

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL ENGINEERING
DEPARTMENT OF TELEMATICS

Mobility support for wireless
devices - within the TAPAS platform

Master thesis by
Eirik Lühr

Trondheim, January 2004

Preface Mobility for MicroTAPAS

Eirik Lühr ii Master Thesis

ii

Preface
This report is the result of my master thesis carried out at the Norwegian University of
Science and Technology (NTNU) in Trondheim, during the fall of 2003. The master
thesis was suggested by my advisor, Mazen Malek Shiaa, and is a continuation a
project assignment which was carried out during the spring of 2003.

The time spent on this project has been very interesting and meaningful, and I have
learnt a great deal about this particular field of study – mobility. The TAPAS
architecture is a great undertaking, and the learning curve was very steep.
Nevertheless, I feel that I have not only learnt the fundamental basics of the
architecture but also a deeper understanding of its inner workings.

First of all I would like to thank my advisor, Mazen Malek Shiaa, for all the time he
have spent explaining and outlining the various aspects of the TAPAS platform, and
for helping me along whenever the need arose – thank you! I am also thankful for the
care and support that my family always has given me – mom, dad and Eivind. Last,
but not least, a big thankful hug to my always supportive girlfriend, Anne!

Oslo, 11 January 2004

Eirik Lühr

Abstract Mobility for MicroTAPAS

Eirik Lühr iii Master Thesis

iii

Abstract
Telematics Architecture for Plug-and-play Systems, or TAPAS, is a software
architecture that facilitates for dynamic introduction of new distributed services, or
upgrading of existing ones, in a communication network. The Department of
Telematics, in cooperation with SINTEF, have implemented a prototype of this
architecture using the Java programming language. A lightweight version of TAPAS
has been specified and developed, and is aimed at deployment on small handheld
wireless devices – personal digital assistants (PDA).This report’s main area of focus
lies in designing and implementation of TAPAS Extended Management (TXM) and
TAPAS Extended Support (TXS) functionality for handling terminal and actor
mobility for the MicroTAPAS support architecture. In addition, a test application is to
be developed, and testing is to be performed.

Chapter one introduces the reader to the concepts behind TAPAS and MicroTAPAS,
as well as mobility support. A short overview of relevant previous papers on TAPAS
and mobility is also presented. Chapter two presents a literature review over related
technologies.

In chapter three, the mobility support for wireless devices are presented, and starts
with a list of definitions, before moving to the framework, and lastly presents terminal
and actor movement. The implementation of the specified mobility extensions are
discussed in chapter four, along with various diagrams, data files and various
additions and enhancements.

The test application is presented in chapter five, and is used in testing the
implemented functionality in chapter six. The three last chapters, seven, eight and
nine presents the faced challenges and solutions, suggested improvements and further
work, and, finally, the conclusion.

Table of contents Mobility for MicroTAPAS

Eirik Lühr iv Master Thesis

iv

Table of contents
Preface ...ii
Abstract ..iii
Table of contents.. iv
Table of figures and tables..vi
1 Introduction...1

1.1 Introduction to TAPAS..1
1.2 Introduction to MicroTAPAS..4
1.3 Introduction to mobility support..4
1.4 TAPAS papers on mobility and dynamic configuration..6

2 Literature review ..7
2.1 Active and controllable networks ..7
2.2 Mobile IP and Cellular IP..7
2.3 Mobile agents, multi agent and agent based systems ..8
2.4 Support middleware and platforms..9

3 Mobility support for wireless devices..10
3.1 Definitions ...11
3.2 Mobility framework ..13
3.3 Terminal Mobility ...20
3.4 Actor Mobility...22

4 Implementation of mobility..26
4.1 Overview ...26
4.2 Mobility entities ..27
4.3 Class diagrams...30
4.4 Capabilities..30
4.5 Data files ...31
4.6 Various enhancements and additions...34

5 Test application – MicroTester v.2 ..37
5.1 Motivation ...37
5.2 Functional requirements ..37
5.3 Non-functional requirements...38
5.4 Application overview ..38
5.5 Screenshots..38
5.6 Class diagram ..39
5.7 Suggested improvements...40

6 Testing and performance..42
6.1 Test Environment ..42
6.2 Test procedures..43
6.3 Test results...43
6.4 Performance...43
6.5 Unresolved issues ..44

7 Faced challenges and possible solutions..45
7.1 Connection time-out ..45
7.2 Subnet masks & MAC addresses...45

8 Suggested improvements and further work..47
8.1 Addressing...47
8.2 Suitability of J2ME..47
8.3 Session and user mobility ..47

Table of contents Mobility for MicroTAPAS

Eirik Lühr v Master Thesis

v

8.4 Security..47
8.5 Reliability ..47
8.6 Interoperability with TAPAS...48
8.7 Applications...48

9 Conclusion ...49
Acronyms ..50
Bibliography..51
Appendix A - MicroTAPAS... I

A.1 Main changes between MicroTAPAS and basic TAPAS ..I
A.2 Performance comparison between PDA and laptop..IV

Appendix B - MicroTAPAS with Mobility extension ..VII
B.1 Node.. VII
B.2 MobilityApplicationActor.. VIII

Appendix C - Javadoc ... IX
C.1 Hierarchy for MicroTAPAS.mobility package ...IX
C.2 Hierarchy For Package MicroTAPAS.debug..IX
C.3 Hierarchy For Package MicroTester.v2_0 ... X

Table of figures and tables Mobility for MicroTAPAS

Eirik Lühr vi Master Thesis

vi

Table of figures and tables
Figure 1-1: TAPAS basic architecture (Object Model) ...1
Figure 1-2: TAPAS theatre model..2
Figure 1-3: TAPAS layered design model – architecture...3
Figure 1-4: MicroTAPAS layered design model – architecture ...4
Figure 1-5: MicroTAPAS layered design model – operating MicroTAPAS system example (modified)5
Figure 3-1: Example TAPAS system set-up...11
Figure 3-2: TAPAS Mobility Platform (Object Model) ...13
Figure 3-3: Mobility framework...14
Figure 3-4: Hierarchy of mobility/TAPAS entities ..14
Figure 3-5: TAPAS basic actor model..16
Figure 3-6: TAPAS extended actor model ...17
Figure 3-7: Role-session relationship-tree..18
Figure 3-8: Terminal mobility in TAPAS ..21
Figure 3-9: Actor mobility in TAPAS..23
Figure 3-10: Message sequence of a general event-driven ActorMove procedure.................................24
Figure 4-1: Main MicroTAPAS user interface/debug GUI ..27
Figure 4-2: MobilityManagerFrame screenshot ...28
Figure 4-3: Simplified class diagram of the mobility package for MicroTAPAS30
Figure 4-4: DebugServer screenshot ..35
Figure 4-5: Communication model overview...36
Figure 5-1: Screenshots of MicroTester ...39
Figure 5-2: Class diagram of MicroTester v.2..40
Figure 6-1: Test network ..42
Figure 6-2: Summary of performance test-results ..44
Figure A-1: MicroTAPAS layered design model - architecture ..I
Figure A-2: TAPAS layered design model - architecture.. II
Figure A-3: MicroTAPAS synchronous communication model ... II
Figure A-4: TAPAS synchronous communication model .. III
Figure A-5: MicroTAPAS addressing scheme ... III
Figure A-6: TAPAS addressing scheme...IV

Table 1: MobilityRequest types..29
Table 2: Example of a node's offered capabilities: node.caps ..32
Table 3: Example node script ...33
Table 4: Example actor configuration file: <actorRole>.cfg ..33
Table 5: Hardware components in test environment ..43

Introduction Mobility for MicroTAPAS

Eirik Lühr 1 Master Thesis

1

1 Introduction
In this introductory chapter, four important topics will be discussed. The chapter starts
with an introduction to the Telematics Architecture for Plug-and-Play Systems
(TAPAS) and the main ideas and concepts behind it. Secondly, an introduction to a
version of TAPAS aimed at wireless handheld devices, MicroTAPAS, and the
motivation behind this support system will be given. Thirdly, the notion of mobility is
introduced, along with a quick overview of what this thesis is all about. The last
section summarizes some of the previous work on mobility related to TAPAS.

1.1 Introduction to TAPAS
The Telematics Architecture for Plug-and-Play Systems (TAPAS) is a research
project at NTNU which aims at developing and architecture for network-based
services systems with a) flexibility and adaptability, b) robustness and survivability,
and c) quality of service (QoS) and resource control. The goal is to enhance the
flexibility, efficiency and simplicity of system installations, deployment, operation,
management and maintenance by enabling dynamic configuration of network
components and network-based service functionality. Four main architectures have
been developed – the basic architecture ([JOHU1], [AAGF1]), mobility handling
architecture ([MALM1], [MALM2], [MALM3], [LILL]), dynamic configuration
architecture ([AAGF2], [AAGF3]), and the adaptive service configuration
architecture [AAGF3].

ServiceSystem

Capability

RoleSession

Manuscripts
Role

ConfigurationManager

UserNode

Status

RoleFigure

Director

Domain

Actor

ApplicationRoleFigure

ServiceComponent

Play

has

is_defined_by

uses

is_realized_by

manages

works_according_to

manages

constitute

has

offers

has

has

is_at

offers

executes
manages

behaves_according_to

managesuses

requires

is_defined_by

describes_super_position_of
projects

Figure 1-1: TAPAS basic architecture (Object Model)

The TAPAS basic architecture, illustrated in Figure 1-1, is based on generic Actors
(software components) in the Nodes of the network that can download Manuscripts
defining Roles to be played, each representing different functionality. Nodes may be
servers, routers and switches, and user terminals, such as telephones, laptops, PCs,

Introduction Mobility for MicroTAPAS

Eirik Lühr 2 Master Thesis

2

PDAs, etc. The model is founded on a theatre metaphor, as illustrated by Figure 1-2
[AAGF1, page 7], where Actors perform Roles according to predefined Manuscripts,
and a Director manages their performance (i.e. their plug-in and plug-out phases), and
also a Director represents a Domain. ServiceSystem consists of ServiceComponents,
which are units related to some well-defined functionality defined by a Play. A Play
consists of several Actors playing different Roles, each possibly having different
requirements on Capabilities and Status of the executing system. A RoleSession is a
projection of the behavior of an actor with respect to one of its interacting Actors.
Capability is an inherent property of a Node. The ability of Actors to play Roles
depends on the defined required Capability and the matching offered Capability in a
Node where they intend to execute. ConfigurationManager is responsible for
obtaining a snapshot of all system resources, and taking decisions on where and how
Capabilities and Actors may be installed and executed. Capabilities may be resources
(e.g. CPU, hard disk, transmission channels), functions (e.g. printing, encryption
devices), or data (e.g. user login, access rights).

Figure 1-2: TAPAS theatre model

Figure 1-3, as presented in [MELH1, page 15], gives an overview of the various
layers in the TAPAS architecture. Each layer contains different support functionality
and has by [MELH1, page 16-17] been summarized as follows:

• TAPAS Communication Infrastructure (TCI)1: TCI uses Java/RMI and
‘rmiregistry’ for communication between the various nodes which constitutes
a TAPAS domain.

1 Formelry known as PaP Node Communication Infrastructure (PNCI), as TAPAS was named Plug-
and-Play (PaP).

Introduction Mobility for MicroTAPAS

Eirik Lühr 3 Master Thesis

3

• TAPAS Node Execution Support (TNES)2: This layer makes it possible to
run TAPAS on a node, and facilitates routing of communication and other
essential tasks.

• TAPAS Actor Support (TAS)3: Makes it possible to create and execute
actors within the context of an operating system process. Additional
functionality is routing between actors and TNES instances. Each TAS
instance is a separate Java Virtual Machine (JVM) instances.

• TAPAS Director: The Director is responsible for the management of plays,
manuscripts and actors for its own TAPAS domain and interacts with
application actors.

• TAPAS Extended Management (TXM): Support of extended services not
required for TAPAS support functionality, but to satisfy specified operational
properties and requirements.

• TAPAS Extended Support (TXS): Required for the applications ability to
utilize TXM functionality.

• TAPAS Applications: The collection of application actors. Instances
created/removed by using ActorPlugIn/ActorPlugOut support functions.
Interfaces TAS.

• Non TAPAS applications: Functionality not defined according to Application
actor requirements, but is allowed to communicate with actors, and to utilize
TAPAS Support functionality.

A
pp

lic
at

io
ns

P
aP

 s
pe

ci
fic

 la
ye

rs

Infrastructure layer
TAPAS Communication Infrastructure (TCI)

TAPAS static
basic support

TAPAS
dynamic basic
support

TAPAS Node Execution Support (TNES)

TAPAS Actor Support (TAS)

Director (Actor)

TAPAS
extensions

TAPAS specific
applications

Non-TAPAS applications
interfaced to TAPAS
applications

TAPAS Extended
Management (TXM)

TAPAS Extended
Support (TXS)

TAPAS applications
(Actors)

Non-TAPAS applications

Figure 1-3: TAPAS layered design model – architecture

2 Formelry known as PaP Node Exection Support (PNES), for the same reason as above.
3 Formelry known as PaP Actor Support (PAS), for the same reason as above.

Introduction Mobility for MicroTAPAS

Eirik Lühr 4 Master Thesis

4

1.2 Introduction to MicroTAPAS
A specialized, downsized, version of the basic TAPAS architecture, MicroTAPAS,
has been specified, and a prototype developed [LUHE], and is aimed at wireless
devices with limited resources (i.e. memory, computing power and display), such as
telephones and PDAs. The aim of MicroTAPAS is to develop a support architecture
that, first of all, will enable these small devices to execute the TAPAS support system,
and to provide functionality that will enable them to roam a TAPAS domain, making
the mobility handling involved transparent to the end user. So far, the prototype of
MicroTAPAS does not have any advanced support functionality for handling
mobility, and is merely a version of TAPAS that enables the support architecture to
execute on these resource-constrained devices.

A
pp

lic
at

io
ns

P
aP

 s
pe

ci
fic

 la
ye

rs

Infrastructure layer
TAPAS Communication Infrastructure (TCI)

TAPAS static
basic support

TAPAS
dynamic basic
support

TAPAS Node Execution Support (TNES)

Director (Actor)

TAPAS
extensions

TAPAS specific
applications

Non-TAPAS applications
interfaced to TAPAS applications

TAPAS Extended
Management (TXM)

TAPAS Extended
Support (TXS)

TAPAS applications
(Actors)

Non-TAPAS applications

Figure 1-4: MicroTAPAS layered design model – architecture

Figure 1-4 [LUHE, page 9] illustrates the different layers of the MicroTAPAS
architecture, and is a modified model of the architecture model shown in Figure 1-3
above. The MicroTAPAS architecture had to be simplified some, as the target devices
could not easily handle the very extensive, but basic, architecture presented by
TAPAS. Most notably is the merging of the TAS and TNES layers, as well as
replacing Java/RMI communication with plain socket communication (not shown in
figure), these changes are all explained in detail in [LUHE].

The basic network connectivity or radio access type applied and used in the prototype
design and implementation was WLAN, which determined how the following
mobility management mechanisms be worked out, i.e plain socket routines and
pinging.

1.3 Introduction to mobility support
The first step in developing a truly mobile extension of TAPAS was to enable the
architecture to be executed on small handheld devices, such as PDAs, and was

Introduction Mobility for MicroTAPAS

Eirik Lühr 5 Master Thesis

5

realized with the introduction of MicroTAPAS. Although still a prototype,
MicroTAPAS shows that TAPAS is well suited to run on these resource constrained
devices, despite the fact that there are still a few issues related to the relative
performance of MicroTAPAS on these devices compared to execution on laptop and
desktop computers [LUHE, page 37]. The mobile nature of these devices makes them
ideal for developing, and subsequent testing, of support functionality for handling
various mobility issues, thus, MicroTAPAS will be used as the platform for designing
and implementing these TAPAS extensions.

The task of this project is to design and implement TAPAS Extended Management
(TXM) for providing extended mobility management routines and procedures, and
TAPAS Extended Support (TXS) for providing all the needed behavior and
performance extensions to the generic, but movable, actors, as well as mobility
support for mobile nodes and terminals. Both of these extensions belong in the TAPAS
extensions layer of Figure 1-4.

The TXM developed in this project contains routines and procedures that are beyond
the functionality and scope of the Director object, which, in the MicroTAPAS case,
will be realized by the MobilityManager (MM) object, likewise the TXS will contain
routines and procedures that are beyond the functionality and scope of the
MicroPNES object. The TXS functionality will be realized by the MobilityAgent
(MA) object. Figure 1-5 illustrates where the TXM and TXS objects will be located
on a running MicroTAPAS system. The figure is a modified version of the operating
MicroTAPAS system example found in [LUHE, page 9]. The MobilityManager and
MobilityAgent objects will be explained in greater detail in chapter 1.

Legend:

Node1

CVM

a1 a2

MicroPNES

B

Opsys/Network (PNCI)

Node2

JVM

d1

a3

MicroPNES

B

Opsys/Network (PNCI)

Node3: Web-server

Web-server

Opsys/Network

TAPAS generic
support

Plays

aX - MicroActor X
dX - MicroDirector X
B - MicroTAPAS bootstrap

Dynamic available
Static available
Non-TAPAS entities

ma1 mm1

Node4

CVM

a4

MicroPNES

B

Opsys/Network (PNCI)

ma2

maX - MobilityAgent X
mmX - MobilityManager X
 Wireless communication

Figure 1-5: MicroTAPAS layered design model – operating MicroTAPAS system example

(modified)

Introduction Mobility for MicroTAPAS

Eirik Lühr 6 Master Thesis

6

1.4 TAPAS papers on mobility and dynamic configuration
There are written a great number of papers, presentations and reports about the
TAPAS architecture (37 at the time of writing), ranging from general architecture
overview to specific implemented functionality. Most of this material is available on
the Internet at [http://tapas.item.ntnu.no]. Three papers, nevertheless, builds the basis
from which this project is the result, and a brief introduction to each of these is
appropriate in order to provide the reader with a basic understanding of the main
concepts behind the issue of mobility in TAPAS.

1.4.1 Mobility management in Plug-and-Play network architecture
[MALM1] presents mobility management within TAPAS, and the paper starts with a
brief introduction to essential TAPAS concepts and the TAPAS layered model, before
presenting different approaches for actor, terminal, user and session mobility
management. For each type of mobility management, they have presented “an early
set of mobility management algorithms or methods”, as well as exploring “a few
issues related to implementation design and propose as set of components to facilitate
the deployment of this platform in the available PaP applications.” The report
concludes, in essence, that several issues discussed in the paper need further
investigation. The authors argue that “we need to break up the overall PaP
architecture into subsystems to provide selected types of mobility, which for some
will be in the support and for others in the application layers” and further “we need to
find efficient ways to map our methods and procedures into proper applications and
communication platforms”.

1.4.2 User and session mobility in a Plug-and-Play architecture
“User and Session mobility in a Plug-and-Play architecture” [LILL], a master thesis,
revolves around user and session mobility in TAPAS. The report first presents general
object and engineering models for mobility support in TAPAS, before focusing on
user and session mobility. In the chapter titled “The mobility architecture”, the
candidate states the functional and non-functional requirements for the framework and
presents a UML use-case diagram of the user and session mobility, as well as class
diagrams. In order to store user and session information between sessions, a system
utilizing XML-files was devised. These XML-files store information such as roles,
session descriptions and user profiles. The reminder of the thesis presents and
discusses two sample applications, chat and file transfer, providing UML-diagrams
and message sequence charts for both.

1.4.3 Mobility Support Framework in Adaptable Service
Architecture

In [MALM4], a thoroughly presentation of a mobility support framework, aimed at a
adaptable service architecture, is presented. The two first sections give the reader an
introduction to TAPAS and mobility, and an overview of related work. The following
six sections, which compromise the main content of the paper, deals with various
aspects of mobility and, finally, a conclusion in section nine. The main section of the
paper starts off with presenting an overall terminology framework and a section about
service management and related considerations in the mobility handling architecture.
Section five, six and seven each describes personal and user session mobility, user
mobility and terminal mobility. Section eight presents some implementation issues
and experiences.

Literature review Mobility for MicroTAPAS

Eirik Lühr 7 Master Thesis

7

2 Literature review
This literature review consists of four sections, where each section discusses a certain
area with relevance to TAPAS. These areas are; active and controllable networks,
mobile and cellular IP, mobile agents, multi agent and agent based systems, and
finally support middleware and platforms. A quick overview will be given and the
relevance to TAPAS discussed.

2.1 Active and controllable networks
Active Networks are classified by two approaches: active packets and active nodes.
The first builds on the integration and deployment of services in the user flow, while
the second is based on deploying services dynamically in nodes.

The U.S. Department of Defence’s (DoD) Defence Advanced Research Projects
Agency (DARPA) has set in motion an active networks program that aims at
producing a new networking platform. The architecture “is based on a highly dynamic
runtime environment that supports a finely tuned degree of control over network
services. The packet itself is the basis for describing, provisioning, or tailoring
resources to achieve the delivery and management requirements.” [DARP]

The Distributed Computing and Communications Lab at Columbia University have
developed a programming language and environment, called NetScript, for building
networked systems, and is thoroughly described in [COLU]. The programs that are
designed and implemented in this language are organized as mobile agents that after
deployment to remote systems can be executed either under local or remote control.
The purpose of the project is to simplify the development of networked systems, and
their remote programming, as “networked systems are difficult to design, implement,
deploy and manage.” [COLU]

An Active Networks project at Massachusetts Institute of Technology (MIT), which
has been funded by DARPA, has developed the Java-based Active Node Transfer
System (ANTS), for experimenting with active networks [MITE].
There are a number of other projects on active networks as well, among them the
SwitchWare project undertaken by the University of Pennsylvania and Bellcore,
which is described in [UPEN].

These are just a few of the research projects going on in the field of active networks.
There are some obvious similarities between TAPAS and the technologies presented
above, in particular the ‘active nodes’ approach. However, TAPAS is based on code-
on-demand and not pre-programmed packets, as is the case for active networks. The
nodes in TAPAS need only to run a fixed-sized executable and have a set of basic
settings, such as initial web address and configuration files, while active networks
need to include how packets be interpreted in the packets themselves.

2.2 Mobile IP and Cellular IP
When a computer is connected to a specific network, it is allocated an IP address,
when that computer moves to another network it is given a new IP address, i.e. by
Dynamic Host Configuration Protocol (DHCP). This scheme works fine in most

Literature review Mobility for MicroTAPAS

Eirik Lühr 8 Master Thesis

8

cases, but a problem arises if files or resources on that computer are sought by others,
since they would not know that computers address.

This is where mobile IP comes into the picture, and with this transparent scheme,
computing continues as normal when a host is moved from one subnet to another.
When the computer is connected to its home base, packets are routed in the usual way.
When it is connected elsewhere, two agent processes take over the routing, the home
agent (HA) and the foreign agent (FA) running at fixed nodes on the two subnets.
When the mobile host leaves its home domain, the HA is informed of this, and the FA
of the visited domain relays back to the HA that the host is available in that domain.
The HA then operates as a proxy, relaying all traffic to the mobile host through the
visited domains FA.

According to [COUG, page 104], “The MobileIP solution is effective but hardly
efficient. A solution that treats mobile hosts as first-class citizens would be preferable,
allowing them to wander without giving prior notice and routing packets to them
without any tunneling or rerouting.” This is clearly a drawback to the technology, but
could be amended in the future to work along the lines of how cellular phones roam
networks.

IP Mobility is also described at great depth in several Request For Comments (RFC)
documents, among these are “IP Mobility Support” [RFC2002] and “IP Mobility
Support for IPv4” [RFC3344]. These two RFC’s cover very specific mechanisms
dealing with issues related to IPv4.

There is no support for terminal mobility in TAPAS, but, as explained in section 1.4,
[MALM1] discusses a Mobility Management platform for TAPAS. In addition
[MALM1] and [LILL] have proposed a scheme for user and session mobility, using
the principles of mobile IP, including home and foreign agents.

2.3 Mobile agents, multi agent and agent based systems
A mobile agent is a program, script or package that physically travels around a
network, and performs operations on hosts that have agent capabilities. These agents,
which operate autonomously, usually has very specific tasks, such as fetching prices
of merchandise from on-line stores, or to collect weather information. Apart from
interacting with all sorts of operating systems, databases or information systems,
agents can also interact with other agents, meeting in agent-gathering places to
exchange information. There are a number of different mobile agent architectures and
languages available today, such as Knowledge Query and Manipulation Language
(KQML) as presented in [UMBC], which is part of the broader ARPA Knowledge
Sharing Effort [STAU], and is a “language and protocol for exchanging information
and knowledge”. Although agent technologies have received a lot of attention in
recent years, [REID] argues that “mobile agency has failed to become a sweeping
force of change, and now faces competition in the form of message passing and
remote procedure call (RPC) technologies”.

The very autonomous nature of mobile agents sets them wide apart from the basic
TAPAS’ request/response interactions, although the resulting action might be
comparatively equal, and a TAPAS node can almost be seen upon as a stationary
agent. However, with the introduction of ActorMobility concepts into the TAPAS

Literature review Mobility for MicroTAPAS

Eirik Lühr 9 Master Thesis

9

architecture presents an Actor model that can almost behave as a mobile agent. A
MobileActor is a controllable mobile agent with limited autonomousity.

2.4 Support middleware and platforms
Two available middleware platforms are discussed in this section, CORBA and Jini.

2.4.1 CORBA
The Common Object Request Broker Architecture (CORBA), by the Object
Management Group (OMG) [OMG1], is an open and vendor independent architecture
and infrastructure that computer applications can use to work together over networks.
The architecture uses a standard protocol, IIOP, whereby a CORBA-based program
“from any vendor, on almost any computer, operating system, programming language,
and network, can interoperate with a CORBA-based program from the same or
another vendor, on almost any other computer, operating system, programming
language, and network.” [OMG2].

CORBA is, thus, only an architecture and infrastructure which applications can use to
communicate and interoperate over a network, a networking technology. TAPAS on
the other hand, is a software architecture that facilitates for dynamic introduction of
new distributed services, or upgrading of existing ones, in a communication network.
TAPAS could hence have been built using the principles of CORBA to carry out
communication, and as such is not a ‘competing’ technology in that respect.

2.4.2 Jini Network Technology
"Jini network technology (which includes JavaSpaces Technology) is an open
architecture that enables developers to create network-centric services – whether
implemented in hardware or software – that are highly adaptive to change. Jini
technology can be used to build adaptive networks that are scalable, evolvable and
flexible as typically required in dynamic computing environments." [SUN1]

By using objects that move around the network, the Jini architecture makes each
service, as well as the entire network of services, adaptable to changes in the network.
The Jini architecture specifies a way for clients and services to find each other on the
network and to work together to get a task accomplished. Service providers supply
clients with portable Java technology-based objects that give the client access to the
service. This network interaction can use any type of networking technology such as
RMI, CORBA, or SOAP, because the client only sees the Java technology-based
object provided by the service and, subsequently, all network communication is
confined to that Java object and the service from whence it came.

Jini offers some of the same promises as TAPAS, but its foundations are built on
some of the same principles as movable agents and its autonomous nature is thus not
comparable to the explicit request/response interactions of TAPAS.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 10 Master Thesis

10

3 Mobility support for wireless devices
This chapter constitutes the first of the two main chapters of this thesis, the second
one being chapter 4; Implementation, and contains three sub-sections, in addition to
this introduction. The first section introduces the mobility framework. This
framework is the basic building block of the mobility extension to TAPAS. The
second and third sections discuss terminal and actor mobility, respectively, and how
these can be achieved.

The aim of this thesis, as stated in section 1.3 on page 1, is to design and implement
TAPAS Extended Management (TXM) for providing extended mobility management
routines and procedures, and TAPAS Extended Support (TXS) for providing all the
needed behavior and performance extensions to the generic, but movable, actors, as
well as mobility support for mobile nodes and terminals. The specific task is thus to
design and implement actor and terminal mobility in a TAPAS system, realized by
MobilityManager (MM) and MobilityAgent (MA) objects. These two TAPAS
extension objects may collectively be referenced to as MobilityEnities. An example
TAPAS system deployment might look like the one illustrated by Figure 3-1 below.
This system consists of three domains, A through C, and domain B is divided into two
sub-domains, B1 and B2. All domains consists of at leas one Dir/MM node, and any
number of MM and/or MA nodes. The specific distribution of Dir/MM, MM and MA
nodes will be explained in section 3.2.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 11 Master Thesis

11

Domain C

Domain B

Domain A

MA

MA

Network

MA

MA

AP

AP

AP

Sub-domain B2

Sub-domain B1

MA

MA

Legend:

AP Dir - Director
MM - MobilityManager
MA - MobilityAgent

WLAN AccessPoint

Wireless communication

Domain

Sub-domain

Dir/MM

MM

Dir/MM

Dir/MM

MA

Web-server

Figure 3-1: Example MicroTAPAS system set-up

The goal, therefore, is to design management and support functions that; a) will allow
a terminal to move from any one domain to another, including movement between
two sub-domains, and b) to allow an actor located on any of these nodes to move from
any one node to another (or within the same node for that matter). The system should
at all times be kept in a consistent state, and any registries that hold information must
therefore constantly be kept up-to-date.

3.1 Definitions
This is a list of definitions commonly referred to throughout the rest of this report:

• Node is a physical network entity capable of taking part in TAPAS-based
services, by running TAPAS support and TAPAS service component(s). This
may be directly mapped to PCs, handhelds, mobile phones, or any other device
with a computing capacity and operating memory capable of running external
applications. A node is uniquely identified by its location. Terminal is one
type of node that is associated with end users as their means of accessing
services.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 12 Master Thesis

12

• Location (Access point) is the physical address information. This can be
network address, geographical location, etc. A location is used to uniquely
address nodes running TAPAS service components.

• Domain represents a population of actors and/or nodes managed by one

director. Domain concept in TAPAS is used to manage and administrate the
federation of responsibility between different director objects. In TAPAS two
types of domains are distinguished: Home domain and Visitor domain.

• Sub-domain is a collection of one or more nodes in a domain that share their

director with a collection of one or more other nodes, but have their own
instance of a MobilityManager.

• Actor is the generic object of TAPAS with a generic behavior, which can

behave according to a manuscript specifying certain functionality.

• Actor child session represents a session initiated and maintained by an actor,
which results in instantiating new actors with their respective data, role-
sessions, settings, etc.

• Role-Session is a projection of the behavior of an actor with respect to one of

its interacting actors. It represents a relationship between two actors (initiator
and cooperator).

• Actor Mobility stands for the movement of instantiated functionality at a node

that is executed by an actor. This implies a change and update of the actor
location-specific information.

• Role-Session Mobility stands for the re-instantiation of role-sessions of moved

actors by re-creating them at the new location where the moved actors is re-
instantiated.

• Terminal Mobility is the movement of terminals and changes their location

while maintaining access to services and applications.

• Mobility Agent is the component of the architecture that is responsible for
managing terminals location-related information. It performs location updates
when a terminal changes location.

• Mobility Manager is responsible for managing actors and terminals

connectivity and mobility.

Figure 3-2 shows the object model of the TAPAS Mobility Platform, and is a revised
version of Figure 1-1. Those objects that have been introduced since the earlier
version are shaded grey.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 13 Master Thesis

13

Capability

Manuscripts

Role

User

Node

Director

Domain

Actor

ApplicationRoleFigure

ServiceComponent

Play

uses

is_realized_by

manages

manages
constitute

offers

offers

executes

behaves_according_to

uses

requires
is_defined_by

UserProfileBase

Terminal

LoginAgentVisitorAgentUserAgentMobilityAgentMobilityManager

UserSessionBase

manages

manages

is_at

manages
manages

handles

handles

Figure 3-2: TAPAS Mobility Platform (Object Model)

3.2 Mobility framework
The MicroTAPAS mobility framework lies at the hart of the TAPAS extended
mobility platform, and provides internal support functionality for the mobility entities
that are responsible for handling the various mobility issues. The framework, offering
internal support functionality only, does not deal directly with such issues as terminal
or actor movement, but provides the necessary functionality for storing, accessing and
updating various types of information, routing of requests to and from actors, and
offers a common interface for application development. Figure 3-3 illustrates how the
mobility framework fits in with the TAPAS extensions layer, and its TXM and TXS
objects.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 14 Master Thesis

14

TAPAS Extensions layer

TXMTXS

Mobility Framework

MM MA

Lower layers

Higher layers

Figure 3-3: Mobility framework

3.2.1 Distribution of mobility entities
This section takes a look at where the two mobility entities are to be placed in a
TAPAS domain, i.e. the hierarchy of the various entities and how they relate to each
other. Figure 3-4 illustrates how the hierarchy of the different entities will be ordered
in one particular node consisting of two sub-domains.

Dir/MM

MA MMMA

MAMA

Sub-domain 1

Sub-domain 2

Figure 3-4: Hierarchy of mobility/TAPAS entities

As can be seen in Figure 3-4, it is possible to order the different MM nodes in a multi-
level hierarchy. This feature will make it more resource efficient to setup and manage
larger TAPAS networks, as the management traffic overhead will not increase
exponentially with respect to the number of nodes/domains in a network. With
multilevel hierarchies, management messages are only transmitted between the
affected parties. If one had a completely flat structure, all management messaging
would have to be transmitted to all the connected MM’s in the network.

3.2.1.1 Director and MobilityManager nodes
A Director node is a node where the director of the TAPAS domain runs, while any
other node, client nodes for instance, are nodes that do not run a director. In any node
that runs TAPAS support actor instances can be instantiated. TAPAS domain contains

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 15 Master Thesis

15

in addition to director node and client nodes a web server to serve as the play
repertoire.

A traditional TAPAS domain contains one Director node, and any number of ‘client’
nodes (i.e. nodes that require the services of a Director). With the introduction of
mobility entities, the notion of only Director and client nodes had to be expanded. On
each node running a Director, a MobilityManager is also present, and that type of
node is called a Dir/MM node, as seen in the top position in Figure 3-4. The reason
for co-locating the Director and MM is simply the fact that to successfully provide
mobility to all nodes and actors, each domain must have a MM to manage the
mobility functionality, and as each domain already contains a Director node, it was
natural to co-locate the two at a node.

3.2.1.2 MobilityManager nodes
There exists no definition of sub-domains in the traditional TAPAS architecture, but
the addition of these semi-autonomous domains was deemed necessary in order to
increase the system flexibility. A sub-domain consists of one MM and any number of
‘client’ nodes, and share its Director with all the sub-domains located within the same
super-domain. In Figure 3-4 there are two sub-domains, shown by the stippled read
box. If one considers a domain with many connected terminals, and some of these
terminals are constantly roaming the network (or its actors are), the MM of that
domain would constantly be engaged in updating registries and moving terminals and
actors between domains and sub-domains, and its workload would certainly outweigh
the workload of the Director. By allowing more than one MM to share a Director one
can distribute the work done my these managers over several terminals, and increase
or decrease their numbers as necessary, without having to update each terminal with a
new set of configuration files, as each MM is assigned a range of addresses
considered its own and will automatically take charge of those terminals its supposed
to be manager for.

3.2.1.3 MobilityAgent nodes
Each node in a TAPAS domain which is neither a Dir/MM node nor MM node
contains a MobilityAgent, and as such is considered a ‘client’ node. The MA will be
responsible for sending updates to its local MM, i.e. synchronizing, and will be the
mobility interface for actors upwards, and the terminal downwards. All mobility
requests to and from the MM are routed through the local MA.

3.2.2 Actor model
Before moving on to discuss the particulars of terminal and actor mobility, a basis for
an extended actor model needs to be established, due to the limitations put forward by
the existing, basic, actor model. A short introduction to the basic actor model is given,
before a more detailed explanation of the extended version is presented.

3.2.2.1 Basic actor model
In the general actor model, there is a distinction between two main functionality
constituents, support functionality and behaviour. Functionality is utilised by
methods, and therefore will be denoted as Methods, and a manuscript is equivalent to
a behaviour definition, and therefore will be denoted by Behaviour.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 16 Master Thesis

16

Support functionality is mainly predefined routines and procedures with a well-
established definition, access means, and mechanisms. This is a property of the
generic actor object, which is part of the TAPAS platform or middleware, and
application functionality or the manuscript that contains the definition of the
behaviour of the application actor. This is a property of the application role-figure
object (Actor + manuscript).

Behaviour, on the other hand, will be characterised by a specification that obeys the
rules of a state machine model, and will have a current state as a description of its
status.

In Figure 3-5 there is a basic sketch of the actor model with methods and behaviour to
stand for these two parts respectively. A method consists of a set of instructions and
actions to be executed within a context that works mainly as a method call with
calling and return procedures. In the figure, a distinction between movable and un-
movable components has been made.

Dynamic and static components, in this context, simply highlights that some
components are changed/altered during normal operation of the actor. For example, an
actor’s state is changed dynamically depending on its state (i.e. the actor is ready or
busy). The behaviour, in contrast, is static, in the sense that for it to change a new
manuscript must be downloaded and instantiated.

Actor
methods behaviour

interfacesInput
gate

Output
gate

state

Dynamic & un-
movable component

Static & un-movable
component Communication gate

Legend:

Figure 3-5: TAPAS basic actor model

This distinction between methods and behaviour gives the model more flexibility and
maps it properly to existing concepts in middleware platforms and programming
paradigms, as well as fitting the specification techniques applied in teleservices.

3.2.2.2 Extended actor model
The basic actor model provides a well defined definition of an actor to be used in a
static environment (i.e. the actors or terminals are not moved). With the introduction
of Actor and Terminal mobility, however, a slightly more complex structure is needed
in order to comply with the specification. When an actor or terminal is moved, the
actors affected by the operation needs to be able to continue their operation after

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 17 Master Thesis

17

being moved – something the basic actor model could not handle. An illustration of
the TAPAS extended actor model is shown in Figure 3-6.

Movable components are those components that are moved (copied) to a new instance
of the actor (as part of the actor move procedure). Un-movable components, on the
other hand, are not moved but re-instantiated at the new location (i.e. downloaded
from the codebase).

Actor
methods behaviour

queue

interfaces

Input
gate

Output
gate

state

Legend:
Dynamic & movable
component

Static & un-movable
component Communication gate

capabilities

Figure 3-6: TAPAS extended actor model

In the four subsections presented below, four properties of the extended actor model is
presented and explained; interfaces and role-sessions, behaviour definition,
capabilities and requirements, and queued requests

3.2.2.2.1 Interfaces and role-sessions
Some platforms often use the term interface to describe the relationship between
entities in the platform. In the TAPAS architecture, the term role-session is used to
describe such relationships instead of interface. All application-actors in the TAPAS
architecture have at least one role-session (refer to Figure 3-2) associated with them –
its creation, or initial, role-session. This role-session is a relationship between the
creator of the actor, referred to as the initiator, and the created actor itself, referred to
as the co-operator. The co-operator can at a later stage become the initiator of one or
more other actors, and in the end one can have a whole tree of relationships. Figure
3-7 illustrates how such a tree might look like. Each left-hand role-session (RS) is the
actor’s co-operator role-sessions, and the right-hand ones are its initiator role-
sessions.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 18 Master Thesis

18

A1

RS1 RS2

RS3

RS4

A2

RS2

A4

RS4

A3

RS3

A5

RS5

RS5

Role-session tree
(extended actor model)

RS6 RS6

Figure 3-7: Role-session relationship-tree

The first application-actor in any TAPAS system will be created with a TNES object
as its initiator (the TNES object is not shown in the figure). Each instantiated actor
can have more than one initiator, as is the case for actor A5 in Figure 3-7, and can be
the initiator of zero or more other actors. Each role-session, however, can only
represent a one-to-one relationship between one initiator and one co-operator.

When an actor is moved (or a terminal with one or more instantiated actors), all the
role-sessions the actor is either the initiator or co-operator of must be updated in such
a way that the system is not left in an inconsistent state.

3.2.2.2.2 Behaviour definition
In the actor model there is a distinction between two main functionality constituents.
The first is the support functionality which consists mainly of predefined routines and
procedures with a well-established definition, access means, and mechanisms. This is
a property of the generic actor object, which is part of the TAPAS platform or
middleware and application functionality or the manuscript that contains the
definition of the behaviour of the application actor. This is a property of the
application role-figure object (Actor + manuscript). Secondly, behaviour will be
characterized by a specification that obeys the rules of a state machine model, and will
have a current state as a description of its status. This distinction between methods
and behaviour gives the model more flexibility and maps it properly to existing
concepts in middleware platforms and programming paradigms, as well as fitting the
specification techniques applied in tele-services.

3.2.2.2.3 Capabilities and requirements
Some actors in a TAPAS system might have special requirements that must be
fulfilled by the target node for the actor to successfully carry out its tasks. It would,
for example, be essential for an actor which acts as a printing proxy that the node on
which it is plugged in has an attached printer. Another example would be an actor for
displaying colour pictures – it would require that the node on which it is plugged in
has a display that could handle, say, 65K colours. An actor’s required capabilities

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 19 Master Thesis

19

should therefore be matched with the target node’s offered capabilities prior to the
actor being plugged in at that node.

[AAGF2] proposes an extensive framework for capability specification and selection,
including a very detailed and broad example [AAGF2, page 4] which includes a range
of offered and required capabilities. The incorporation of such an extensive
framework is far beyond the scope of this thesis, but a limited framework is included
to enable the actors to exercise some control on the type of executing environment
they are about to be plugged into. The capabilities that can be consumed for this
prototype of mobility support are processing power, operating memory, screen
resolution and number of colours on the display.

These capabilities are defined as follows:

• Processing power is the clock frequency of the processor of the device, and
will be measured in megahertz (MHz).

• Operating memory refers to the total amount of memory that the device has for
executing applications. This quantity will be measured in megabytes (MB).

• Screen resolution is the maximum resolution of the display of the device, both
horizontally and vertically, and is measured in pixels.

• Number of colours is the total number of colours that the display may draw
simultaneously at any given moment. A black and white display, for example,
has only two colours, while a modern PDA might be able to draw as many as
65’000 colours simultaneously.

The actor’s required capabilities should be stored in a file that is accessible by the
TAPAS system, either locally or at well known location. These capabilities are static
and should not be changed over the lifetime of the actor. The node’s offered
capabilities should, if possible, automatically be determined by the TAPAS system at
start-up, and continuously monitored throughout the lifetime, or existence, of the
node. Those capabilities that can not be determined automatically should be stored in
a file in the local file system, at a location that is known to TAPAS.

When a node receives a request from the director to plug-in an actor, actorPlugInReq
(APIR), the TNES instance at that node should locate the actors required capabilities
and compare them with the capabilities that the node has to offer. The APIR can be
either a stand-alone plug-in request, or a plug-in request as part of an actor move
procedure. If all the offered capabilities are equal to, or exceeds the required
capabilities, the plug in of the actor is given a green light. Otherwise, the director is
informed of the discrepancy and the plug in is a failure.

In this version of mobility support, actors can only consume capabilities, and not offer
any to other actors or nodes. In a future version of this mobility extension, where a
more complete framework for capability specification and selection is to be
incorporated, actors should also be able to offer capabilities.

3.2.2.2.4 Queued requests
The movement of an actor, either within a node, or between two nodes, is not an
instantaneous event, and, theoretically, the actor could receive requests during the
move operation. The extended actor model should implement a scheme that takes this
into consideration. One possible solution, and the simplest, is to simply discard all the

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 20 Master Thesis

20

requests. This might be a viable option for some applications; especially for those
where the old requests are out-dated by the time the new actor is ready to consume
them. An example would be an application for streaming sound over the network,
where it makes no sense in replaying sound-bits that might be several seconds old.
This can be compared to using UDP datagrams for streaming speech in IP telephony
over a network.

Another possible solution is to queue all incoming requests during the movement
phase. All requests to the old and soon-to-be-discarded actor and to the new and not-
yet-operational actor would be put in queues. When the new instance of the actor is
initialized and ready to resume operation, all the queued request will be executed in a
systematic manner. In a chat application, for example, this scheme would offer a
better solution than to throw away all incoming messages while the actor is relocated.

Realizing that different actors might want to use different schemes for handling in-
between-requests (requests received while in a movement phase), the most flexible
solution would be for the actors themselves to choose this at runtime. This could be
realized by including the desired option in a text file that could be read by the system
if the actor was about to be moved from one location to another.

3.3 Terminal Mobility
In TAPAS, terminals realize the interface towards the end user, whilst nodes are
viewed fixed as seen from their location point of view, though they might be given
changeable or dynamic network addresses. The mobility as a feature is mainly
provided for terminals, as end users want to access their subscribed services whilst on
the move at different locations.

3.3.1 Definition
A terminal, as defined in section 3.1, is one type of node that is associated with end
users as their means of accessing services. The reader should keep in mind that the
term terminal is replacing more concrete terms as PDA or laptop. Thus, a reference to
a terminals address would be the same as referring to the terminals IP-address.

A terminal is said to move when its physical network address is changed [MALM1,
page 11]. In general, there are two ways in which a terminal/node can have its address
changed; either by changing the network properties/configuration of the node
(explicit), or the node is given a new network address by a central network element
(implicit), i.e. by dynamic host configuration protocol (DHCP).

Terminal mobility will enable a terminal to move between different (sub-) domains,
while the terminal’s user can access his or her subscribed services, with none or
minimal disruption.

3.3.2 Overview
In order to achieve terminal mobility one needs to track the movement of the
terminals participating in a TAPAS service network. Thus, a manager should be
responsible for updating the location of all nodes that participate in a possible TAPAS
service. This central and supervisory agent will be referred to as MobilityManager,
and runs at an address known to all other nodes, for instance its network location may

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 21 Master Thesis

21

be part of a configuration file. MobilityAgent will issue LocationUpdate procedure,
upon changing terminals location, and NodeDiscovery procedures, once a
communication is required with other terminals or nodes.

Figure 3-8: Terminal mobility in TAPAS

Figure 3-8 [MALM4, page 14] demonstrates a general case of terminal mobility. A
terminal moves from one domain to another, from domain1 to domain2, while its
MobilityAgent ensures that MobilityManager is updated on this movement. However,
when it reaches a limit of one domain, or the so-called out-of-coverage, it is
considered as inaccessible. Meanwhile, requests from other nodes addressed to this
terminal should be preceded by a NodeDiscovery procedure, which is executed
through the corresponding MobilityManager is a domain. Upon entering another
domain a terminal may be allowed to access certain services based on a director-to-
director authentication process. MobilityManagers operate according to a set of
domain specific set of setting and requirements, which govern the privileges and
access rights specific users or terminals might have.

3.3.3 Terminal mobility scenarios
There are three different scenarios which the terminal mobility support should be able
to handle. These scenarios, of different complexity, deals with which controlling, or
supervisory, entities are switched, if any. The controlling entities, MobilityManager
and Director, have well defined areas of operation (domains), i.e. they control all
terminals within a certain address range. This was described in section 3.2.1. This
section thus deals with the different scenarios occurring when a terminal moves
within one domain or between different domains. The three scenarios are described
below.

3.3.3.1 Within same sub-domain
The first and most simple, terminal move operation occur when a terminal moves
within a domain or sub-domain. This means that the terminal will have the same
responsible MobilityManager and Director as it did prior to the move.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 22 Master Thesis

22

3.3.3.2 Between two sub-domains within the same domain
The second scenario is when a terminal moves between two sub-domains within the
same super domain. During such an operation, the terminal’s responsible
MobilityManager is switched, but the Director will be the same.

3.3.3.3 Between two domains
The third, and most complex, operation occurs when a terminal moves between two
separate domains. This operation requires that both the controlling MobilityManager
and Director entities are exchanged for those which govern the new domain.

3.4 Actor Mobility

3.4.1 Definition
Actor mobility is defined as the movement of instantiated functionality from one
node, along with its properties, such as behaviour, capabilities, role-sessions, to
another node, in a transparent manner for all other actors. Actor movement can be
initiated as a result of different reasons, e.g. changed capability requirements,
deterioration of available resources, dynamic change in configuration, change in
functionality, or as a consequence of terminal mobility. Moved actors need to be able
to carry on their functionality after being re-instantiated at the new location.

3.4.2 Overview
An actor in the TAPAS context, as presented in section 3.2.2, is described by the
following parts: a) set of interfaces or role-sessions, b) behaviour definition that has a
state, c) set of capabilities and requirements, and d) queue of incoming requests.
Mobility in this context can be achieved by re-instantiation of actors with these parts
preserved (if desirable). Different strategies might be employed to ensure the
successful movement of an actor, for example, how to handle the queue of incoming
requests; should it be dismissed, transferred to the new instance or be carried out prior
to moving the actor.

In essence, the move procedure is defined by, or equivalent to, a sequence of
ActorPlugOut, ActorPlugIn, CapabilityChange, CreateInterface, and
BehaviourChange requests, which are part of the basic architecture, and used to
destroy an actor, instantiate it, update its capabilities, set a role-session with another
actor, and change the manuscripts it executes, respectively.

To allow for different interpretations by run environments, programming languages,
and operating aspects, certain conditions must be specified that will control this
procedure. A basic set of conditions might be; a) capability and interface parts may be
reconstructed through applying supplementary CapabilityChange and CreateInterface
procedures, b) behaviour part must be the same, and state information may be
transferred using BehaviourChange, and c) queue and method parts will be dismissed.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 23 Master Thesis

23

Figure 3-9: Actor mobility in TAPAS

Figure 3-9 [MALM4, page 12] presents a general scenario for actor mobility which
involves two different domains, domain1 and domain2 and a general actor instance. In
accordance with a set of conditions, i.e. ‘a’, ‘b’ and ‘c’ presented above, the actor,
which might encompass one or several child sessions, is moved across the two
domains. It can be seen from the figure that the actor has two relationships, or role-
sessions, RS1 and RS2 with Server1 and GenericRole, respectively. The GenericRole
actor is offering services which are available only within domain1, while Server1
provides global services.

When an actor is moved, as pointed out in section 3.2.2, all the parts that constitutes
the actor must be recreated or recovered at the new location. However, certain
elements might not be recoverable or have lost its relevance. For instance, certain
capabilities might not be available at the new location, or a role-session is no longer
relevant (as is the case for the relationship with the domain-specific GenericRole in
the two domains).

The MobilityManager (MM) within a domain (or sub-domain) is always responsible
for managing the accessibility to this actor, thus, the MM must be notified of the
actors new location once the actor is up-and-running at that location. The actor will
notify the MM with a LocationUpdate request. Requests to actors are always preceded
with an ActorDiscovery requests sent to the local MM, thus providing up-to date
location information to all movable actors.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 24 Master Thesis

24

Actor1L1 MobilityManager

Actor1L2

ActorMove(L2)()

ActorPlugIn(L2, behaviour)

CapabilityChange(cap)

CreateInterface(RS1,RS2)

BehaviourChange(RoleFigure,State)

LocationUpdate(Actor1L1,L2)

ActorDiscovery(Actor1)

ReturnResult(L2)

Actor1 receives
a move request
to move to location L2

Actor performs
PlugOut

Other actors perform
ActorDiscovery prior
to sending requests

Figure 3-10: Message sequence of a general event-driven ActorMove procedure

Figure 3-10 [MALM4, page 13] illustrates a possible message sequence of an actor
changing and updating its location, while some node performs an ActorDiscovery
procedure looking up for this actor. Upon receiving the move request, ActorMove, a
series of actions need to be performed to re-instantiate the actor instance at the new
location. Firstly, an ActorPlugIn procedure is carried out, then recovering of
capabilities, role-sessions, behaviour should follow via CapabilityChange,
CreateInterface, and BehaviourChange procedures, respectively. Secondly, the
MobilityManager is updated via a LocationUpdate procedure. This particular example
is based on an event driven ActorMove (i.e. the actor is explicitly commandeered to
move), however, performing certain types of checks at specified intervals (i.e. check
that required capabilities does not degrade below an acceptable level), could trigger an
implicit ActorMove procedure.

3.4.3 Actor mobility scenarios
When moving an actor, there are four possible scenarios, and, as was the case for
terminal mobility, these scenarios have different levels of complexity. The different
scenarios are based on at what level in the hierarchy the move is affecting the
controlling entities. For example, a move within the node does not affect the local
MobilityManager in any degree, while a move between two domains affect not only
the two MMs but also the Directors in charge of each domain.

3.4.3.1 Within same node/terminal
Although it does not make much sense to have an actor move within the same
terminal, this scenario has been included to further emphasise the flexibility of the
actor mobility procedures, as well as providing for easier testing and verification of
the model.

Mobility support for wireless devices Mobility for MicroTAPAS

Eirik Lühr 25 Master Thesis

25

3.4.3.2 Within same sub-domain
This is the most effortless of the inter-terminal actor move scenarios, and occurs when
an actor is moved between two terminals being governed by the same
MobilityManager (and Director).

3.4.3.3 Between two sub-domains in the same domain
When an actor is moved between two sub-domains in the same domain, the governing
MM of the first domain is exchanged with the MM of the second domain, but the
Director entity will be the same.

3.4.3.4 Between two domains
The most complex form of an actor move procedure occurs when an actor is moved
between two domains, and both the MM and Director is exchanged with ‘new’ ones.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 26 Master Thesis

26

4 Implementation of mobility
The MicroTAPAS architecture was realised and implementation using the Java2
Micro Edition (J2ME) programming language from Sun Microsystems, and is
described in [LUHE].

This chapter will present an overview of the actual implementation of the mobility
support functionality for TAPAS which has been discussed in the immediate previous
chapters. The chapter will guide the reader through all major parts of the
implementation and try to convey to the reader the accomplishments made.

During the development of the mobility extension, it became apparent that the
structure of the implementation would benefit from being split into relevant java
packages, instead of piling every class and interface into one package. Thus, three
sub-packages were included, each corresponding to a well defined area of operation;

• MicroTAPAS.debug contains classes and interfaces used when debugging the
system, such as a dedicated debug server. The debug package is described in
section 4.6.1.

• MicroTAPAS.mobility is the main package, and contains all the relevant classes

for the mobility extension of MicroTAPAS.

• MicroTAPAS.util contains a small collection of utility classes which are
available to all parts of the system.

The main focus of this chapter is the mobility package.

4.1 Overview
At first glance, the MicroTAPAS support architecture is very similar to the standard
TAPAS software package, and consists of two integral parts. The first part is a small-
footprint component located at each node whishing to participate in a TAPAS
network, and is referred to as the bootstrap. A typical size (depending on the number
attributes in the configuration files) for the bootstrap lies around 10 KB. The second
part of the package is a software library located at a centrally known location
(conveyed to the bootstrap through parameters in the configuration file). When a
TAPAS node is ‘fired up’ the bootstrap connects, through the network interface, to the
centrally located repository, and dynamically downloads all required TAPAS software
components.

Most of the user communication with the support architecture, at least in the early
stages after a fresh start-up, happens through the MicroTAPAS debug GUI, depicted
in Figure 4-1. The user can execute TAPAS specific commands from either the text-
field or from the pull-down menu. This is an enhancement tailored specifically for
PDA’s and their limited input capability. Result from the system is displayed in the
large text-area in the centre of the GUI.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 27 Master Thesis

27

Figure 4-1: Main MicroTAPAS user interface/debug GUI

Most TAPAS entities will have an instance of the main debug window, and is very
convenient for direct communication with the various TAPAS elements.

4.2 Mobility entities
The various entities which were engineered for the mobility extension to TAPAS are
quite complex and have thus been divided into sub-sections, and are dealt with in an
orderly fashion.

4.2.1 MobilityManager and MobilityAgent
The MobilityManager (MM) and MobilityAgent (MA) are the two most central parts
of the mobility extension to MicroTAPAS. These two classes contain some of the
same functionality, which was put in a class MobilitySupportActor (MSA), and MM
and MA inherits this class. MSA contains the MicroPingClient and MicroPingServer
classes, presented in section 4.2.4.

The MM and MA is responsible for handling all mobility related administration, such
as;

• Keeping track of actors and terminals, including notifying/updating each other
about registered actors and terminals.

• Facilitate in ActorMove and TerminalMove operations.
• Monitoring connection status to the MM (for MA nodes) and to all registered

actor nodes (for MM nodes).

The MM also contains a MobilityManagerFrame which provides the user with an
overview of all connected actors and terminals.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 28 Master Thesis

28

Figure 4-2: MobilityManagerFrame screenshot

4.2.2 MobilityApplicationActor
The MobilityApplicationActor is the actor side of the mobility extension, and
provides the actors with mobility support functions. This class is an extension of the
MicroApplicationActor.

The five most important functions in this class are the following:

• actorRegister and actorRegisterCancel register and cancel a registration of the
actor with the nodes MobilityManager.

• actorMove method to move this actor to another location.
• actorChangeBehaviour changes the behaviour of this instance to that of

another.
• sendCreateInterface is used together with actorMove to re-create the actors

interface at the new location.

4.2.3 Mobility requests
A number of new MobilityRequest types were introduced with the mobility extension
of MicroTAPAS, and is used for handling the various aspects of mobility.

MobilityRequest type Description
ActorRegister Registers an actor with the MobilityManager.
ActorRegisterCancel Cancels the registration of an actor with the

MobilityManager.
ActorRegisterMove Cancels the actor registration with a MobilityManager when

an actor has been moved to a different node.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 29 Master Thesis

29

NodeRegister Registers a node with the MobilityManager. This is done
automatically at start-up.

NodeRegisterCancel Cancels a registration with the MobilityManager when a
node is either moved to another MobilityManager, or if the
node is about to shut down.

ActorDiscovery Discovers an actor.
NodeDiscovery Discovers a node.
DirectorDiscovery Discovers a director.
MMDiscovery Discovers a MobilityManager.
NodeValidate Check if the node is registered with the current

MobilityManager.
NodeRegisterRequest A request sent to a node which is found not to be registered.

This node will then react by sending a NodeRegister
request.

TerminalMove Used when a terminal is moved.
MobilitySync Used when MobilityManagers send synchronisation

messages between each other to update the tables of
registered actors and nodes.

CapabilityValidate Validates the requested capabilities of an actor against the
offered capabilities of a node.

NodeCapabilityChange Used when a node’s capabilities are changed.
ActorMove Used during an actor move procedure.
ActorCreateInterface (Re-)creates an actor’s interface at a new location.
RoleSessionUpdate Updates the role-sessions at a director after an actor, or

terminal, has moved to a new location.
RTT Used to measure the RTT (Round-Trip-Time) between two

nodes in a MicroTAPAS network.
Table 1: MobilityRequest types

4.2.4 Ping client and ping server
These entities were initially introduced in [LUHE, page 16] and are used in two
different modes; a) to verify a node’s network connection, and b) to verify that a
registered actor is accessible.

The PingServer is a passive entity which simply waits for a connection request on a
predefined port (configurable in the node configuration file), once a request is made,
the server accepts the request and immediately closes the connection down. This gives
the PingClient a confirmation that the ‘pinged’ node is alive and connected to the
network.

The PingClient operates in one of two modes, depending on whether it is a MM or
MA node. If the node is a MM node, it will obtain a list of all actors registered at the
node and send a ping request to each of them. If a node is found to be unavailable (the
node might be out-of-coverage, or has shut down), its status is set to ‘not connected’,
and any attempt to route messages to that node will fail. The interval between pings is
static, and is configurable in the node configuration file.

A MA node, on the other hand, will only ping its own MM node, and is used to verify
its own connection status to the network. If the node is found to be disconnected, and

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 30 Master Thesis

30

depending on the type of actors running at the node, and their configuration, a number
of different actions can be taken. The interval between pings is determined
dynamically, where loss of connection will cut the current interval in half, and a
online connection of more than ten times the initial interval will increase the current
interval by the initial interval.

4.2.5 Capability monitor agent
The capability monitor agent, or CapsMonitorAgent, is active in all
MobilityApplicationActors, and is responsible for monitoring the offered capabilities
of a node, and compare them with the actor’s required capabilities. If the offered
capabilities are found to be 'less' than the required, an actorMove procedure will be set
in motion. The interval between the checks is configurable in the actor configuration
file.

4.3 Class diagrams
The simplified class diagram of the mobility package is shown in Figure 4-3. The
sheer size of the classes with their respective variables and methods was too large to
include here in the main text. Please refer to Appendix C for a complete listing of
classes, methods and variables.

Figure 4-3: Simplified class diagram of the mobility package for MicroTAPAS

4.4 Capabilities
A simple system of capabilities were introduced and implemented in this prototype so
as to provide the support architecture with a more realistic environment in which to
operate. Capabilities are referred to in two different settings; required capabilities and
offered capabilities. The required capabilities are those capabilities required by an
actor and are matched with those capabilities offered by a node.

CapsMonitorAgent
[from mobility]

MicroPingClient
[from mobility]

AddressMonitor
[from mobility]

MicroPingServer
[from mobility]

MobilityAgent1
[from mobility]

MobilityApplicationActor
[from mobility]

MobilityManager1
[from mobility]

MobilityManagerFrame
[from mobility]

MobilityRegistryManager
[from mobility]

MobilityRequest
[from mobility]

MobilitySupportActor
[from mobility]

Node
[from mobility]

MicroApplicationActor
[from mobility]

MicroActor
[from mobility]

<<interface>>
MicroActorInterface

[from mobility]

<<interface>>
ControlInterface

[from mobility]

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 31 Master Thesis

31

Prior to processing any ActorPlugIn request, the node on which the actor is expected
to be plugged in verifies that the nodes offered capabilities are equal to, or better, than
those capabilities required by the actor. If the node fails to meet the requirement, the
plug in of the actor will ultimately fail as well, and the initiating entity will receive a
notification of this. The ActorPlugIn request is an integral part of the ActorMove
procedure, and, thus, capabilities are matched during the execution of that procedure
as well.

Along with being checked prior to plugging in, the offered capabilities of a node are
also monitored by the various plugged in actors during their lifetime. If a nodes
capability is found to have deteriorated below the level expected by the actor, the
actor will initialise an ActorMove procedure to a location specified by that actors
configuration file.

Capability specifications may be done as a dotted (i.e. ‘.’) separated list of terms,
where each term represents a level in the hierarchical specification of the capability,
i.e. ‘printer’ defines the capability ‘any printer’, while ‘printer.postscript’ specifies the
capability ‘printer with postscript capabilities’. The term asterisk (i.e. ‘*’) may be
used to specify ‘any value’ for a capability term, i.e. ‘printer.*’ specifies any printer
capability.

In this prototype version, six capabilities were introduced; ‘architecture’, ‘cpu.clock’,
‘memory.ram’, ‘screen.colors’, ‘screen.resolution.x’, and ‘screen.resolution.y’. Each
of these capabilities can have either a numerical value, i.e. capability
‘memory.ram.64’ signifies 64 mega bytes (MB) of internal memory, or an asterisk, to
denote that any value is acceptable. All the required capabilities of an actor are stored
in a file, while a node’s capabilities are either stored in a file, or determined
dynamically. In this version, only ‘resolution.x’ and ‘resolution.y’ are determined
dynamically, while the others are located in the text file. Refer to section 4.5 for an
overview of the different types of data files and their location.

4.5 Data files
A number of new data files have been introduced to ease the configuration of the
MicroTAPAS support system. The files are split into two categories; one set of files
which configure the node and another set of files for configuring each actor
individual.

The capability model and example used here is regarded as a very simple and
straightforward one, a more elaborated platform is being developed and has yet to be
tested, and that is why it has not been tested as part of the MicroTAPAS support
platform. As any future continuation of this task it is suggested to shift to an overall
capability support system that is capable of handling more complex issues regarded
capability registry, update, advertisement, management, etc.

4.5.1 Node data files
Each node in a MicroTAPAS network is required to contain two data files in its
bootstrap root directory; a configuration file and a capability file, tapas.cfg and
node.cap, respectively. In addition to these two, a third, optional, scripting file can be
added; node.script.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 32 Master Thesis

32

4.5.1.1 Configuration file
The idea of using a configuration file in TAPAS is not new, and is standard in the
basic support architecture. With the introduction of MicroTAPAS, the file was heavily
modified and more attributes were inserted, along with the possibility to included
comments, among other things, and is described in [LUHE, page 18]. There are
several new attributes in the configuration file this time around, most of them
concerned with mobility. See Appendix B.1.1 for an example configuration file.

4.5.1.2 Capability file
Although part of the original TAPAS architecture specification, a working
implementation of capabilities has never been released. A node’s offered capabilities
are included in the file node.caps, located in the bootstrap root directory. Table 2
shows an example capability file. This particular example is taken from a PDA with
an ARM CPU running at 240 MHz and 64 MB of internal memory and a screen
resolution of 240x320 with 65 thousand colours.

architecture.arm
cpu.speed.210
memory.64
screen.resolution.x.240
screen.resolution.y.320
screen.color.65000

Table 2: Example of a node's offered capabilities: node.caps

4.5.1.3 Script file
The concept of a script file is new to TAPAS, and this feature was initially included to
help in testing the system. Each line in the text file corresponds to a TAPAS request,
and, depending on the ‘runscriptauto’ attribute in the configuration file, is
automatically executed sequentially each time the support architecture has been
started on a node. Alternatively, the script can be started manually by selecting ‘Start
script’ from the File menu of the TNES GUI. Table 3 contains two lines from an
example script file. Each line is a separate command consisting of four attributes,
where each attribute is delimited with a ‘¤’ character. The first attribute is the type of
TAPAS request to be sent, in this case PlayPlugIn and ActorPlugIn. The second
attribute is the attributes of the TAPAS request, where <codebase> and <selfNode>
automatically is replaced by is real values. The third attribute is used for logging
purposes and says something about whether the operation is expected to be a success
or not. This is significant if one has a long script executing and its difficult to quickly
scan the log for any potential problems. If you perform an operation that is not
expected to be successful, for example try to plug in an actor before having plugged in
its corresponding play, one would set this attribute to false, then the result of the
operation would also be false, and the operation is a success, i.e. both the expected
result and the real result must be either true or false for the operation to be marked as
a success in the log. The last attribute is the time, in milliseconds, for which the script
handler should wait before executing this particular command.

PlayPlugIn ¤ MicroTester v2_0 <codebase> ¤ true ¤ 0

ActorPlugIn ¤ Actor://<selfNode>/MicroPNES/Tester1 MicroTester1 ¤ true ¤ 0

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 33 Master Thesis

33

Table 3: Example node script

Throughout development and testing of the Mobility extensions for MicroTAPAS, the
use of scripting has proved a very helpful tool. However, its an good way to
consistently perform repetitive tasks, either at startup time, or during normal operation
of a node.

4.5.2 Actor data files
Actors now have built in support for being configured at runtime by using a
configuration file (‘.cfg’ extension) and a capability file (‘.cap’ extension). These files
can be located either at the codebase (central location for all TAPAS runtime
components) or at each individual node. If the files are located at both locations, the
local files have precedence over foreign files.

The files are normal UTF-8 encoded text files, and are named by their actor role,
followed by the configuration or capability extension:
<actorRole>.cap
<actorRole>.cfg

The foreign files are located at the codebase, and conform to the naming scheme
mentioned above:
<codebase>/<actorRole>.<[cap|cfg]>

Local files are located in a hierarchy below the tapasroot and dataroot directories at
each node (which in turn are configurable in the node configuration file):
<tapasroot><dataroot><playName>/<playVersion>/<actorRole>.<[cap|cfg]>

This naming and location scheme conforms to the standard TAPAS scheme and
provides a sound basis for naming and locating these types of files.

4.5.2.1 Configuration file
With this extension of the basic TAPAS architecture, it was decided that the ability to
configure actors at runtime would be very beneficial for the system as a whole,
instead of recompiling actors each time a parameter was changed or manually insert
the parameters each time an actor was plugged in.

So far, only two attributes have been included in the actor configuration file;
movestrategy and movelocation. Both of these attributes deal with mobility, where the
first attribute, movestrategy, decides which strategy to use when an actor is moved,
see section 3.4.2. Table 4 gives an example of an actor configuration file.

Variable that decides what strategy to use when actor should be moved
alternatives are: 'a', 'b' or 'c' ('a' is the most simple)
movestrategy = a

Default location to move actor to, if offered capabilities deteriorate
movelocation = PNES://10.0.0.1/MicroPNES/MicroPNES

Table 4: Example actor configuration file: <actorRole>.cfg

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 34 Master Thesis

34

Actor configuration files can be located in two different locations; at the central
codebase location, where actors and manuscripts are located, and/or at each individual
node. If the configuration files are located at both locations, the local files take
precedence over the centrally stored files.

4.5.2.2 Capability file
Whereas a node must offer some sort of capability, it is optional for an actor to require
an number of capabilities. An actor’s required capability/capabilities are located in a
text file, and, as for the actor configuration files, can be located either at a centrally
known location or at each individual node. Locally stored capabilities, if present,
takes precedence over the required capabilities stored at the foreign location.

Typically, if an actor does have any requirements, these will indicate the least
available resources under which it can successfully execute. For example, a
debugging actor tool which includes a large debugging info window, displaying lots
of information, would probably be unsuitable for devices with small screens.
Likewise, an actor tasked with lots of complex mathematical computation would be
unsuited for a device with limited computational power.

An actor’s required capabilities are inserted into the ActorPlugInRequest when
handled by the director, before being forwarded to the node where the actor is
supposed to be plugged in. When the request is received by the intended recipient, the
actor’s required capabilities are matched with the nodes offered capabilities, and, if
successful, the plug in can proceed, if not, the plug in has failed, and the initiating
party will receive a notification about the failure and its cause.

4.6 Various enhancements and additions
In addition to the implemented extensions mentioned above, a few general
enhancements have also been added to the MicroTAPAS support architecture.

4.6.1 Debug package
A debug package was developed to help performing various debugging tasks in the
MicroTAPAS support architecture. The main feature of this package is the debug
server, and the reporting of various debugging events to this server. The server can be
started on any TAPAS enabled terminal, and it will accept debugging events from all
the TAPAS entities in a network. A DebugEvent can be of one of the following event
types; FATAL, FAULT, WARNING, INFORUNTIME, INFODEBUG. In addition to
the event type, each event contains information about the node, class, method,
timestamp, and an event message.

Every MicroTAPAS actor has an instance of a small debugging object, Debug. It is a
simple class to only facilitate sending DebugEvents to the DebugServer. The actual
sending of the events are done using a thread, because otherwise the system would
hang for as long as the object is trying to connect to the server. Once the connection to
the server fails, all subsequent calls to this instance will fail, indicating to the system
that the server is unavailable. See Appendix C for Javadoc on the debug package.

Figure 4-4 shows an example screenshot from the DebugServer GUI. The GUI is
divided into three main sections; options, text-view and the list of events. It can be

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 35 Master Thesis

35

seen from the picture that there are a number of different options to choose from. The
“Event type” drop-down box lets users decide which event types should be displayed,
ie. one can choose to display only WARNING or FAULT event types. The collection
of six checkboxes determines what event information is displayed, and any one of
these can be turned on or off, according to the whish of the user. The tree buttons,
Clear, Save and Show are currently not implemented – but could be programmed to
clear, save or show (load) the list of events. The large text area is for displaying text
that can not fit in a cell in the list of events (the currently shown text is whichever cell
is highlighted). The largest portion of the screen is occupied by the list of events, and
they are listed in the order they are received by the debug server.

Figure 4-4: DebugServer screenshot

4.6.2 Communication model
The communication model has been greatly improved over the model presented in
[LUHE, page 13]. While the model still utilises sockets as a mean of establishing
transmission channels between nodes, its handling is much improved and is less
resource demanding than the initial proposal. In essence, the entity in charge of
handling all inter-node communication, the ComCenter, consists of two buffers and an
open port, on which it is listening for incoming requests. All PNES instances (one for
each node) in a TAPAS system has an instance of this entity. There is one buffer each
for incoming and outgoing requests. An incoming request is, as soon as possible,
handed over to the parent PNES. Likewise, and outgoing request is sent as soon as the
underlying network will permit, and granted that the receiving party is available. The
port on which all ComCenters are listening must be the same for the whole support
system, and is configurable through the configuration file on each node.

Implementation of mobility Mobility for MicroTAPAS

Eirik Lühr 36 Master Thesis

36

PNES BPNES A

ComCenter

portIn
queue

Out
queue

ComCenter

port In
queue

Out
queue

Figure 4-5: Communication model overview

Figure 4-5 illustrates the model with a simple diagram of two PNES instances, A and
B, where both have an instance of the ComCenter entity.

Test application – MicroTester v.2 Mobility for MicroTAPAS

Eirik Lühr 37 Master Thesis

37

5 Test application – MicroTester v.2
The tester application described in this chapter is version 2.0 of the test application
described in [LUHE, page 23], and is an application specifically developed to allow
testing of all implemented TAPAS support functionality. The new version of the tester
included functionality that supports the new mobility extensions to MicroTAPAS, as
well as a new feature to log executed commands and to display their result. The
application consists of three application actors; MicroTester1, MicroTester2 and
MicroTesterServer. The MicroTester1 and MicroTester2 actors are slightly modified
versions of the same actor and are the user interface to the application and all
commands will be executed thorough it’s Graphical User Interface (GUI). The
MicroTesterServer actor was included to have an actor that could be plugged in/out
externally, as well as answer simple queries from the main actor. The following
sections will in detail describe the various aspects of this application. Javadoc
included in Appendix C.

5.1 Motivation
The development on the test application has been carried out in parallel to the
development of the extended MicroTAPAS architecture. Each time a new support
feature had been implemented in MicroTAPAS, a corresponding test-function was
written in the test application to better aid in the further enhancement and debugging
of the newly incorporated feature. Towards the end of the development cycle, the
application was also extensively used to demonstrate and verify complex patterns of
behaviour, often compromising two or more support functions at a time.

5.2 Functional requirements
• Upon start-up of the actor MicroTester (client) the user will be presented with

a Graphical User Interface (GUI) for executing commands, and view status
information, this is the main application window.

• All available commands should be accessible by menu items on a menu
toolbar in the application window.

• The application will automatically plug out when the application window is
closed.

• It should be possible to execute all of the standard TAPAS support functions;
ActorPlugIn (server), ActorPlugOut (server), RoleSessionAction (server,
client) and ActorChangeBehaviour (client).

• It should be possible to execute all the extended TAPAS support functions;
ActorRegister (client), ActorRegisterCancel (client) and ActorMove (client).

• All performed actions should be logged.
• The logged actions can be printed to the application GUI.
• The log of performed actions can be cleared.
• When executing a command, the application window should display

information to the user that indicates that work is in progress. This will ensure
that time-consuming tasks will not be perceived as a lock-up.

Test application – MicroTester v.2 Mobility for MicroTAPAS

Eirik Lühr 38 Master Thesis

38

5.3 Non-functional requirements
• The program shall be easy and intuitive to use. This includes extra thought

given to the input of information on a device lacking a standard mouse and/or
keyboard – i.e. a PDA having a touch-screen and a stylus.

• The program shall be compact and well written in order to minimize the
necessary download time to, and memory footprint needed on, a handheld
device.

5.4 Application overview
The MicroTester v.2 consists of three application actors; MicroTester1, MicroTester2
(clients) and MicroTesterServer (server). The client actors are slightly modified
subclasses of MicroTesterBase, thus both inherit the main client GUI object;
TesterMainWindow. The only difference between the two client actors is the
background color of the main text area of the GUI (Tester1 is light green, while
Tester2 is light blue), the reason for this will be discussed later in this section. The
main GUI will be used to interact with the user of the application, and consists of
three parts; the menu bar at the top, a text-output area in the middle, and a status line
at the bottom of the window.

The menu bar contains four menus; File, Log, Basic and Extended. The File menu has
two choices, Clear output, which clears the main text output area of the GUI, and Exit,
which plugs out the actor and closes down the application. The Log menu has three
choices; Show log (l), which displays a long version of the stored log, Show log (s)
which displays a short version of the stored log, and Clear log, which clears the stored
log from memory. The Basic menu contains the basic TAPAS support functions, and
perform according to their names; ActorPlugIn, ActorPlugOut,
ActorChangeBehaviour, RoleSessionAction. Likewise, the Extended menu contains
the extended TAPAS support functions, and again behave according to their menu
names; ActorRegister, ActorRegisterCancel and ActorMove.

The text output area of the GUI displays various bits of information to the user. This
includes information about what action has been selected from the menus, what the
result of the operation was and how long time it took to complete (shown in
milliseconds). This text area is also used when the user wishes to see a list (long or
short version) of the stored action log. The bottom status bar indicates the status of the
application. When a command is issued from one of the menus, a ‘working’ indication
is shown in this area.

5.5 Screenshots
Figure 5-1 shows a few different screenshots taken of the MicroTester v.2 application
running at a laptop computer.

Test application – MicroTester v.2 Mobility for MicroTAPAS

Eirik Lühr 39 Master Thesis

39

Figure 5-1: Screenshots of MicroTester

5.6 Class diagram
This is a class diagram of the MicroTester v.2, and shows all the relevant classes and
their relevant relationships.

Test application – MicroTester v.2 Mobility for MicroTAPAS

Eirik Lühr 40 Master Thesis

40

MicroTester1
[from v2_0]

+ MicroTester1()

MicroTester2
[f rom v2_0]

+ MicroTester2()

MicroTesterBase
[f rom v2_0]

+ DEBUG : boolean = false
- LF : String = "\r\n"
- tmw : TesterMainWindow = null
+ ai : TesterInterface
- initiated : boolean = false
- stInitial : int = 0
- stInitialized : int = 1
- stUpgrade : int = 2
+ initialRoleSession : RoleSession = null
title : String = ""
bgColor : Color
- sh : ScriptHandler

+ MicroTesterBase(pTitle : String, pColor : Color)
+ mobilityActorEntry(rp : RequestPars) : RequestResult
- stateTransition(pRP : RequestPars) : RequestResult
+ testerControl(cmd : String, args : String[], expectSuccess : boolean) : RequestResult
- makeWindow(title : String, color : Color) : void
+ closeWindow() : void
+ term() : void
+ createInterface(pActorInterface : Object) : void
+ getInterface() : Object
- updateInterface() : void

MicroTesterServer
[f rom v2_0]

- LF : String = "\r\n"
- actorInterface : ServerInterface

+ MicroTesterServer()
+ mobilityActorEntry(rp : RequestPars) : RequestResult
- handleAction(pRP : RequestPars) : void
- sendMessage(client : GAI, message : String[]) : void
- closeApplication(isMoved : boolean) : RequestResult
+ actorPlugOut(isMoved : boolean) : RequestResult
+ createInterface(pActorInterface : Object) : void
+ getInterface() : Object

TesterDialog1
[f rom v2_0]

- parent : TesterMainWindow
- tf : TextField
- tfl : Label
- bOk : Button
- bCancel : Button
- cb : Checkbox

+ TesterDialog1(pParent : TesterMainWindow, tfLabel : String, tfText : String)
+ actionPerformed(e : ActionEvent) : void
+ keyPressed(ke : KeyEvent) : void
+ keyReleased(ke : KeyEvent) : void
+ keyTyped(ke : KeyEvent) : void
- sendCommand(line : String, expectSuccess : boolean) : void
- exit() : void
+ main(args[] : String) : void

TesterDialog2
[f rom v2_0]

- parent : TesterMainWindow
- c1 : Choice
- tfl : Label
- bOk : Button
- bCancel : Button
- cb : Checkbox

+ TesterDialog2(pParent : TesterMainWindow, tfLabel : String, vChoices : Vector)
+ actionPerformed(e : ActionEvent) : void
+ keyPressed(ke : KeyEvent) : void
+ keyReleased(ke : KeyEvent) : void
+ keyTyped(ke : KeyEvent) : void
- sendCommand(line : String, expectSuccess : boolean) : void
- exit() : void
+ main(args[] : String) : void

TesterMainWindow
[f rom v2_0]

+ parent : MicroTesterBase
- menuBar : MenuBar
- mFile : Menu
- mLog : Menu
- mBasic : Menu
- mExtended : Menu
- miStartScript : MenuItem
- miClear : MenuItem
- miExit : MenuItem
- miShowLogLong : MenuItem
- miShowLogShort : MenuItem
- miClearLog : MenuItem
- miPlugIn : MenuItem
- miPlugOut : MenuItem
- miUpgrade : MenuItem
- miRoleSession : MenuItem
- miRegister : MenuItem
- miRegisterCancel : MenuItem
- miActorMove : MenuItem
- output : TextArea
- statusField : TextField
- statusLabel : Label
- LF : String = "\r\n"
- statusText : String = "Status: "
- statusWorkingInt : int = 0
- statusTask : java::util::TimerTask
- operationTask : java::util::TimerTask
- statusTimer : java::util::Timer
- operationTimer : java::util::Timer
- isWorking : boolean = false
- isStatusWorking : boolean = false
- startTime : long
- stopTime : long
- operationCmd : String
- operationParams : String[]

+ TesterMainWindow(pMicroTester : MicroTesterBase, title : String, bgColor : Color)
+ init() : void
+ testerControl(cmd : String, args : String[], expectSuccess : boolean) : void
+ actionPerformed(e : ActionEvent) : void
- startStatusWorking() : void
- stopStatusWorking() : void
- statusWorking() : void
- setStatusReady() : void
+ showMessage(message : String) : void
+ getOutput() : String
+ setOutput(s : String, i : int, l : long) : void
+ exit() : RequestResult
+ disposeFrame() : void
+ main(args[] : String) : void

MobilityApplicationActor
[f rom v2_0]

Figure 5-2: Class diagram of MicroTester v.2

5.7 Suggested improvements
Although the tester application can perform all of the implemented basic and extended
support functions of MicroTAPAS, a few improvements could be included in later
versions of the application. These suggested improvements are briefly described
below.

• Implement a scheme to secure the communication between tester entities to

prevent eavesdropping from an unauthorized third party.
• Add different levels of transparency, from a level similar to what is implemented

in this version, to a very detailed view of all internal states, communication,
requests and results.

Test application – MicroTester v.2 Mobility for MicroTAPAS

Eirik Lühr 41 Master Thesis

41

• Extend the logging function to show statistics of all relevant pieces of information.
This information could include number of connections, number of sent/received
requests, detailed execution times etc.

Testing and performance Mobility for MicroTAPAS

Eirik Lühr 42 Master Thesis

42

6 Testing and performance
A full-scale and comprehensive test of the implemented mobility features of
MicroTAPAS has, due to a few unresolved issues, not been possible. These issues
will be described in a later section of this chapter. Each feature has, however, to a
greater or lesser degree undergone testing to ensure that the extended support
functionality was implemented according to the specifications put forward. A limited
test was performed during a presentation at NTNU in September 2003, and this
chapter describes the procedures.

6.1 Test Environment
The testing of the MicroTAPAS architecture, with the mobility extension was
performed on a network set-up like described in Figure 6-1.

Domain B

Domain A

NTNU
Network

MA

AP
AP

Sub-domain B2

Sub-domain B1

Legend:

AP Dir - Director
MM - MobilityManager
MA - MobilityAgent

WLAN AccessPoint

Wireless communication

Domain

Sub-domain

Dir/MM

MM

Dir/MM

Web-server

Figure 6-1: Test network

The network consisted of two wireless LAN access points, three stationary computers,
one web server and one PDA. The used hardware is summarised in Table 5.

Node Hardware Connection Virtual Machine (VM) Role
A Desktop PC LAN JVM Dir/MM
B Desktop PC LAN JVM Dir/MM

Testing and performance Mobility for MicroTAPAS

Eirik Lühr 43 Master Thesis

43

C Desktop PC LAN JVM MM
D PDA WLAN J9 MA
E Laptop LAN -- Web-server

Table 5: Hardware components in test environment

6.2 Test procedures
To verify the mobility extension both the TerminalMove and ActorMove operations
were performed. Three TerminalMove procedures and four ActorMove procedures
were tested.

For the TerminalMove operation these procedures were tested:

a. Within same sub-domain (same MM)
b. Between two sub-domains (same Dir/different MM)
c. Between two domains (different Dir/MM)

According to the definition, TerminalMove is initiated when the terminal detects a
change in the IP-address. There was, however, a problem when configuring the access
points (AP), more specifically, the DHCP lease period of the addresses assigned to the
terminal was set to 24 hours, thus moving from one ‘cell’ to another did not trigger a
change in the address. The addresses thus had to be changed manually on the device,
to simulate a move between two domains (coverage area of the APs). All role-
sessions are updated to reflect the change of location.

For the ActorMove operation the following procedures were tested:

d. Within same terminal
e. Within same sub-domain (same Dir/MM)
f. Between two sub-domains (same Dir/different MM)
g. Between two domains (different Dir/MM)

ActorMove is initiated either by a degrading in a node’s offered capabilities, or by an
explicit command.

6.3 Test results
During the demonstration, all seven test procedures (three TerminalMove and four
ActorMove) were performed, and worked according to the definition.

6.4 Performance
No explicit performance test was carried out with this extended version of
MicroTAPAS. A comprehensive performance test, however, was preformed in
[LUHE, page 37]. The complete results from this test are included in Appendix B.
The emphasis of the test was to clarify the longer execution times on a PDA compared
to those on a regular PC (desktop and laptop) when running the TAPAS support
architecture. The testing was carried out using a HeapTest program, available from
Sun Microsystems Inc., and the PDA, unsurprisingly, was found to be several
magnitudes slower than a conventional PC when it came to computational operations.
The summary of the test is shown in Figure 6-2. Three terminals were tested; one
PDA, one IBM laptop (older model) and a HP laptop (newer model).

Testing and performance Mobility for MicroTAPAS

Eirik Lühr 44 Master Thesis

44

Average task execution times

0
100000
200000
300000
400000
500000

2 Heap, 0 CPU 1 Heap, 1 CPU 0 Heap, 2 CPU

Task

Ti
m

e
(m

se
c.

)

PDA, 5-2 IBM, 5-2 HP, 5-2
PDA, 2-2 IBM, 2-2 HP, 2-2

Figure 6-2: Summary of performance test-results

Some performance testing has also been carried out to determine the suitability for the
proposed MicroTAPAS support in different network configurations with regard to
Delay, Response time, overhead traffic-exact procedure and results have been
reported as part of a submitted project report and will be continued within the same
TAPAS project by another student.

6.5 Unresolved issues
A few unresolved issues were encountered during the testing of the system.

6.5.1 Available terminals
In order to perform an extensive test of the extended mobility functionality, a number
of mobile terminals should have been employed, and for a duration of several hours,
or indeed, days. One mobile terminal (PDA) was, however, the only device available
for testing the system with, and a comprehensive test was thus not feasible.

6.5.2 Configuration of subnets
When attaching the two wireless LAN access points (AP) the university network, the
networks DHCP server(s) handled the assignment and lease period of the addresses.
The lease period, as mentioned in section 6.2, was set to 24 hours, and to simulate a
change of domains, the address on the device had to be changed manually to simulate
this transfer.

Faced challenges and possible solutions Mobility for MicroTAPAS

Eirik Lühr 45 Master Thesis

45

7 Faced challenges and possible solutions
Throughout this project, there have been a few unsuspected challenges and issues that
had to be resolved in order to complete the assigned tasks. These challenges are
described in this chapter, along with the solutions engineered along the way.

7.1 Connection time-out
When verifying a connection to the network, the ping client tries to establish a
connection to a ping server on another node in the network, if a successful connection
is established, the terminal/node has a network connection. This implemented feature
is discussed in section 4.2.4.

A problem surfaced when a terminals ping client failed to established connection to a
ping server, which indicates a loss of network connection. Due to the implemented
Java Virtual Machines (VM) the ping clients attempt is not immediately published,
and it will try to connect several times before the operation fails. This, on an average,
takes around 50 seconds. In practise this means that from a network connection is lost,
it can take as much as a minute before the terminal’s TAPAS software is notified of
the loss.

No real alternative or solution has been engineered to overcome this challenge, as it is
due to the implementation of the VM.

7.2 Subnet masks & MAC addresses
It would be very useful to read subnet masks and the medium access control (MAC)
addresses of a terminal, for use in addressing/routing and determining a terminal’s
domain. I.e. different domains could be assigned different subnet masks, independent
of the actual IP address range of the various terminals connected to the domain, this
would then simply routing of messages etc.

Due to limitations in Java, it has not been possible to determine which subnet mask an
IP address has; as such functionality would be implemented on a lower level than Java
normally operates on.

A workaround has been engineered where different domains are assigned a range of
IP addresses. If a terminal is given a certain address, it then belongs to the domain
which controls this address. This solution is working well, although it is more
complex than a solution built on distinguishing between different subnet masks.

The same technical limitation applies to reading a network adapter’s MAC address.

The MAC address is a unique address, identifying each network adapter, and could be
used to uniquely identify each TAPAS node, for purposes of routing forwarded
messages. In the original TAPAS architecture, each node is identified by the node part
of the Global Actor Identifier (GAI), refer to Appendix A.1.3 for an overview of GAI,
where the node part is the host name/IP address of the terminal. If an actor is moved,
or a terminal is given a new address, this GAI is no longer applicable. The MAC
address could somehow be used in this process to help in identifying moved actors
and terminals.

Faced challenges and possible solutions Mobility for MicroTAPAS

Eirik Lühr 46 Master Thesis

46

A workaround has been engineered to overcome this, by keeping constantly updated
tables of all the relevant information. The solution is working, but, as is the case with
subnet masks, is more complex than it should be in theory.

Suggested improvements and further work Mobility for MicroTAPAS

Eirik Lühr 47 Master Thesis

47

8 Suggested improvements and further work
During the work with the TAPAS architecture in general and the extended support
functionality for MicroTAPAS in particular, a few issues and ideas have come up.
These are presented in this chapter.

8.1 Addressing
It was noted in section 7.2 that the GAI addressing scheme may have some
shortcomings when implementing some of the mobility extensions to TAPAS. In
particular TerminalMobility and ActorMobility suffer from this. If a different
approach could be implemented, based on the uniqueness of, for example, MAC
addresses, one could end up with an addressing scheme more suitable for further
extensions to the support architecture. In particular, it would be suitable to implement
a scheme where one could assign addresses independent of location.

8.2 Suitability of J2ME
In recent months there has been massive public criticism against Sun Microsystems
Inc. for their response to a public demand to releasing a compiled Virtual Machine for
terminals powered by Microsoft’s PocketPC operating system. On the official email
and discussion list (J2ME-CDC-INTEREST@JAVA.SUN.COM) several dozens of
users/developers have argued that Sun should release their internal VM to the public
(either for free or for a relatively low price) to make it easier, and more accessible, to
develop J2ME applications for deployment to PDA’s. A number of these requests
point out that Sun is loosing territory against Microsoft’s C# .NET programming
language/developer platform for applications targeting handheld devices.

8.3 Session and user mobility
Session and User mobility should in a future version of MicroTAPAS be
implemented, alongside the Terminal and Actor mobility functionality suggested by
this report. An excellent proposal for such an extension is put forward by [LILL] in
his report. That solution was originally specified and developed for the standard
version of TAPAS, but could easily be implemented in MicroTAPAS as well.

8.4 Security
Different levels of encryption of all communication could be introduced to the
MicroTAPAS architecture. The user, or the application, could be given the choice as
to whether messages sent between MicroTAPAS instances should be encrypted, and
to what degree, i.e. bit-length of keys and encryption algorithms. There are a lot of
possibilities here that should be investigated, and could probably warrant a separate
project in itself.

8.5 Reliability
Presently, there are no specific features built into the support system to ensure its
reliability. This is one area that clearly should be addressed in the future, as the
system is highly vulnerable to exceptions, failures and down-time of the web-server,
the Director/MM nodes, or the underlying network itself.

Suggested improvements and further work Mobility for MicroTAPAS

Eirik Lühr 48 Master Thesis

48

8.6 Interoperability with TAPAS
A future version of MicroTAPAS should incorporate a model how to accomplish
interoperability with the standard TAPAS support architecture. This task, however
gets increasingly complex as more and more features are incorporated into the support
architecture.

8.7 Applications
There are several applications that could be developed to take advantage of
MicroTAPAS running on PDA’s. Here are two examples described.

A Simple Network Management Protocol (SNMP) monitoring application is one
example of a useful application, where a server maintains a list of nodes and status’
that can be viewed by MicroTAPAS clients.

Another possible application is a mobile dynamic measurement of WLAN coverage
and signal strength. Results could be sent back to server and made available to all
other connected clients. It would also be possible to link this information to a map of a
given area, and thereby building an easy to read coverage map for purpose of
verifying WLAN coverage in a particular building or a campus.

Conclusion Mobility for MicroTAPAS

Eirik Lühr 49 Master Thesis

49

9 Conclusion
The purpose of this project was to specify and implement mobility support for the
MicroTAPAS support architecture. More specifically, actor and terminal mobility
functionality was to be incorporated into the prototype architecture. In addition, a test
application was to be developed and used for testing the implemented functionality.

TAPAS Extended Management (TXM) functionality was designed and implemented
to provide extended mobility management functionality. This was realised through the
MobilityManager actor entity. TAPAS Extended Support (TXS) functionality was
designed and implemented to provide all needed behaviour to the generic but movable
actors, as well as mobility support for mobile nodes and terminals. This was realised
through the MobilityAgent actor entity. The resulting prototype underwent some
testing, but less than was hoped for at the outset of the project. This was mainly due to
three factors; the technical limitations posed by the current available J2ME runtime
implementations, the relatively limited equipment available for use in testing and
because of time constraints.

A test application, MicroTester v.2, was developed to take full advantage of the
mobility extensions of MicroTAPAS, and was used during the testing of the system.
A limited test was performed, as well as a successful demonstration for faculty and
students at the institute of Telematics.

This report shows that TAPAS, in general, and MicroTAPAS in particular, is well
suited for designing and implementing mobility support functionality to enable
extensions to the original architecture. More work is, however, needed to further
develop the prototype TAPAS support system.

Acronyms Mobility for MicroTAPAS

Eirik Lühr 50 Master Thesis

50

Acronyms
This is a collection of the most used acronyms in this report.

AP Access Point QoS Quality of Service
APIR ActorPlugInReq(uest) SNMP Simple Network Management

Protocol
DHCP Dynamic Host Configuration

Protocol
TAPAS Telematics Architecture for

Plug-and-Play Systems
GUI Graphical User Interface TAS TAPAS Actor Support
J2ME Java2 Micro Edition TCI TAPAS Communication

Infrastructure
MA Mobility Agent TNES TAPAS Node Execution

Support
MAC Medium Access Control TXM TAPAS Extended Management
MM Mobility Manager TXS TAPAS Extended Support
PDA Personal Digital Assistant

Bibliography Mobility for MicroTAPAS

Eirik Lühr 51 Master Thesis

51

Bibliography
 [AAGF1] Finn Arve Aagesen, Bjarne Helvik, Ulrik Johansen and Hein Meling, “Plug

and Play for telecommunication functionality – architecture and
demonstration issues”, The International Conference on Information
Technology for the New Millennium (IConIT2001), Thammasat University,
Bangkok - Thailand, May 2001.

[AAGF2] Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa and Bjarne E.
Helvik, “Capability Specification and Selection in TAPAS”, IFIP WG6.7
Workshop and Eunice Summer School on Adaptable Networks and
Teleservices, Trondheim - Norway, September 2002.

[AAGF3] Finn Arve Aagesen, Bjarne E. Helvik, Chutiporn Anutariya, and Mazen
Malek Shiaa, “On Adaptable Networking”, The 2003 International
Conference on Information and Communication Technologies (ICT 2003),
Bangkok- Thailand, April 2003.

[COLU] Colombia University, Department of Computer Science, NetScript,
http://www.cs.columbia.edu/dcc/netscript/. [Accessed October 2003]

[COUG] G. Coulouris, J. Dollimore, T. Kindberg, “Distributed systems, concepts and
design”, Third edition, Addison-Wesley, 2001.

[DARP] U.S. Department of Defence, Advanced Technology Office,
http://www.darpa.mil/ato/programs/activenetworks/actnet.htm. [Accessed
October 2003]

[FESA] A. Festag, “Mobility Support in IP Cellular Networks - A Multicast-Based
Approach”, PhD. Thesis, Fakultät IV - Elektrotechnik und Informatik der
Technischen Universität Berlin, June 2003, [http://edocs.tu-
berlin.de/diss/2003/festag_andreas.pdf]

[JOHU1] Ulrik Johansen, “Dynamic Plug and Play - What is it, what are the
advantages of using it?” presented at IT-PRO 2000, Sandefjord, Norway.

[JOHU2] Ulrik Johansen, Finn Arve Aagesen, Bjarne E. Helvik and Rolv Bræk,
“Design Specification of the PaP Support Functionality”, Plug-and-Play
Technical Report 2/1999, Department of Telematics, NTNU, 1999-12-10,
ISSN 1500-3868

[LILL] Lars Erik Liljebäck, “User and Session mobility on a Plug-and-Play
Architecture”, MSc thesis, Department of Telematics, NTNU, 2002.

Bibliography Mobility for MicroTAPAS

Eirik Lühr 52 Master Thesis

52

[LILL] Lars Erik Liljeback, “User and Session Mobility in a Plug-and-Play
architecture”, MSc. thesis, Department of Telematics, NTNU, 2002.

[LUHE] Eirik Lühr, “TAPAS for wireless PDA”, Project Report, Department of
Telematics, NTNU, 2003.

[MALM1] Mazen Malek Shiaa and Finn Arve Aagesen, “Mobility management in a Plug
and Play architecture”, IFIP TC6 Seventh International Conference on
Intelligence in Networks, Saariselka, Finland, April 2003. Plubliched by
Kluwer Academic Publishers.

[MALM2] Mazen Malek Shiaa and Lars Erik Liljeback, “User and Session Mobility in a
Plug-and-Play Network Architecture”, IFIP WG6.7 Workshop and EUNICE
Summer School on Adaptable Networks and Teleservices, Trondheim -
Norway, September 2002.

[MALM3] Mazen Malek Shiaa and Finn Arve Aagesen, “Architectural Considerations
for Personal Mobility In the Wireless Internet”, Personal Wireless
Communication (PWC2002), Singapore, October 2002.

[MALM4] Mazen Malek Shiaa, “Mobility Support Framework in Adaptable Service
Architecture”, Network Control and Engineering for QoS, Security and
Mobility 2003 IFIP/IEEE Conference (NetCon'2003), Muscat-Oman, October
2003.

[MELH1] Hein Meling, “Complete System Overview”,
http://tapas.item.ntnu.no/documentation/SystemDoc/Main/Main.pdf,
[Accessed October 2003]

[MITE] Massachusetts Institute of Technology, Active Networks,
http://www.sds.lcs.mit.edu/activeware/. [Accessed October 2003]

[OMG1] Object Management Group (OMG), http://www.omg.org, [Accessed October
2003]

[OMG2] Object Management Group (OMG), “CORBA FAQ”,
http://www.omg.org/gettingstarted/corbafaq.htm, [Accessed October 2003]

[REID] Reilly, David, “Mobile Agents -Process migration and its implications”,
http://www.davidreilly.com/topics/software_agents/mobile_agents/.
[Accessed October 2003]

[RFC2002] C. Perkins, Ed., "IP Mobility Support", RFC 2002, October 1996.
[http://www.ietf.org/rfc/rfc2002.txt]

Bibliography Mobility for MicroTAPAS

Eirik Lühr 53 Master Thesis

53

[RFC3344] B. Patil, P. Roberts, "IP Mobility Support for IPv4", RFC 3344, August 2002.
[http://www.ietf.org/rfc/rfc3344.txt]

[STAU] Stanford University, Department of Computer Science, Knowledge Sharing
Effort, http://www-ksl.stanford.edu/knowledge-sharing/. [Accessed October
2003]

[SUN1] Sun Microsystems Inc., “Jini Network Technology”,
http://wwws.sun.com/software/jini/, [Accessed October 2003]

[UMBC] University of Maryland, Baltimore County, Lab for Advanced Information
Technology, KQML Web, http://www.cs.umbc.edu/kqml/. [Accessed October
2003]

[UPEN] University of Pennsylvania, Department of Computer and Information
Science,
Bellcore, http://www.cis.upenn.edu/~switchware/. [Accessed October 2003]

Appendix A I Mobility for MicroTAPAS

Eirik Lühr I Master Thesis

Appendix A - MicroTAPAS

A.1 Main changes between MicroTAPAS and basic TAPAS

A.1.1 Layered design model
The MicroTAPAS layered design model is a slightly modified version of the same
model in TAPAS [MELH1, page 18]. Please refer to [LUHE, page 8] for a complete
discussion about this topic. The modified design model used by MicroTAPAS is
shown in Figure A-1 and the original model is shown in Figure A-2.

A
pp

lic
at

io
ns

P
aP

 s
pe

ci
fic

 la
ye

rs

Infrastructure layer
TAPAS Communication Infrastructure (TCI)

TAPAS static
basic support

TAPAS
dynamic basic
support

TAPAS Node Execution Support (TNES)

Director (Actor)

TAPAS
extensions

TAPAS specific
applications

Non-TAPAS applications
interfaced to TAPAS applications

TAPAS Extended
Management (TXM)

TAPAS Extended
Support (TXS)

TAPAS applications
(Actors)

Non-TAPAS applications

Figure A-1: MicroTAPAS layered design model - architecture

Appendix A II Mobility for MicroTAPAS

Eirik Lühr II Master Thesis

Figure A-2: TAPAS layered design model - architecture

A.1.2 Communication
The biggest difference between TAPAS and MicroTAPAS, in terms of how the
communication is carried out, is the absence of RMI. It was decided to carry out all
communication by using a combination of Java sockets and local method calls. Please
refer to [LUHE, page 13] for a complete discussion of this topic.
Figure A-3 shows the new communication model, and Figure A-4 shows the
communication model used in standard TAPAS.

Node3: MicroTAPAS clientNode2: MicroTAPAS serverNode1: MicroTAPAS client

MicroPNES

act1 act2

MicroComServer

MicroPNES

dir1 act3

MicroComServer

MicroPNES

act4

MicroComServer

Legend:

Single node

Virtual machine

Java object instance

Local method call

Socket connection

Figure A-3: MicroTAPAS synchronous communication model

Appendix A III Mobility for MicroTAPAS

Eirik Lühr III Master Thesis

Figure A-4: TAPAS synchronous communication model

A.1.3 Addressing and routing
The addressing and routing in MicroTAPAS are based on the same principles as that
of TAPAS, although the absence of the PAS layer required a slight modification.
Figure A-5 shows the slightly modified type of Global Actor Identifier (GAI) used by
MicroTAPAS. The original TAPAS GAI is shown in Figure A-6.

Local role session identifier
Local Actor instance identifier
PNES instance identifier
PNES instance identifier
Entity type specificaton

Dir1

RS MicroPNES Dir1MicroPNES <number>

Actor MicroPNES Act2MicroPNES

PNES MicroPNES

Act2

Act1

pnes1

Figure A-5: MicroTAPAS addressing scheme

Appendix A IV Mobility for MicroTAPAS

Eirik Lühr IV Master Thesis

Local role session identifier
Local Actor instance identifier
PNES instance identifier
PNES instance identifier
Entity type specificaton

Dir1

RS MicroPNES Dir1MicroPNES <number>

Actor MicroPNES Act2MicroPNES

PNES MicroPNES

Act2

Act1

pnes1

Figure A-6: TAPAS addressing scheme

A.2 Performance comparison between PDA and laptop

A.2.1 Hardware used
The following table show in detail the hardware used for testing the MicroTAPAS
architecture.

 Node A Node B Node C
Classification LAPTOP PDA LAPTOP
Model IBM Thinkpad

390E
iPAQ H.3660 HP Pavillion

ze5244
Processor Intel Pentium II,

266 MHz
Intel StrongARM,
206 Mhz

Intel Pentium 4 M,
2,53 GHz

Memory
(RAM/ROM)

192 MB/x 64 MB/16 MB 512 MB/x

Operating
System (OS)

Microsoft Windows
XP, Professional
Edition

Microsoft PocketPC
2000

Microsoft Windows
XP, Home Edition

Network SMC ZyAIR B-100, IEEE
802.11b compliance
at 2.4 GHz,
PCMCIA card

LAN-Express IEEE
802.11 PCI Adapter

Virtual Machine
(VM)

Sun Microsystems
Inc’s Java
HotSpot(TM) Client
VM, version
1.4.1_02-b06

IBM’s J9, version
2.0

Sun Microsystems
Inc’s Java
HotSpot(TM) Client
VM, version
1.4.1_02-b06

A.2.2 Screen output from test-program execution
The following data was printed to screen during one of the test runs, and, as can be
seen on the top, it was started with five threads and two cycles. All the times quoted

Appendix A V Mobility for MicroTAPAS

Eirik Lühr V Master Thesis

are in milliseconds. The first column states the number of threads used to execute the
tasks, the other three columns show the different tasks, as explained in [LUHE, page
37].

C:\dev\MicroTAPAS>java heaptest.HeapTest 5 2
Unable to open log file. Printing to System.out...

Max # threads = 5
Total (heap + CPU) cycles = 2

Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 0 Heap, 2 CPU

1 21981 20409 15161

2 20420 14901 15863

3 31085 17125 10254

4 20480 12858 11396

5 19718 14441 12718

A.2.3 Data from performance testing of laptop vs. PDA
This is the data values from the performance testing performed in [LUHE, page 37].
The top-left heading in each table states which terminal and start parameters were
used. For example, IBM, 5-2 states that it was run on the IBM laptop (node A) with a
maximum of five threads and two cycles. Figure 6-2 (page 44) was drawn by
computing the average execution time for each task (i.e. the first value for ‘IBM, 5-2’
in the figure was found by summing the column ‘2 Heap, 0 CPU’ and dividing by the
number of threads; five).

IBM, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 21981 20409 15161
 2 20420 14901 15863
 3 31085 17125 10254
 4 20480 12858 11396
 5 19718 14441 12718

HP, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 4046 2844 1422
 2 3706 2613 1422
 3 3325 2364 1412
 4 3264 2434 1422
 5 3044 2173 1422

PDA, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 64285 258435 419323
 2 80407 239302 403596
 3 87770 238447 403535
 4 93045 237556 404077
 5 93945 238113 404354

IBM, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU

Appendix A VI Mobility for MicroTAPAS

Eirik Lühr VI Master Thesis

 1 19197 13920 9193
 2 17705 11467 9193

HP, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 4096 2894 1432
 2 3605 2574 1412

PDA, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 62779 246339 406098
 2 81344 241102 406206

Appendix B VII Mobility for MicroTAPAS

Eirik Lühr VII Master Thesis

Appendix B - MicroTAPAS with Mobility extension

B.1 Node

B.1.1 Example node configuration file

Now it is safe to add comments, prefixing each line with a hash '#'. Empty
lines and white space is also ok.

############################

BASIC PARAMETERS

############################
The Internet address of the binary files of the whole system.
The address should be on the form:
http://<ip.addr or url>/<tapas directory>/
#codebase = http://129.241.200.218/tapasroot/
codebase = http://www.stud.ntnu.no/~luhr/tapasroot/

The GAI (address) of the Director
#homeinterface = Actor://127.0.0.1/MicroPNES/MicroTAPAS.MicroDirector1
homeinterface = Actor://localhost/MicroPNES/MicroTAPAS.MicroDirector1

The GAI of the local MicroPNES instance. 'localhost' will automatically be
replaced by the nodes real IP address.
selfinterface = PNES://localhost/MicroPNES/MicroPNES

Port used for socket communication between MicroTAPAS nodes (universal)
communicationport = 9999

Location of the TAPAS bootstrap root directory
tapasroot = /dev/TAPAS/MicroTAPAS_thesis/MicroTAPASBoot/StartMicro/

Location for storing data files locally (below the 'tapasroot' directory)
dataroot = data/

File for storing the node capabilities
nodecap = node.cap

File used for storing the script that should be run after startup
nodescript = node.script

Determines whether the script should automatically run at startup of
MicroPNES
runscriptauto = false

############################

MOBILITY PARAMETERS

############################
The GAI of this domain's MobilityManager
mminterface =
Actor://localhost/MicroPNES/MicroTAPAS.mobility.MobilityManager1

The GAI of the local MobilityAgent. 'localhost' will automatically be
replaced by the nodes real IP address.
mainterface = Actor://localhost/MicroPNES/MicroTAPAS.mobility.MobilityAgent1

Ping-server port (universal)
pingport = 9998

Initial interval between pings, in milliseconds (dynamic)

Appendix B VIII Mobility for MicroTAPAS

Eirik Lühr VIII Master Thesis

pinginterval = 10000

Interval between an actor checks for capability updates, in milliseconds
(static)
A value of -1 will prevent the monitor from running.
capsmoninterval = 5000

############################

DEBUG PARAMETERS

############################
The location of the debugserver
#debugserver = 127.0.0.1:9990
debugserver = 129.241.200.218:9990

Is debug info to be printed to screen?
debug = false

############################

VISUAL PARAMETERS

############################
Frame icons
icon.micropnes = /icons/greendot.gif
icon.microdirector1 = /icons/dirIcon.gif
icon.mobilitymanager1 = /icons/com.gif
icon.mobilityagent1 = /icons/com_red.gif
icon.debugserver = /icons/yinyangIcon.gif
icon.default = /icons/ntnuIcon.gif

B.2 MobilityApplicationActor

B.2.1 Actor configuration file
This is an example actor configuration file.
Should the actor automatically register with its local MobilityManager?
autoregister = false

Variable that decides what strategy to use when actor should be moved
alternatives are: 'a', 'b' or 'c' ('a' is the most simple)
movestrategy = a

Default location to move actor to, if offered capabilities detoriate
movelocation = PNES://10.0.0.1/MicroPNES/MicroTesterMoved

B.2.2 Actor capability file
This is an example actor capability file.
arhcitecture.*
cpu.clock.100
memory.ram.64
screen.colors.65000
screen.resolution.x.240
screen.resolution.y.320

Appendix C IX Mobility for MicroTAPAS

Eirik Lühr IX Master Thesis

Appendix C - Javadoc
To prevent this appendix to become very large, only the class hierarchies have been
included for each of the three main parts of the implementation; the mobility package,
the debug package and the tester package

C.1 Hierarchy for MicroTAPAS.mobility package

o class java.lang.Object
o class java.awt.Component (implements

java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container
o class java.awt.Window (implements

javax.accessibility.Accessible)
o class java.awt.Frame (implements

java.awt.MenuContainer)
o class

MicroTAPAS.mobility.MobilityManage
rFrame (implements
java.io.Serializable)

o class MicroTAPAS.MicroActor (implements
MicroTAPAS.ControlInterface, MicroTAPAS.MicroActorInterface,
java.io.Serializable)

o class MicroTAPAS.MicroApplicationActor (implements
java.io.Serializable)

o class
MicroTAPAS.mobility.MobilityApplicationActor
(implements java.io.Serializable)

o class MicroTAPAS.mobility.MobilitySupportActor
(implements MicroTAPAS.ControlInterface,
MicroTAPAS.MicroActorInterface)

o class MicroTAPAS.mobility.MobilityAgent1
o class MicroTAPAS.mobility.MobilityManager1

o class MicroTAPAS.mobility.MobilityRegistryManager (implements
java.io.Serializable)

o class MicroTAPAS.mobility.MobilityRequest (implements
java.io.Serializable)

o class MicroTAPAS.mobility.Node (implements java.io.Serializable)
o class java.lang.Thread (implements java.lang.Runnable)

o class MicroTAPAS.mobility.CapsMonitorAgent (implements
java.io.Serializable)

o class MicroTAPAS.mobility.MicroPingClient (implements
java.io.Serializable)

o class MicroTAPAS.mobility.MicroPingServer (implements
java.io.Serializable)

C.2 Hierarchy For Package MicroTAPAS.debug

o class java.lang.Object

Appendix C X Mobility for MicroTAPAS

Eirik Lühr X Master Thesis

o class javax.swing.table.AbstractTableModel (implements
java.io.Serializable, javax.swing.table.TableModel)

o class MicroTAPAS.debug.DebugTableModel
o class java.awt.Component (implements

java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container
o class javax.swing.JComponent (implements

java.io.Serializable)
o class javax.swing.JTable (implements

javax.accessibility.Accessible,
javax.swing.event.CellEditorListener,
javax.swing.event.ListSelectionListener,
javax.swing.Scrollable,
javax.swing.event.TableColumnModelListener,
javax.swing.event.TableModelListener)

o class MicroTAPAS.debug.DebugTable
o class java.awt.Window (implements

javax.accessibility.Accessible)
o class java.awt.Frame (implements

java.awt.MenuContainer)
o class javax.swing.JFrame (implements

javax.accessibility.Accessible,
javax.swing.RootPaneContainer,
javax.swing.WindowConstants)

o class
MicroTAPAS.debug.DebugBase
Frame2 (implements
java.io.Serializable,
java.awt.event.WindowListener)

o class
MicroTAPAS.debug.Deb
ugFrame2 (implements
java.awt.event.ActionList
ener,
java.awt.event.ItemListen
er,
javax.swing.event.TableM
odelListener)

o class MicroTAPAS.debug.Debug (implements java.lang.Runnable)
o class MicroTAPAS.debug.DebugEvent (implements

java.io.Serializable)
o class MicroTAPAS.debug.DebugServer (implements

java.io.Serializable)

C.3 Hierarchy For Package MicroTester.v2_0

o class java.lang.Object

Appendix C XI Mobility for MicroTAPAS

Eirik Lühr XI Master Thesis

o class java.awt.Component (implements
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container
o class java.awt.Window (implements

javax.accessibility.Accessible)
o class java.awt.Frame (implements

java.awt.MenuContainer)
o class MicroTester.v2_0.TesterDialog1

(implements
java.awt.event.ActionListener,
java.awt.event.KeyListener)

o class MicroTester.v2_0.TesterDialog2
(implements
java.awt.event.ActionListener,
java.awt.event.KeyListener)

o class
MicroTester.v2_0.TesterMainWindow
(implements
java.awt.event.ActionListener)

o class MicroTAPAS.MicroActor (implements
MicroTAPAS.ControlInterface, MicroTAPAS.MicroActorInterface,
java.io.Serializable)

o class MicroTAPAS.MicroApplicationActor (implements
java.io.Serializable)

o class
MicroTAPAS.mobility.MobilityApplicationActor
(implements java.io.Serializable)

o class MicroTester.v2_0.MicroTesterBase
(implements java.io.Serializable)

o class MicroTester.v2_0.MicroTester1
o class MicroTester.v2_0.MicroTester2

o class MicroTester.v2_0.MicroTesterServer
o class MicroTester.v2_0.ServerInterface (implements

java.io.Serializable)
o class MicroTester.v2_0.TesterInterface (implements

java.io.Serializable)

