
User and Session Mobility in a Plug-and-Play Network Architecture

Mazen Malek Shiaa and Lars Erik Liljeback
Department of Telematics

NTNU University, Trondheim – Norway
malek @item.ntnu.no, liljebac@stud.ntnu.no

Abstract

Network Intelligence is aimed at increasing the
awareness and adaptability of today’s networks on issues
such as service discovery, user behaviour, complexity of
applications, ever changing configuration and topology,
etc. TAPAS is a network architecture meant for simplify-
ing and automatizing network management, installation,
configuration and maintenance. Mobility of users and
sessions is important to handle more and more demands
regarding user behaviour and complex set of applica-
tions. In general, users have one home domain, where
they get access to personalised environment and content.
They, however, experience different circumstances when
login remotely from another domain. Their sessions, on
the other hand should always be maintained and regis-
tered to provide support for resumption of suspended
tasks. User and Session concepts play a crucial role for
providing an application platform towards a mobile and
demanding end-user.

1 Introduction

TAPAS (Telecommunication Architecture for Plug
And Play Systems) is a platform and application devel-
opment environment based on generic actors in the nodes
of the network that can download manuscripts defining
roles to be played [1]. The basic model is founded on the
concept of the Theatre metaphor, where actors perform
according to a predefined manuscript and a director man-
ages their performance. In other words, actors are soft-
ware components, pieces of code, which represent func-
tionality to be executed at different nodes within the
boundary of a network. In order to accomplish different
tasks, occasionally complex ones, actors need to interact
with each other and change behaviour dynamically. In
TAPAS a director is an actor with supervisory status re-
garding all other actors’ plug in and plug out phases,
communication, availability of plays, etc. Directors repre-
sent also the concept of domain, hence a set of network
nodes is managed by a single director. The architecture is

covering a set of issues ranging from representation of
nodes’ capabilities and network resources to QoS aware-
ness and requirements. This architecture is also handling
issues of play, set of manuscripts or actor behaviour,
management, actor to actor and actor to director commu-
nications, and play specification and Plug-and-Play appli-
cation development.

TAPAS was enhanced and extended to cover, and
handle, a range of concepts in order to make it suitable for
any kind of network technology and platform. The theme
of this paper is about some of these new concepts, namely
User and Session. Throughout the paper a logical and
intuitive definition of several terms, and message se-
quence diagrams describing the functionality and man-
agement tasks will be provided. Section 2 describes what
is meant by Mobility support, while section 3 focuses on
the User and Session mobility. Section 4 elaborates all the
technical and implementation related issues of mobility
support in TAPAS. An application example is presented
in section 5, and some test cases are explained in section
6. Conclusion come up in section 7, together with some
open questions and future work.

2 Mobility support in TAPAS

As mentioned earlier, actors could be software com-
ponents running in terminals and network nodes provid-
ing the user with certain functionality. Once functionality
plugged in, it is possible to configure it, adapt it to the
environment, manage it and move it automatically based
on certain predefined strategies. This paper focuses on
two types of Mobility support, session and user, provided
to applications.

Generally speaking, mobility support in the TAPAS
is intended to expand to four generic categories: User,
Session, Actor and Terminal mobility [2]. User and Ses-
sion mobility aims at providing the very basic Personal
Mobility for users of any system or application based on
TAPAS. Users are no longer limited to use certain termi-
nal to access their services provided by their home do-
main, neither are they required to repeat several tasks in

 1

order to resume some unfinished work from previous ses-
sions. Actor mobility is the support provided for applica-
tions to carry out their tasks in a flexible and optimum
manner. This could be altered as Software mobility as
actors are analogous to software functionality in TAPAS.
Terminal mobility, on the other hand assures the continu-
ity of service access while on the move or at location
change. This is a complex and rather circumstantial issue
that depends heavily on network configuration and termi-
nal capabilities.

To get a wide-ranging view of mobility management
in TAPAS an object model and an engineering model
should be developed to comprise all needed functionality
and support. Figures 1 and 2 depict how mobility is sup-
ported in TAPAS. In Figure 1 all objects needed for vari-
ous mobility kinds are illustrated and related to each
other.

Figure 1. Object model for Mobility support in TAPAS.

Figure 2 gives an engineering model for that. Note
that the playing, session and user profile bases are all con-
trolled by the director. Additionally, Mobility Manager
and the director could also be co-located in the same
node. The devices depicted are characterized by different
sets of capabilities, that’s why certain application compo-
nents run at networks nodes instead of user’s device. The
Mobility Manager is responsible for managing the termi-
nal mobility of wireless devices. In such a configuration
any network node could be mobile and being managed by
it. For purpose of multi-domain environments the do-
main’s director, as there is only one director per domain,
could contact other directors inquiring about visiting
user’s ID and profile.

Figure 2. General Engineering model for mobility support

in TAPAS.

3 Focus on User and Session Mobility.

What is central to our approach is the terminal identi-
fication and mobility of sessions and users. Within this
framework terms and notions have been defined and re-
lated to active entities in the system. For example:

• User is referred to by an ID and profile,
• user-to-device relation is defined at login

phase,
• a user-application interaction is controlled

by a UserAgent,
• every time a user logs in a user session is

maintained,
• personal content is defined by applications

and is downloadable,
• applications are dependable on complex ca-

pability system regarding device, domain
and environment characteristics, etc.

In our approach user’s interactions are controlled by
UserAgent and user sessions are maintained by the direc-
tor in terms of Session descriptions, which is a detailed
sketch of running applications, actors and their related
data. All applications will be carried out through the in-
stantiation of actors with certain functionality. Therefore
actors need to be maintained in the user’s session descrip-
tion and/or profile. Figure 3 demonstrates how user’s ses-
sion is managed by the UserAgent, and consequently
maintained by the director’s data base. An example is
provided for a session description and a user profile. In
this example application actors are distributed on the

 2

user’s device and a network node, a typical example is a
chat client and a server, which are managed by the user’s
agent. When a session is suspended information on every
actor’s data, e.g. user nick name, online connections with
other actors, type of application and additional informa-
tion for child sessions should be stored. UserAgent is
completely responsible for the recreation and proper set-
ting of all these application actors.

User’s Login phase is central to the definition of
user’s identity, characterization of device capabilities,
resumption of user sessions, and transfer of personal con-
tent. It is used by the director to provide users with proper
access rights and profiles. Therefore, there are two types
of logins in a multi domain environment, as shown in
Figure 4. Eventually, users could access their home do-
main after some inter-director negotiation and authentica-
tion. Actors are identified by GAI (Global Actor Identi-
fier) and could move between nodes and running proc-
esses. Any specific actor that is required by a user’s ses-
sion has to be moved to the use’s new location.

Figure 3. Session mobility: A user is interacting with the
system through UserAgent and its session is stored in the

director’s Session Base.

Figure 4. User mobility: User A is accessing his home
domain from Domain2.

4 Mobility support functionality

Mobility support is provided to applications, so that
it is possible to develop an end-user oriented applications
with both user and session mobility enhancements. In
these applications users can get access to a personalized
environment and could fetch their personal content. So, as
users login to the application they can easily interact and
perform tasks that could be at any time suspended and
resumed later. If applied, user login to his home domain
from a visitor domain should also be permitted. In this
section we try to handle several implementation related
issues of the user and session functionality in TAPAS.

Figure 5. Class diagram for Mobility functionality.

Figures 5 and 6 gives an overview of this functional-
ity and how they are implemented in TAPAS. In Figure 5,
LoginAgent, VisitorAgent and UserAgent are derived from
the generic ApplicationActor object in figure 1.
UserAgent is responsible for handling the user’s interac-
tions with the system while he is at his home domain.
VisitorAgent, is responsible for a similar task but for visit-

 3

ing users. A single LoginAgent runs at every terminal to
handle the login phase of users. All of these classes have
their own GUI class; UserWindow, VisitorWindow and
LoginWindow, respectively.

Figure 6. Use cases for mobility functionality.

Figure 6, illustrates how could different use cases
handling the behaviour of these newly defined objects be
related. These use cases conduct certain types of behav-
iours that in all define the demanded mobility functional-
ity. Some of these use cases are illustrated in figures 7, 8,
9 and 10.

Figure 7. Sequence diagram for logging in users

In these sequence diagrams a logical interpretation of
users and their sessions is sketched. Also, the way how

TAPAS, the underlying platform, reacts to and handles
users’ interactions. As a starting point, a user logs in to
the system via the LoginAgent. As in Figure 7, LoginA-
gent sends a request with a parameter LOCAL or VISI-
TOR, depending on the user’s identity. In both cases the
Director will decide on granting the required access, for
instance it accepts a user as LOCAL and instantiate a
UserAgent at the node where the user has sent the login
request from. The other case would result in instantiating
a VisitorAgent if the user is not a legitimate user, who’s
UserProfile is not available in the UserProfile base.

Figure 8. Sequence diagram for remote login.

Another kind of user access is when a visiting user at
a visiting domain demands a home domain access, figure
8. In this case VisitorAgent issue a login request with two
parameters to the director: REMOTE and the home do-
main’s director location. A complete process of inter-
director interaction and identity authentication will follow
that could result in providing the user with home domain
access. As illustrated in the figure, a successful remote
login process results in plugging out the VisitorAgent. The
reason for this is that a UserAgent should be instantiated
to be capable of handling user’s interactions according to
a home domain access manner. Different set of applica-
tions and access privileges are granted for different user
categories, local and visitor.

Session mobility support is achieved through the ses-
sion suspend and resume procedures. In figure 9 a session
suspend starts with a SuspendSessionReq request sent
from UserAgent to all the actors (application actors) that
have been plugged in by this UserAgent. These actors will
reply by sending a description of their own session, which
comprises a set of variables needed to reconstruct the ses-
sion. This specific information on individual actor’s ses-
sion is a dependent part of the application it is represent-
ing and how much it is reproducible. For example, a chat
client actor would store its server location and user’s
name. Any suspended session should be registered in the
SessionDescripeions base, as mentioned earlier. Session
resume, on the other hand, is presented in figure 10. Upon

 4

a new login of a user, who has suspended a session, the
director will issue a SessionResumeReq request, which
will transfer the session description to the UserAgent. It
will manage the whole process of session reconstruction,
which starts by making sure that the play required by dif-
ferent application actors are properly available at the di-
rectors playing base. The director will receive different
ActorPlugIn requests from the UserAgent that are saved
as part of the its session description. This process is ended
by sending a SessionResumeReq request to these individ-
ual actors with required information on their own ses-
sions.

Figure 9. Sequence diagram for Session suspend

Figure 10. Sequence diagram for Session resume.

Figure 11. An example of User Profile.

Figure 12. An example of Session Descriptions.

Figures 11 and 12 gives an overview of the two in-
formational bases: UserProfile and SessionDescriptions.
In our implementation they are stored as two XML files,
as the format of the data suggests, and could be very eas-
ily extended.

5 The Chat and File Transfer applications

To test the applicability of the mobility functionality
support two applications have been developed: Chat and
File Transfer applications. These applications comprise
two plays each with a set of actor definitions and graphi-
cal user interface (GUI).

5.1 The applications
Figure 13 shows how the GUI for the chat applica-

tion looks like. Users, upon running this application, can
connect to available chat servers. Once connected, they
are allowed to type instant messages that will be trans-
ferred to all users connected to this server. Figure 14 de-
picts the GUI for the file transfer application. It is simply
an application for transferring data files from a node to
another node. In both applications a session is maintained
by defining one or more actors and store their identity in
the session description together with their related infor-
mation. There is a number of implementation related is-
sues and features that have been discovered and solved
out throughout the implementation process. In the chat
application, we discovered that a session resumption is
not possible if a chat server is allowed to change location,
this way a suspended chat client would risk loosing any
connection to its server while it is suspended. For this
purpose, a limitation on chat servers was set to restrict
their mobility. Also, in the file transfer application a file
receiver cannot independently resume a suspended file
transfer application. It could, however, issue a request to
the sender to resume it’s own application. Some other
cases may require several checks before any session re-
sumption; e.g. check login status of users, check availabil-
ity of local resources needed for different applications,
check servers availability, etc.

 5

Figure 13. The chat application.

Figure 14. The file transfer application.

 6

5.2 The sessions
Generally, a chat session is suspended by saving the

status of the ChatClient actor. As in figure 15, upon a
request from the UserAgent a ChatClient disconnects
from the ChatServer it is connected to and apparently
plugs out itself. Before doing so, ChatClients saves their
state by sending an entry on their active session to be in-
cluded in the user’s SessionDescriptions.

When a session that includes a chat application is re-
sumed, UserAgent requests the director to plug in a
ChatClient and tries to pass to it the necessary informa-
tion to reconstruct its session. SessionResumeReq in this
case would include the ChatServer location. Figure 16
illustrates this process. Note that some interactions are
necessary to accomplish the plug in phase of these actors,
but are not related to the Session mobility issue, i.e. they
are needed to load a manuscript from an available play in
the director’s playing base. Every request related to Role-
Figure and RoleSession plug in and setting in figures 15-
18 don’t contribute to this issue.

Figure 15. Session suspend for the chat application.

Figure 16. Session resume for the chat application.

Figures 17 and 18 illustrate a similar scenario for the
file transfer application. In the first figure, a file transfer
application is interrupted by SuspendSessionReq, mean-
while a CancelTransfer is sent to the other ChatClient to
stop receiving or sending data.Sequence diagram for the
Resume transfer session use case is shown in figure 18.
Due to the design of the FileTransfer application a sus-
pended filetransfer can only be automatically resumed if it
is the transferring ftclient that was suspended. The figure
shows what happens if this is the case. A new ftclient is
plugged in and the rolesession to the receiving ftclient is
recreated. If the receiving ftclient is unavailable the role-
session can not be recreated. The actor’s session is re-
sumed when the UserAgent sends him a SessionResume
request, with the actor’s state information added.

At the current implementation stage session resume
of file transfer application does not cover all cases, i.e.
when resuming a receiving ftclient side. There are some
features of the underlying platform that make it inefficient
to apply such a procedure.

Figure 17. Session suspend for the file transfer

application.

Figure 18. Session resume for the file transfer applica-

tion.

 7

6 Test Cases

The applicability of the mobility support was tested
and several changes have been applied to fit various ap-
plication requirements. The testing strategy was based on
applying different cases where session, users and domains
could change or move.

6.1 Testing user mobility
1. Scenario: Logon to local director. Do not select to re-
sume your session. Change the UserAgent’s settings and
suspend your session. Logon to local director again and
this time select to resume your session. Result: The set-
tings are stored in your UserProfile and set correctly.
2. Scenario: Logon to local director. Do not select to re-
sume your session. Change the UserAgent’s settings and
suspend your session. Logon to local director again on
another computer that has the same director, and this time
select to resume your session. Result: The settings are
stored in your UserProfile and set correctly when you are
logged onto the new computer.
3. Scenario: Logon to local director. Do not select to re-
sume your session. Change the UserAgent’s settings and
suspend your session. Logon as a visitor on a computer
with a different director. Logon remotely from the Visi-
torAgent to your home domain and this time select to re-
sume your session. Result: When you login the settings
are stored in your UserProfile. The UserAgent is plugged
in, the user’s session is resumed and settings are correct.
4. Scenario: Continue where the previous test-case left
out. You are logged on to your home domain from an-
other domain. Change the UserAgent’s settings and sus-
pend your session. Logon to local director again on the
first computer used and select to resume your session.
Result: The settings are stored in your UserProfile and set
correctly when you are logged on.

6.2 Testing session mobility
1. Scenario: Logon to local director. Do not select to re-
sume your session. Plug-in a chatclient actor. Change the
username used by the chatclient and suspend your ses-
sion. Logon to local director again and this time select to
resume your session. Result: After the UserAgent is
plugged in your session is resumed. The chatclient is
plugged in and the username it set correctly.
2. Scenario: Logon to local director. Do not select to re-
sume your session. Plug-in a chatclient actor. Change the
username used by the chatclient and suspend your ses-
sion. Logon to local director again on another computer
that has the same director and select to resume your ses-
sion. Result: similar to scenario 2.
3. Scenario: Logon to local director. Do not select to re-
sume your session. Plug-in a chatclient actor. Change the

username used by the chatclient and suspend your ses-
sion. Logon as a visitor on a computer with a different
director. Logon remotely from the VisitorAgent to your
home domain and select to resume your session. Result:
After the UserAgent is plugged in your session is re-
sumed. The chatclient is plugged in (correct username).
4. Scenario: Continue where the previous testcase left out.
You are logged on to your home domain from another
domain. Change the username used by the chatclient and
suspend your session. Logon to local director again on the
first computer used and select to resume your session.
Result: After the UserAgent is plugged in your session is
resumed. The chatclient is plugged in (correct username).

7 Conclusion

In this paper we have presented the approach applied
in TAPAS for supporting User and Session mobility. The
basic idea was to centre our approach around two infor-
mational bases: UserProfile and SessionDescriptions. The
first assigns all information altered as a personal envi-
ronment and user style related. Information on user’s pre-
ferred background colours, window sizes, startup applica-
tions, different local settings, etc. could be stored in this
base. To maintain users sessions, and probably applica-
tions sessions, SessionDescriptions base hold all the
knowledge of actors and their related information while
users interact with the system. As such, sessions could be
reconstructed and all their suspended actors and tasks
could be plugged in again. As a general conclusion we
ended up with, mobility and the freedom of session and
users is a must in any application focusing on the end
users. Also, an object in the model should be assigned the
role to maintain and manage this mobility, in our case it
was the director object.

Improving the interface towards the informational
bases could improve the overall functionality. For in-
stance, allowing the VisitorAgent to access a list of avail-
able domains would simplify the home domain access
process. Additionally, applying an actor discovery
mechanism could simplify session resume for many ap-
plications that are based on client-server communication.

References

1. Aagesen, F. A., Helvik, B. E., uwongse, V., Meling, H.,
Bræk, R., Johansen, U. “Towards a plug and play archi-
tecture for telecommunications”. Paper presented at the
IFIP TC6 Fifth International Conference on Intelligence in
Networks, Bankok, November 1999.

2. Mazen Malek and Finn Arve Aagesen. “Mobility man-
agement in a Plug and Play Architecture”, IFIP TC6 Sev-
enth International Conference on Intelligence in Networks,
Saariselka, Finland, April 2002. Available from:
http://www.item.ntnu.no/~plugandplay/publications/

 8

http://www.item.ntnu.no/

	Abstract
	Introduction
	Mobility support in TAPAS
	Focus on User and Session Mobility.
	Mobility support functionality
	The Chat and File Transfer applications
	The applications
	The sessions

	Test Cases
	Testing user mobility
	Testing session mobility

	Conclusion
	References

