finds that a rule Xi has
been executed during the last interval t-1 (X t-1 = Xi), the
policy composer executes X´1. The suggested action Ai
will be instantiated as AG(Xi).

X´2 ≡ msg(ΣT2, Ai) { QoXi < 0 }
⎯⎯→ Ai AT(Xi). (26)

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

When the goodness score of a rule is less than zero,
the policy composer executes X´2. The suggested action
Ai will be instantiated as AT(Xi).

6.3 Results
The MP arrivals are modeled as a Poisson process

with parameter λQoS_Class. The duration of streaming
connections (dQoS_Class) is constant. The quantity ρ =
((λO×dO×XO))+(λP×dP×XP)))/CI,AL is the sum of traffic
offered to MS access links. Note that ρ can be larger
than the number of MS access links. The duration of
streaming connections are set to 4 minutes, while the
monitoring interval Δ is set to 1 minute.

Table 1 – Income and penalty functions in cost units
 MPO MPP

XI = 800Kbps
MPP

XI = 1Mbps
m(QoS_Class, XI)
(per second)

1
6 0

 2
6 0

 1 . 7 5
6 0

pWait(QoS_Class)
(per second)

1
3

 5
3

 5
3

pDis(QoS_Class)
(per disconnection)

5
3

- -

All Scenarios were tested for 500 minutes with two ρ
values: 0.42 and 0.84. The MPP arrival intensity is
15% of the total arrival intensity. The income and
penalty functions in cost units are given in Table 1. The
cost for using an extra MS is 417 cost units per Node
per second.

Figure 5 – the accumulated total income of all scenarios (ρ = 0.42)

Figure 5 illustrates the accumulated total income for
all scenarios when ρ = 0.42. The values of accumulated
total income of Scenario I (No Policy, NMS = 1),
Scenario III (static policies) and Scenario IV (dynamic
polices) are identical, while the accumulated total
income in the Scenario II (No Policy, NMS = 2) is lower.

The low traffic implies that no rule is applied in
Scenario III and IV. This made the outcome of Scenario
I, III and IV identical. On the other hand, the cost of an
extra server, which is not necessary for such arrival
intensity, decreased the total income of the system.

 Figure 6 – the accumulated total income of all scenarios (ρ = 0.84)

Figure 6 Illustrates the accumulated total income of
all scenarios when ρ = 0.84. As a result, the accumulated
total income of Scenario I was much lower than the
others as MP must wait to get the service. Scenario II
using two MS and no policy gives a very good result.
There was no MP waiting during the test and no penalty
was paid.

Scenario III and IV were started out with one MS.
The number of MS were being increased or decreased by
X3 and X4. In addition, X1 and X2 also manage the link
capacity of MS by disconnecting MPO or decrease the
MPP throughput. The accumulated income in Scenario
IV was higher than for Scenario III.

It is observable on both Scenario III and IV that the
use of X4, which will remove an MS, apparently reduced
the system’s accumulated total income. Having two
servers all the time seems to be better for the high traffic,
provided that the extra server cost is not too high. The
dynamic policies suspend X4 for 50 minutes and thus
lengthen the time where two MSs are in operation. In
Scenario IV, X4 was executed 26 times comparing to 35
times in Scenario III.

For the present scenarios none of the non-policy
scenarios (I and II) gave good results for both the low
and high traffic case. The policy-based scenarios seem to
be more suitable with respect to good results over a
variety of system load conditions. The accumulated total
income in Scenario III and IV also have the potential to
be improved by changing the XML-based policies.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 101 201 301 401

No Policy (= 1)
No Policy (= 2)
Static
Dynamic

Cost units

Minutes

NMS
NMS

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 101 201 301 401

No Policy (= 1)
No Policy (= 2)
Static
Dynamic

Cost units

Minutes

NMS
NMS

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

7. Conclusion
An architecture for policy-based adaptable service

systems based on the combination of Reasoning
Machines (RM) and Extended Finite State Machines
(EFSMs) has been presented. The architecture compris-
es service system framework, adaptation mechanisms
and data model. Policies have been introduced with the
intension to increase flexibility in the adaptable service
system specification and execution.

The service components constituting the service
system are modeled by some combination of EFSM type
and RM type. The RM, which is controlled by a specific
purpose EFSM denoted as EFSMΣ, is an independent
component. The reasoning procedure applied by the RM
is based on Equivalent Transform (ET).

The Adaptation mechanism uses policies to control
service systems when it is entering a reasoning condi-
tion. The use of policy can be of two types: static or
dynamic. In the static case the reasoning system
constituted by a service system adaptation manager
determines a list of suggested actions that will control
the behavior of the service system. In the dynamic case
an additional RM, denoted as the policy composer, is
added. The policy composer is able to compose policy
on-the-fly, and has the ability to estimate or evaluate the
consequences of the rules of a policy based on their
goodness scores.

The Data Model based on XML Equivalent Trans-
formation (XET) is used to express system constraint,
system status, reasoning conditions, rules and control
rules. The XML-based specifications are readily
executable by XET-based RM. This also represents a
flexibility feature of the proposed architecture.

Four scenarios handling the capability configuration
management of a music video on-demand service are
presented with the intention to illustrate the use of the
proposed architecture and the potential advantage of
using dynamic policies. Scenario I and II use no
policies. Scenario III uses static policies, while Scenario
IV uses dynamic policies. There are situations where the
use of no policy can be superior or equal to the use of
policies. The selected system parameters can represent
an optimal dimensioning. However, the same set of
system parameters will likely not be optimal for other
system traffic load cases. For the presented scenarios the
use of no policy and one server is a good solution in the
low traffic case, while the use of no policy and two
servers is a good solution in the high traffic case.

In the given scenarios, the service system operated
under static policies give a relatively high income in
both low and high traffic. The service system operated
under dynamic policies, however, has a performance

which is superior or equal to other scenarios in both the
low and the high traffic case. In addition to having the
potential for providing optimal solutions covering
dynamic traffic situations, the proposed architecture also
is a flexible tool for the experimentation with alternative
policies with respect to optimization.

References

[1] F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M.

Shiaa, "Configuration Management for an Adaptable
Service System," in IFIP International Conference on
Metropolitan Area Networks, Architecture, Protocols,
Control, and Management, Ho Chi Minh City, Viet Nam,
2005.

[2] D. Agrawal, K.-W. Lee, and J. Lobo, "Policy-Based
Management of Networked Computing Systems," IEEE
Communications Magazine, vol. 43, pp. 69-75, 2005.

[3] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G.
Kaiser, and D. Phung, "A Control Theory Foundation for
Self-Managing Computing Systems," IEEE Journal on
Selected Areas in Communications, vol. 23, pp. 2213-
2222, 2005.

[4] P. Supadulchai and F. A. Aagesen, "A Framework for
Dynamic Service Composition," in First International
IEEE Workshop on Autonomic Communications and
Computing (ACC 2005), Taormina, Italy, 2005.

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P.
Steenkiste, "Rainbow: Architecture-Based Self-Adaptation
with Reusable Instrastructure," Computer, vol. 37, pp. 46-
54, Oct 2004 2004.

[6] N. Samaan and A. Karmouch, "An Automated Policy-
Based Management Framework for Differentiated Com-
munication Systems," IEEE Journal on Selected Areas in
Communications, vol. 23, pp. 2236-2247, 2005.

[7] R. Nasri, Z. Altman, and H. Dubreil, "Autonomic Mobile
Network Management Techniques for Self-
Parameterisation and Auto-regulation," in Smartnet 2006,
Paris, 2006.

[8] K. Akama, T. Shimitsu, and E. Miyamoto, "Solving
Problems by Equivalent Transformation of Declarative
Programs," Journal of the Japanese Society of Artificial
Intelligence, vol. 13, pp. 944-952, 1998.

[9] S. Jiang and F. A. Aagesen, "XML-based Dynamic
Service Behaviour Representation," in NIK'2003, Oslo,
Norway, 2003.

[10] P. Supadulchai, "List of XML Variables,
http://tapas.item.ntnu.no/wiki/index.php/XML_Variables,"
2007.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

