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Abstract 
 
This paper presents a policy-based architecture for 

adaptable service systems based on the combination of 
Reasoning Machines and Extended Finite State 
Machines. Policies are introduced to obtain flexibility 
with respect to specification and execution of adaptable 
service systems that give high performance over a range 
of  system status values. The presented architecture 
covers three aspects: service system framework, 
adaptation mechanisms and data model. The adaptation 
mechanisms can be based on static or dynamic policy 
systems. Static policy systems have a non-changeable 
set of policies, Dynamic policy systems have a changea-
ble set of policies, which are managed by policies at a 
higher level. The data model for the reasoning machine 
functionality is based on the rule-based reasoning 
language “XML Equivalent Transformation” (XET). 
The capability configuration mangement of a service 
system with runtime simulation results based on the 
proposed architecture is presented with the intention to 
illustrate the use of the architecture and discuss the 
potential advantages of using dynamic policies.  

1. Introduction 
 

Networked service systems are considered. Servic-
es are realized by the structural and behavioral arrange-
ment of service components, which by their inter-
working provide a service in the role of a service 
provider to a service user. Service components are 
executed as software components in nodes, which are 
physical processing units such as servers, routers, 
switches and user terminals. 

An adaptable service system is a service system 
which is able to adapt dynamically to changes in time 
and position related to users, nodes, status of capability 
and service performance measures, changed service 
requirements and policies. 

A capability is an inherent property of a node or a 
user, which defines the ability to do something. 
Capabilities can be classified into resources, functions 
and data. A capability in a node is a feature available to 

implement services. Examples are CPU, memory, 
transmission capacity of connected transmission links, 
available special hardware, and available programs and 
data. A capability of a user is the feature that makes the 
user capable of using services. Capability performance 
measures are the set of variables used for the perfor-
mance monitoring and management of capabilities. 
Capability performance measures reflect the capabilities 
with respect to being idle or allocated, available 
capacity, load etc.  

Service performance measures are the set of va-
riables used for the performance monitoring and 
management of the operation of the service system. 
These can be measures reflecting the state of a service 
system with respect to the number of active service 
components as well as Quality of Service (QoS) 
measures. Capability and service performance measures 
represent performance measures in two different 
viewpoints: the network view, which considers the 
concrete physical elements and capabilities and the 
service view, which consider the abstract service 
elements constituting the service.  

Status is the present value of a capability (capability 
status) or a service performance measure (service 
status). The total set of status measures is denoted as 
system status, which then is the sum of capability status 
and service status. Service components will have 
requirement with respect to system status.  

The software mechanisms used for implementing 
the functionality of the service components of adaptable 
service systems must be flexible and powerful. Service 
components based on the classical EFSM (Extended 
Finite State Machine) approach can be flexibly executed 
by using generic EFSM executing software components 
that are able to download and execute different EFSM 
based specifications. The TAPAS architecture [1] has, in 
addition to a service and network view defined above, a 
play view that realizes this feature. In TAPAS the 
generic software components are denoted as Actors, 
inspired by the actors in the theatre. Actors are able to 
play various roles specified in EFSM-based manuscripts 
that are dynamically downloaded.   

In addition to this type of flexibility constituted by 
Actors that are able to play various EFSM-based 

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00  © 2007



 

specifications, the EFSM-based functionality can be 
supplemented by Reasoning Machine (RM)-based 
functionality, which makes policy-based specification 
and operation possible. “Policies represent externalized 
logic that can determine the behavior of the managed 
systems” [2]. In this paper a policy is technically defined 
as a set of rules with related actions. A policy system is 
a set of policies, and an RM-based functionality is using 
a policy system to manage the behavior of a target 
system. A static policy system has a non-changeable set 
of rules and actions, while a dynamic policy system has 
a changeable set of rules and actions. The target system 
for a policy system can be another policy system, so that 
one policy system can be controlled by another policy 
system. The dynamic policy system is managed by 
control rules and actions constituting a policy system at 
a higher level. 

 The EFSM approach needs careful specification of 
all possible events. Policy-based software is based on 
rules, and has a specification style, which is expressive 
and flexible. Human defined procedures at both business 
and customer service levels are often more easily 
expressed as policies rather than expressed as EFSMs. 
This is because the expressiveness and the flexibility of 
rules are often more directly applicable than EFSMs. In 
addition to being used at business management and 
customer service provision levels, rules can also be at 
the service system and service component level as a 
supplement to the use of EFSMs. Software functionality 
based on policy-based specifications, however, also 
needs to be appropriately specified and validated. We 
are not claiming that validation is easier for policy-
based specification than for EFSM-based specifications. 
The validation aspect, however, is outside the scope of 
this paper.   

In general, adaptation needs appropriate mechan-
isms to guarantee the wanted results. Stable feedback 
loops [3], which control the performance, are needed. 
As the capabilities are limited, an adaptable system 
needs to limit the access to the system, and there must 
also be priority mechanisms that give priority to users 
which are willing to pay more and/or are in a higher 
need in situations with lack of capabilities. Policy-based 
adaptable systems can be based on static or dynamic 
policies. In the static case, the feedback loop is related 
to the appropriate rules and actions. In the dynamic case, 
the system also must have some feedback mechanism 
related to policy selection. As a basis for the policy 
selection, the system must have goals, goodness criteria 
and also the ability to estimate or evaluate the conse-
quences of the use of a policy.  

The issues of policy-based adaptable service system 
architecture are in this paper classified into 3 main 

aspects: A) service system framework, B) adaptation 
mechanism, C)  data model.  

The service system framework issues can be classi-
fied further as: 1) general component structure, 2) 
application domain for the RM functionality, 3) the 
integration of the RM functionality in the component 
structure, and 4) reasoning procedure. The reasoning 
procedure is the procedure applied by RM to select 
actions to be applied. In the context of this paper the 
application domain for the RM functionality is classified 
as follows:  

i) A traditional procedural service for an EFSM-based 
service components to take decisions not involving 
the management of system status,   

ii) The initial capability configuration of the service 
system according to the capability status require-
ments of the EFSM components of a service system, 

iii) The adaptation of the behavior of service systems 
and/or EFSM-based service components involving 
the management of system status. This also includes 
capability reconfiguration based on capability and 
service status requirements,  

iv) The dynamic change of the policies of  the policies 
used for the items i)-iii) above 
The adaptation mechanism aspect (B) concerns the 

use of the appropriate policies to control the service 
systems when it is entering a state where RM functional-
ity is needed. The data model aspect (C) concerns all 
representation of data and functionality related to the 
RM functionality.  

The papers [1] and [4], have focus on the aspect C) 
applied on the issues i) and ii) of the application domain 
for reasoning only. This paper comprises all issues of the 
aspects A)-C) as defined above. 

Section 2 discusses related work. Section 3 presents 
a model for a service system framework, Section 4 
discusses policy-based adaptation mechanism and 
Section 5 presents the data model used for the RM-based 
functionality. Section 6 presents four scenarios related to 
capability configuration management of a music video 
on-demand service to illustrate the use of the proposed 
policy-based service system architecture, and the 
potential advantages of using dynamic policies. Section 
7 gives summary and conclusions.  

2. Related work 

Most of recent works related to policy-based adapt-
able service systems focuses on the aspects A) and B) as 
defined in Section 1. Examples are [5], [6], [7], which 
are Garlan et al.’s Rainbow architecture for self-
adaptation, Samaan and Karmouch’s autonomous policy-
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based management framework and Narsi et al.’s 
learning techniques. A work that support the aspect C), 
PMAC by Agrawal et al. [2], uses Autonomic Compu-
ting Policy Language (ACPL) as a generic data model, 
which is analogous to our XML Equivalent Transforma-
tion (XET). However, this work has a weak focus on the 
aspects A) and B).  

Considering the application domain for the use of 
policies, the application domain of [5] is preliminary 
aimed at static policies. The application domains of [6] 
and [7] are both static and dynamic policies.  

The architecture presented in this paper has the 
focus on all aspects A)-C). The service system frame-
work permits the combination of both EFSM and the 
RM functionality. Considering the dynamic policy, i.e. 
the rule-based modification of the policy managing the 
service system (See Sections 4), the system’s policy can 
be composed at run-time based on evaluation criteria, 
reference inputs and feedbacks. Unlike [6] and [7], the 
presented architecture evaluates and composes the best 
policy based on broad set of evaluation criteria, which 
can be history-based, prediction-based, or logic-based. 
Income functions are used as reference inputs, while the 
feedbacks are system performance measures. 

3. Service System Framework 
3.1 General component structure 

 
An executing service system consists of executing 

service components. An executing service component is 
an instance of a service component type, which in the 
context of this paper is modeled by some combination of 
EFSM type and RM type.  A service component can be a 
pure EFSM or some combination of EFSM and RM 
based functionality. The main role of the EFSM 
functionality is to maintain the state of the service 
system represented as EFSM states and variables (see 
below), while the main role of the RM functionality is to 

take decisions. The interaction between the RM 
functionality and the EFSMs will be discussed in Section 
3.2.  

The service components will have requirements 
with respect to capabilities and capability status to be 
able to perform their intended functionality (Figure 1). 
As a basis for the optimal adaptation, service level 
agreements are needed between the service users and the 
service provider. The service provider view of this 
service level agreement can in this context be considered 
as a part of an executing service component. A number 
of QoS priority levels can exist. The agreement can 
contain elements such as: 1) agreed QoS level, required 
capabilities, 2) required service status 3) payment for the 
service in case of normal service and 4) payment for the 
service in case of reduced service.  

The following concepts are defined: 
E  Functionality set of an EFSM type 
Ê  Functionality set of an EFSM instance 
R  Functionality set of a RM type 
R̂  Functionality set of a RM instance 
C  Capability performance measures set  

RĈ  Required capability status set for an EFSM 
based service component type 

IĈ  Inherent capability status set of an executing 
EFSM based service components 

AĈ  Status set of available capabilities in nodes 
S  Service performance measures set 

RŜ  Required service status set for an EFSM 
based service component type 

IŜ  Inherent service status set of an executing 
EFSM based service component 

 I Income functions set for the service compo-
nents constituting a service.    

The set of requirements related to capability and 
service performance measures are denoted as required 
capability and service status, respectively. The status of 
capabilities and service performance measures of the 
executing system are similarly denoted as inherent 
capability and service status. The income functions will 
depend on the system status. 

An EFSM type E  is defined as:  

E   ≡  { SM, SI, V, P, M(P), O(P), FS, FO, FV },  (1) 

where SM is the set of states, SI is the initial state, 
V is a set of variables, P is a set of parameters, M(P) 
is a set of input signal with parameters, O(P) is a set of 
output signal with parameters, FS is the state transition 
function (FS = S x M(P) x V), FO is output function, 
(FO = S x M(P) x V) and FV are the functions and 
tasks performed during a specific state transition such as 

Figure 1 - Service System – General Component Structure 
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computation on local data, communication initialization, 
database access, etc. 

A RM type  R is defined as:  

R  ≡ { Q, F, P, T, E, Σ } (2a) 
P  ≡ { X, A }, (2b)   

where Q is the set of messages, F is a generic rea-
soning procedure, P is a policy system which consists 
of a set of rules X and a set of actions A, T  is a set of 
system constraints and E is a set of status data. The 
status data represents the status of the variables of the 
targeted system. The system constraints represent the 
variables of the system and the defined constraints and 
relationships between variables. The policy rules are 
based on the variables of the constraints. Σ is a set of 
reasoning conditions, which define the conditions for 
the use of RM functionality. The reasoning condition set 
consists of: trigger conditions ΣT, and goal conditions 
ΣG. RM functionality is  activated when a ΣT is detected 
until a ΣG is reached. Assuming that a trigger condition 
is true, the reasoning procedure transforms Qi to Qj by 
using P to match the system constraints T against the 
status data E and a set of suggest actions {Ai, Aj, Ak… 
} ⊆ A. These actions may also set the next state and 
values of the variables of EFSM-based service compo-
nent instances. 

The equations (1), (2a) and (2b) describe a generic 
model. The concrete modeling of RM-based functionali-
ty will be based on this model.  

3.2 Reasoning machine based functionality – 
application domain and integration 

The application domain of the RM functionality can 
be defined by the four cases:  i) – iv) as classified in 
Section 1. In Case i), an RM is a supplement to the tasks 
(FV) of an EFSM. In the second case an RM determines 
the capability configuration of the EFSMs constituting 
the service system. In the third case an RM influences 
the behavior of the service system, but with static 
policies. In the fourth case an RM is used as a policy- 
based adaptation mechanism for the policies to be 
selected.  

In addition to having RM functionality as a supple-
ment to the EFSM-based service system, the RM 
functionality will also need EFSM support for the 
continuous updating of  the  system constraints, status 
data and reasoning conditions: T , E and  Σ, as well as 
the activation and deactivation of the reasoning machine 
based on the present value of Σ. The continuous 
updating of T , E and Σ is done by EFSMs and in this 
case the T , E and Σ is considered as common data for 
the EFSMs and the associated RM based functionality. 

A dedicated EFSM associated with the RM-based 
functionality denoted as EΣ has the duty to inspect the 
reasoning condition and to activate and to deactivate the 
reasoning machine.  

3.3 Reasoning procedure   
The Reasoning Procedure is the procedure applied 

by the reasoning machine to select the rule to be applied. 
The Reasoning procedure is based on Equivalent 
Transformation (ET) [8], which solves a given problem 
by transforming it through repetitive application of 
(semantically) equivalent transformation rules.  

ET consists of sets of ET  rules and ET clauses. A 
problem must be formulated as a clause for transforma-
tion. An ET clause has the form: 

 
Head of a clause consists of an atom, or the head 

atom, which is a message containing a problem with 
unknown answer(s)/action(s). The problem in the head 
atom will be derived by rules until it eventually contains 
a list of suggested action(s). 

An ET rule has the form: 

 
It consists of a rule head and a rule body. A body 

atom of a clause matching the head atom of a rule can be 
transformed into the rule’s bodies. A rule of a policy as 
defined in Section 3.1 is modeled by an ET rule 

Intuitively, the reasoning procedure begins with a 
clause formulated by a message as follows: 

 msg(…) ←⎯⎯  msg(…) (3) 
The meaning of (3) is that the head msg(…) is true 

when the body msg(…) is true, which we don’t need to 
prove. The goal of the reasoning procedure is to 
transform (3) until no body atom is left. Consider the 
following rule (4): 

 msg(…), C ⎯⎯→E T B1, B2, … Bn. (4) 

The rule (4) can transform the body atom msg(…) 
of (3) into B1, B2, … Bn; provided that the atom msg(…) 
match the head of (4) and the set of conditions C is not 
violated. Clause (3) will be transformed to (5) as follow: 

 msg(…) ←⎯⎯  B1, B2, … Bn. (5) 

Body 

Body atom1, … Body atomn 
Head 

Condition atom1, … 
Condition 

Head atom

Body 

Body atom1, … Body atomn 
Head 

Head atom
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During the transformation, variables in msg(…) 
including the unknown list of suggested actions, which 
are a subset of the actions A as defined in (2.b), will be 
instantiated.  The transformation of a clause ends when 
either 1) there is no body atom left or 2) there is no rule 
that can transform the remaining body atoms. 

4. Policy-based adaptation mechanism 

4.1 System constraints, status data and reason-
ing conditions 

The elements T  and E of an RM as defined in Sec-
tion 3, depend on the structuring and the nature of the 
reasoning functionality. They depend on which EFSMs 
that are related to the RM functionality and also the 
nature of the reasoning. A reasoning cluster, which is an 
independent unit with respect to reasoning, is a collec-
tion of EFSM-based service components with an 
associated reasoning system constituted by one or more 
reasoning machines. A reasoning cluster has a set of 
associated income functions I. The elements  T  and E of 
a reasoning cluster with available capabilities from NNode 
nodes, consisting of  K EFSM-based service component 
types and Lk instances of an EFSM-based service type k 
are defined as follows: 

T  ≡  Expr {S, C, I, ( R , R ,
ˆ ˆ

k k kE ,S ,C ; k = [1,K])} (6) 

E  ≡  {(( I , I ,
ˆ ˆ ˆ

l l l k k kE ,S ,C ; l = [ 1, Lk ]), k = [ 1, K ]) ,  

( A , nĈ ; n = [ 1, NNode ]) } (7)  

The function Expr{Xi; i = [1, I]} in (6) symbolizes 
the set {Xi; i = [1, I]} and also some set of logical 
functions based on the elements of the set. The system 
constraints T related to a reasoning cluster comprise the 
EFSM functionality sets of the EFSM-based service 
component types, required capability and service status, 
as well as the income functions for the reasoning cluster. 
The status data E defined in (7) is a set of the inherent 
capability and service status for all instances of EFSM- 
based service components in the reasoning cluster, as 
well as available capabilities of the nodes that potential-
ly can contribute their capabilities for the EFSM based 
functionality of the reasoning cluster. 

As stated in Section 1 service system adaptation 
also includes capability reconfiguration based on 
capability and service status requirements. Capability 
configuration management is the service systems initial 
capability configuration and reconfiguration. Capability 
configuration management goes beyond the boundaries 
of an individual reasoning clusters as well as an 
individual service system. This means that capability 

configuration management must be handled by a 
common distributed algorithm or by a centralized 
reasoning cluster.      

The components constituting the reasoning condi-
tion Σ are the states and variables of Ê , and the 
capability and service performance measures C  and S 
as given in (8).  

Σ ≡  Expr {S, C, ( R , k R , k
ˆ ˆ

kE ,S ,C ; k = [ 1, K ])} (8) 

4.2 Policy-based adaptation using static policies 
 

Service System
Adaptation Manager

Managed
Service System

A1...Ai ∈ A
System constraints Control inputs

Status data

X
Rules Actions

A

E

T

 
Figure 2 – Policy-based adaptation using static policies 

The policy-based adaptation using static policies, as 
illustrated in Figure 2, manages the behavior of service 
systems based on system constraints T. The managed 
service system give its status data E  to the Service 
System Adaptation Manager R1, which is a reasoning 
machine. R1 gives a set of control inputs A1…Ai ⊂ A 
(as already defined in Section 3.1) back to the managed 
service system. A policy system consists of static rules, 
which is unchangeable. Upon service systems enter a ΣT, 
R1 is activated and try to lead the system back to a goal 
state ΣG. R1 is de-activated when service systems enter 
ΣG. 

4.3 Policy-based adaptation using dynamic 
policies 

Service System
Adaptation Manager

Managed
Service System

Policy Composer

A1...Ai ∈
System Constraints Control inputs

Feedbacks

Status data

Evaluation criteria
History-based
Estimation-based
Logic-based

I, X, A
System Constraint

Control inputs

T

Actions
A'

A ⊆A∼X ⊆ X,∼

A∼

E

X'
Control Rules

CI, SIˆ ˆ

 
Figure 3 - Policy based adaptation based on dynamic policies 

 
The use of static policies has some disadvantages. 

Firstly, it has only the priority mechanism to select a rule 
when two or more rules are applicable and it is hard to 
assign appropriate priorities to rules, especially when the 
rule space is large. Secondly, a set of static rules will not 
likely solve the problem under all set of different 
conditions that an adaptable service system must handle. 
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A possible approach is to use dynamic policies as 
illustrated in Figure 3, and using two reasoning 
machines. In addition to the Service System Adaptation 
Manager (R1) a Policy Composer (R2) is used. A 
generic rule-based reasoning system with dynamic 
policy can be defined by (9a, 9b, 9c and 9d) as follows: 

R1  ≡ { Q, F, P , T, E, Σ } (9a) 
P   ≡ { X , A  } (9b) 
R2   ≡ { Q´, F, P´, T ´, E´, Σ´ } (9c) 
P´ ≡ {X´, A´ } (9d)   

where T ´= {I, X, A} and E´ = { I I
ˆ ˆC , S }. Q´ is a 

set of messages between 1R̂  and 2R̂ . X´ is a set of 
control rules that can re-order the priority of the rules, 
activate and de-activate the rules and change rules’ 
constraints. The policy composer composes the system 
policy at runtime based on evaluation criteria, reference 
inputs and feedbacks. Evaluation criteria can be history-
based, prediction-based and logic-based. Income 
functions are used as reference input, while the feed-
backs are system performance measures.  

The history-based evaluation method determines 
the consequences of the rules in the past. The predic-
tion-based evaluation determines the consequences of 
rules in the future based on mathematical equations 
represented by X´. The logic-based evaluation deter-
mines the consequences of rules based on logics such as 
fuzzy, business-level or user-defined logics represented 
by X´. 

5. Data Model 

Data Model for the reasoning functionality is based 
on XML Equivalent Transformation language (XET), 
which is the XML representation of the ET as given in 
3.3. XET represents status data, system constraints, and 
rules by using Extensible Markup Language (XML), 
Resource Definition Framework (RDF), XML expres-
sions and XML rules. 

XML and RDF: ˆ ˆ
I IC ,S  and ˆ

AC are expressed in the 
XML version of Common Information Model (CIM) 
denoted as xmlCIM [1]. RDF is used because CIM does 
not provide means for representing Q required by the 
developed framework [1]. ˆ

IE  is modeled by the XML-
based EFSM proposed by [9]. 

XML Expressions: XML expressions are used for the 
data representation of the system constraints T. XML 
expressions [3] are ordinary XML elements with 
possible six disjoint variable types [1, 4]. XML 
expressions can represent implicit information by 
expressive XML variables. These variables can be 

specialized (or instantiated) into attributes names, 
element names, strings, zero or more attribute-value 
pair(s), one or more XML expression(s) and parts of 
XML expressions depending on their types (see [10]). 
An ordinary XML element (or a ground XML expres-
sion) is an XML expression without variables. 

XET rule: An XET rule is the representation of an ET 
rule in XML. The structure for an XET rule is illustrated 
as follows. 

<xet:Rule xet:name="…" xet:priority="…" xet:class="…"> 

   <xet:Meta>…</xet:Meta> 

   <xet:Head>…</xet:Head> 

   <xet:Condition>…</xet:Condition> 

   <xet:Body> 

      Body atom1, Body atom 2, … 

   </xet:Body> 

</xet:Rule> 
 

A head, condition or body atom is represented by a 
fragment of XML. For example, the body 
<xet:Body><a1/><a2/></xet:Body> contains two body 
atoms, which are  <a1/> and <a2/> respectively. The 
xet:Meta contains additional metadata for rules that will 
be used by control rules. 

6. Application examples 
6.1 The scenarios 

MPO

MPO

MPP

MPO

MPP

EMP

EMP

EMP

EMP

EMP

EMS , E∑ , R1 , R2

Waiting clients

Connected
clients

Access link

Internet

 
Figure 4 – A music video on-demand service system 

 
Four scenarios handling the capability configura-

tion management of a music video on-demand service 
are presented with the intention to illustrate the use of 
the proposed policy-based service system architecture, 
and the potential advantages of using dynamic policies. 
Scenario I and II use no policy. Scenario III uses static 
policies, while Scenario IV uses dynamic policies. The 
service system is constituted by one or more media 
servers (MS) streaming media files to media players 
(MP) (Figure 4). The numbers of MS used in Scenario I 
and II are fixed (one and two respectively), while the 
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number in Scenario III and IV can vary from one to two. 
An MP belongs to a QoS_Class. In the example two 
classes are applied:  premium (MPP) and ordinary 
(MPO). 

Three different streaming throughput bit-rates (X) 
are offered, 500Kbps, 800 Kbps and 1Mbps.  MPO 
connections are 500Kbps (XO) while MPP connections 
can be either 800Kbps or 1Mps (XP). 

The capability performance measures used are MS 
access link capacity (CAL). The required and inherent 
MS capability status sets are defined as follows: 

ˆ
RC  ≡ { CR,AL } (10) 

ˆ
IC  ≡ { CI,AL } (11) 

where CR,AL is the MS’s required access link capaci-
ty, which is set to 100 Mbit/s.  

The number of MPs that can use the service, in this 
example, is limited by the MS access link capacity. The 
service level agreements comprise maximum waiting 
time, required streaming throughput, payment for the 
service and penalties for not satisfying the service. The 
maximum waiting time for MPP and MPO are 60 
seconds and infinite respectively. The required stream-
ing throughput of MPO and MPP are XP and XO 
respectively. The payment for the service and the 
penalties for not satisfying the service are calculated by 
income and penalty functions that will be defined. 

The resource management mechanisms used by the 
service provider is to disconnect ordinary clients, to 
decrease the throughput of the premium clients and to 
change the number of media servers.  

When the required streaming throughput cannot be 
provided, an MP may have to wait until some connected 
MPs have finished using the service. This will result in 
money payback to the waiting MPs. An MPO can be 
disconnected, while an MPP may have to reduce the 
throughput. If a client is disconnected, the service 
provider pays a penalty. If the throughput is lowered, the 
price is lowered. 

The service performance measures ˆ
IS  consists of 

the number of connected and waiting premium and 
ordinary clients (NCon,P, NCon,O, NWait,P, NWait,O), the 
number of disconnected MPO (NDis,O), the number of MS 
(NMS), inherent streaming throughput (XI), the number 
of available nodes (NNode) and the accumulated service 
time and waiting time of premium and ordinary clients 
(TServ,P, TServ,O, TWait,P, TWait,O). These values are 
observed per a monitoring interval Δ. 

A cost unit is the price paid by an ordinary custom-
er for one second streaming of the rate 500 KBit/s. The 
income function for the service provider is 
m(QoS_Class, XI) (cost units/second). The penalty 
function for waiting is pWait(QoS_Class) (cost 

units/second). The penalty function for disconnections is 
pDis(QoS_Class) (cost units/disconnection). The cost 
function for adding a new server is pSer (cost units per 
Node per sec). The total income function (mT) during the 
monitoring interval Δ is defined as follows: 

mT =   m(MPO, XI,O)×TServ,O  +  m(MPP, XI,P)× TServ,P  

− pWait(MPO)×TWait,O − pWait(MPP) ×TWait,P 

− pDis(MPO)×NDis,O − pSer ×(NMS-)×Δ (12) 

Policy-based adaptation is introduced to maximize 
the total income. The service system is realized as one 
reasoning cluster. As illustrated in Figure 4, EMS, EΣ, R1 
and R2 are in the same node. EMS is the media server 
type, EMP is the media player type, R1 is the service 
system adaptation manager type and R2 is the policy 
composer type according to the definitions in Section 4.2 
and 4.3. EΣ, as defined in 3.2, is a delicate EFSM type 
for activate and de-activate R1 and R2. It is assumed that 
the initial capability configuration, as defined in Section 
1, has taken place. 

The nature of the service system adaptation manag-
er as well as the need and nature of a policy composer 
depends on the difference in income and penalty for the 
different QoS classes, as well as the cost for introducing 
a new server. If the income and penalty for premium 
service class is relatively higher than for an ordinary 
class, it can be profitable to disconnect some MPO and 
let some MPP get the service instead.  

The set of actions A applied for the service system 
adaptation manger applied in Scenarios III and IV 
consists of Disconnect-Client (AD), Decrease-Bit-Rate 
(AB), Initialize-Server (AI) and Remove-Server (AR). A 
can be defined by (13) as follows: 

A ≡ { AD, AB,  AI,  AR } (13) 

 AD tells MS to disconnect a list of suggested MPO. 
AB tells MS to reduce throughput of a list of suggested 
MPP for a certain time period. AI tells MS to initiate a 
new MS, while AR will remove an MS. 

6.2 RM specification 
6.2.1 Service system adaptation manager  

The reasoning condition set for the service system 
adaptation manager is defined as follows: 

 Σ ≡ { ΣT1, ΣG1 } (14) 

where the reasoning activation condition (ΣT1) is 
NWait,P+NWait,O > 0 and the reasoning goal condition 
(ΣG1) is NWait,P+NWait,O = 0. The messages sent and 
received between MS and the service system adaptation 
manager is defined by msg(ΣT, Ai). 
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The rule set X for the service system adaptation 
manger in Scenario III and IV is defined as follows: 

X ≡ { X1, X2, X3, X4 } (15) 

X1 suggests AD for disconnecting a list of suggested 
MPO. X2 suggests AB for reducing throughput of a list of 
suggested MPP. X3 suggests AI for initiating a new MS, 
while X4 suggests AR for removing an MS. X1, X2, X3, 
X4 can be further defined by as follows:  

X1 ≡ msg(ΣT1, Ai)  { pWait(MPO) < pWait(MPP) } 

⎯⎯→  Ai  AD. (16) 

When pWait(MPO) < pWait(MPP), X1 will be executed. 
The suggested action Ai will be instantiated ( ) as AD, 
The number of chosen MPO will be calculated as: 

( W a i t,P P ,1 M b p s

O

N X
X
× ) 

X2 ≡ msg(ΣT1, Ai)   

{ pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP, XP,800Kbps)} 

  ⎯⎯→  Ai   AB. (17) 

When pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP, 
XP,800Kbps), X2 will be executed. The suggested action Ai 
will be instantiated ( ) as AB. The number of MPP to 
decrease bandwidth is calculated from the bandwidth 
that the waiting MPO is needed divided by the difference 
between the possible bit-rate required by MPP as: 

( W a i t,O O

P ,1 M b p s P ,8 0 0 K b p s

N X
X X

×
−

) 

X3 ≡ msg(ΣT1, Ai) { P W a i t P O W a i t O

R,A L

X N X N 0 . 1
C

× + ×
> } 

   ⎯⎯→  Ai   AI. (18) 

As given in (18), when the ratio of throughput re-
quired by all waiting MP (as shown in the rule’s 
condition) and the capacity of an MS access link is more 
than 0.1, X3 will be executed and AI will be suggested. 
A new MS can be initialized in a node having sufficient 
capabilities, which are CR,AL as defined in (10). 

X4 ≡ msg(ΣT1, Ai)  { P W a i t P O W a i t O

R,A L

X N X N 0 . 1
C

× + ×
< } 

                    ⎯⎯→  Ai   AR. (19) 

X4 suggests AR when additional MS are not needed 
based on the ratio of the throughput required by all 

waiting MP and the access link capacity. If ratio is less 
than 0.1, AR will be suggested. 

6.2.2 Policy composer  
In Scenario IV, reasoning conditions of the policy 

composer are defined as follow: 

Σ´ ≡ { ΣT2  ΣT1, ΣG2  ΣG1 } (20) 

The policy composer will always be activated 
whenever the service system adaptation manager is 
activated and will be de-activated whenever the service 
system adaptation manager is de-activated. 

Upon entering ΣT2, the service system adaptation 
manager sends a message msg(ΣT2, Ai) to the policy 
composer. The set of messages Q´ sent and received 
between them is defined as follow: 

Q´ ≡ { msg(ΣT2, Ai) } (21) 

The set of actions A applied for the policy composer 
in the Scenario IV can be defined as follows: 

A´ ≡ {AG(Xi), AT(Xi) } (22) 

AG(Xi) is an action for the calculation of the accu-
mulated goodness score of a rule Xi. AT(Xi) is an action 
to suspend XI for a certain time period. The goodness 
score of a rule (QoXi) during the monitoring time 
interval T is calculated by the percentage of the in-
creased or decreased total income (mT). The algorithm to 
calculate QoXi is as follows: 

QoXi  =  QoXi  + T,t T ,t 1

T ,t

m m
1 0 0

m
−−
×  (23) 

where mT,t and mT,t-1 are the total income during the 
current and previous monitoring interval respectively.  

The rule set X´of the policy composer applied in 
Scenario IV is defined as follow: 

X´ ≡ { X´1, X´2 } (24) 

where X´1, X´2 (See Sec. 6.2.3) can be defined by 
(25) and (26) as follows: 

X´1 ≡ msg(ΣT2, Ai) {X t-1 = Xi } 

⎯⎯→  Ai  AG(Xi). (25) 

When the policy composer finds that a rule Xi has 
been executed during the last interval t-1 (X t-1 = Xi), the 
policy composer executes X´1. The suggested action Ai 
will be instantiated as AG(Xi). 

X´2 ≡ msg(ΣT2, Ai) { QoXi < 0 }  
⎯⎯→  Ai  AT(Xi). (26) 
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When the goodness score of a rule is less than zero, 
the policy composer executes X´2. The suggested action 
Ai will be instantiated as AT(Xi). 

6.3 Results 
The MP arrivals are modeled as a Poisson process 

with parameter λQoS_Class. The duration of streaming 
connections (dQoS_Class) is constant. The quantity ρ =  
((λO×dO×XO))+(λP×dP×XP)))/CI,AL is the sum of traffic 
offered to MS access links. Note that ρ can be larger 
than the number of MS access links. The duration of 
streaming connections are set to 4 minutes, while the 
monitoring interval Δ is set to 1 minute. 

Table 1 – Income and penalty functions in cost units 
 MPO MPP 

XI = 800Kbps 
MPP 

XI = 1Mbps 
m(QoS_Class, XI) 
(per second) 

1
6 0

 2
6 0

 1 . 7 5
6 0

 

pWait(QoS_Class) 
(per second) 

1
3

 5
3

 5
3

 

pDis(QoS_Class) 
(per disconnection) 

5
3

 
- - 

All Scenarios were tested for 500 minutes with two ρ 
values: 0.42 and 0.84. The MPP arrival intensity   is  
15% of the total arrival intensity. The income and 
penalty functions in cost units are given in Table 1. The 
cost for using an extra MS is 417 cost units per Node 
per second. 

    
Figure 5 – the accumulated total income of all scenarios (ρ = 0.42) 

Figure 5 illustrates the accumulated total income for 
all scenarios when ρ = 0.42. The values of accumulated 
total income of Scenario I (No Policy, NMS = 1), 
Scenario III (static policies) and Scenario IV (dynamic 
polices) are identical, while the accumulated total 
income in the Scenario II (No Policy, NMS = 2) is lower. 

The low traffic implies that no rule is applied in 
Scenario III and IV. This made the outcome of Scenario 
I, III and IV identical. On the other hand, the cost of an 
extra server, which is not necessary for such arrival 
intensity, decreased the total income of the system. 

 Figure 6 – the accumulated total income of all scenarios (ρ = 0.84) 
 

Figure 6 Illustrates the accumulated total income of 
all scenarios when ρ = 0.84. As a result, the accumulated 
total income of Scenario I was much lower than the 
others as MP must wait to get the service. Scenario II 
using two MS and no policy gives a very good result. 
There was no MP waiting during the test and no penalty 
was paid. 

Scenario III and IV were started out with one MS. 
The number of MS were being increased or decreased by 
X3 and X4. In addition, X1 and X2 also manage the link 
capacity of MS by disconnecting MPO or decrease the 
MPP throughput. The accumulated income in Scenario 
IV was higher than for Scenario III. 

It is observable on both Scenario III and IV that the 
use of X4, which will remove an MS, apparently reduced 
the system’s accumulated total income. Having two 
servers all the time seems to be better for the high traffic, 
provided that the extra server cost is not too high. The 
dynamic policies suspend X4 for 50 minutes and thus 
lengthen the time where two MSs are in operation. In 
Scenario IV, X4 was executed 26 times comparing to 35 
times in Scenario III.  

For the present scenarios none of the non-policy 
scenarios (I and II) gave good results for both the low 
and high traffic case. The policy-based scenarios seem to 
be more suitable with respect to good results over a 
variety of system load conditions. The accumulated total 
income in Scenario III and IV also have the potential to 
be improved by changing the XML-based policies.  
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7. Conclusion 
An architecture for policy-based adaptable service 

systems based on the combination of Reasoning 
Machines (RM) and Extended Finite State Machines 
(EFSMs) has been presented. The architecture compris-
es service system framework, adaptation mechanisms 
and data model. Policies have been introduced with the 
intension to increase flexibility in the adaptable service 
system specification and execution. 

The service components constituting the service 
system are modeled by some combination of EFSM type 
and RM type. The RM, which is controlled by a specific 
purpose EFSM denoted as EFSMΣ, is an independent 
component. The reasoning procedure applied by the RM 
is based on Equivalent Transform (ET).  

The Adaptation mechanism uses policies to control 
service systems when it is entering a reasoning condi-
tion. The use of policy can be of two types: static or 
dynamic. In the static case the reasoning system 
constituted by a service system adaptation manager 
determines a list of suggested actions that will control 
the behavior of the service system. In the dynamic case 
an additional RM, denoted as the policy composer, is 
added. The policy composer is able to compose policy 
on-the-fly, and has the ability to estimate or evaluate the 
consequences of the rules of a policy based on their 
goodness scores. 

The Data Model based on XML Equivalent Trans-
formation (XET) is used to express system constraint, 
system status, reasoning conditions, rules and control 
rules. The XML-based specifications are readily 
executable by XET-based RM. This also represents a 
flexibility feature of the proposed architecture. 

Four scenarios handling the capability configuration 
management of a music video on-demand service are 
presented with the intention to illustrate the use of the 
proposed architecture and the potential advantage of 
using dynamic policies. Scenario I and II use no 
policies. Scenario III uses static policies, while Scenario 
IV uses dynamic policies. There are situations where the 
use of no policy can be superior or equal to the use of 
policies. The selected system parameters can represent 
an optimal dimensioning. However, the same set of 
system parameters will likely not be optimal for other 
system traffic load cases. For the presented scenarios the 
use of no policy and one server is a good solution in the 
low traffic case, while the use of no policy and two 
servers is a good solution in the high traffic case.    

In the given scenarios, the service system operated 
under static policies give a relatively high income in 
both low and high traffic. The service system operated 
under dynamic policies, however, has a performance 

which is superior or equal to other scenarios in both the 
low and the high traffic case. In addition to having the 
potential for providing optimal solutions covering 
dynamic traffic situations, the proposed architecture also 
is a flexible tool for the experimentation with alternative 
policies with respect to optimization. 
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