
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL
ENGINEERING DEPARTMENT OF TELEMATICS

Implementation of Web services

architecture in TAPAS

Master thesis by
Joan J. Vila-Armengol

Trondheim, June 2004

Preface
This report is the result of my master thesis carried out at the Norwegian University of

Science and Technology (NTNU) in Trondheim, during the spring of 2004. The master

thesis was suggested by my advisor, Mazen Malek Shiaa, and it is related to the

Telematics Architecture for Plug-and-Play Systems (TAPAS) research project.

The time spent here in Trondheim as Erasmus student has been very interesting and full

of experiences. The topic of the master thesis was challenging and useful for my personal

background, Web services is a cutting-edge technology worth of hard work and study.

Also, getting to know the TAPAS architecture was a great attempt that provided me with

a good knowledge on Java and distributed application programming.

First of all I would like to thank my advisor, Mazen Malek Shiaa, for all the time he has

spent explaining and outlining the various aspect of the TAPAS platform, and for

advising me on how to go on in the hard moments. I am also thankful for the care and

support that my family always has given me, without them it would not have been

possible to stay here. I want to acknowledge also my friends here in Trondheim for their

support and for all those special moments I had with them. Last, but not least, a big

thankful hug to my always supportive and dear girlfriend, Anna.

Trondheim, 19 June 2004

Joan J. Vila-Armengol

 ii

Abstract
Telematics Architecture for Plug-and-Play Systems, or TAPAS, is a software architecture

that facilitates system installation and management by enabling dynamic instantiation and

upgrade of new or existing system components on the network. The TAPAS Basic

architecture was developed using Java, thus restricting the interaction of the platform to

only Java-based applications. This thesis aims at providing a feasible solution to the

application integration problem on the TAPAS core platform. This solution comes by

implementing a Web services architecture in TAPAS, and it is demonstrated integrating a

XET-based selection engine form the TAPAS Dynamic Configuration architecture.

Chapter one introduces the reader to the application integration issue, Web services

basics and outlines the motivation for implementing a Web services architecture in

TAPAS. Chapter two presents some related work already done under the TAPAS project.

This chapter focuses on the TAPAS Basic architecture and two implemented frameworks

under the TAPAS Dynamic Configuration architecture.

Chapters three and four comprise the task of implementing Web services architecture in

TAPAS. Thus, adding functionality and application integration support to the TAPAS

platform. Chapter three goes through different stages to provide the TAPAS Basic

architecture with Web services support. The purpose of this functionality is integrating

the XET-based Selection Engine of the Dynamic Configuration architecture. Chapter four

describes the implementation details behind the development of the Web services

architecture in TAPAS.

A demonstration based on the TeleSchool application for TAPAS is presented in chapter

five. This demonstration shows the feasibility of the implementation and how the

Selection Engine is successfully integrated with the TAPAS platform. Finally, the last

chapter is dedicated to the conclusion and further work.

 iii

Table of contents
Preface ___ ii

Abstract___ iii

Table of contents ___ iv

Table of figures and tables__ vi

1 Introduction ___ 1
1.1 Application integration__ 1
1.2 Web Services Basics __ 3
1.3 Introduction to TAPAS ___ 4
1.4 TAPAS with Web services support ______________________________________ 6

2 Overview of the TAPAS architecture ___________________________________ 8
2.1 TAPAS Basic Architecture___ 8

2.1.1 Definition of Plug and Play __ 8
2.1.2 The Basic Architecture ___ 9
2.1.3 The TAPAS layered model ___ 10
2.1.4 TAPAS communication model __ 12

2.2 TAPAS Dynamic Configuration _______________________________________ 15
2.2.1 Dynamic Configuration concepts __ 16
2.2.2 The Framework __ 17

2.3 XML-based Framework for Dynamic Service Management ________________ 18
2.3.1 Service Management concepts___ 19
2.3.2 The Framework __ 20

2.4 The Selection Engine___ 22
3 Web services architecture in TAPAS___________________________________ 23

3.1 Web Services support in TAPAS_______________________________________ 24
3.2 Selection Engine integration in TAPAS _________________________________ 27
3.3 Extended support for the Director role-figure ____________________________ 28
3.4 Conducting a case-study on existing TAPAS application ___________________ 30

4 Implementation issues __ 32
4.1 The proposed communication infrastructure_____________________________ 33

4.1.1 The Synchronous communication model_______________________________________ 34
4.1.2 The entity registry __ 42

4.2 Adding Web Services to TAPAS _______________________________________ 44
4.3 Interaction between Selection Engine and Director________________________ 45
4.4 Problems related to SOAP __ 47

5 Experimentation Scenario ___ 48
5.1 Describing the scenario___ 48

 iv

5.2 Setting up the environment ___ 50
5.3 Demonstration __ 52

5.3.1 Register the TAPAS Server node __ 53
5.3.2 Plug-in the TeleSchool play___ 55
5.3.3 Plug-in the TeleSchool service __ 56

6 Conclusion and further work __ 69

References ___ 71

Appendix A: Overview of Web Services ____________________________________ 74

Appendix B: Configuration files __ 77

 v

Table of figures and tables

Figure 1-1: Concepts used in the theatre analogy. .. 5
Figure 2-1: The TAPAS layered model. ... 11
Figure 2-2: Example of the support functionality structure. .. 11
Figure 2-3: The TAPAS Synchronous communication model. ... 13
Figure 2-4: Addressing and routing values.. 14
Figure 2-5: The Entity Registry.. 15
Figure 2-6: Architectural framework for dynamic configuration. ... 17
Figure 2-7: Dynamic Service Management Framework. ... 21
Figure 3-1: SOAP-based Web Service ... 25
Figure 4-1: The Synchronous Communication Model.. 34
Figure 4-2: Socket communication model.. 36
Figure 4-3: SOAP communication model... 41
Figure 4-4: The Registry Server with UDDI service .. 43
Figure 4-5: Overall workflow of creating a SOAP client application.. 44
Figure 4-6:SOAPMessage Object with Two AttachmentPart Objects ... 46
Figure 5-1: View of the experimentation scenario ... 49
Figure 5-2: Configuration file properties... 51
Figure 5-3: Example of the registryprops.properties configuration file. ... 54
Figure 5-4: Publishing the TAPAS Server node at the start up in the Registry.. 55
Figure 5-5: TeleSchool Play Plug-in.. 56
Figure 5-6: Sending the Initial Service Request query to the Selection Engine. .. 57
Figure 5-7: SOAP message with attached Initial Service Request XML file. ... 58
Figure 5-8: Sending to the Director the calculated Role-Figure Specification and Mapping table. 59
Figure 5-9: SOAP message response with attached XML result file.. 62
Figure 5-10: Discovery and identification of the destination TAPAS Server node. 62
Figure 5-11: Sending the ActorPlugIn request encoded in a SOAP message. ... 63
Figure 5-12: SOAP message that encodes the ActorPlugIn request. ... 68
Figure A-0-1: Web services architecture ... 75

 vi

1 Introduction
In this introductory chapter the importance of adding Web services support to the

Telematics Architecture for Plug-and-Play Systems (TAPAS) support platform will be

discussed. First, it will be introduced the application integration issue that is the main

handicap in nowadays distributed application development strategies. Secondly, Web

services technology is presented as the middleware solution supporting the

heterogeneous application integration. Some important features relating Web services

will also be shown in this section. Then, there is an introduction to TAPAS and the

main ideas and concepts behind it. In the last section of this chapter, the solution

given to the lack for application integration in the TAPAS core platform will be

discussed. Solution that will be achieved by implementing a Web services architecture

in TAPAS.

1.1 Application integration

Application integration is one of the most critical issues facing nowadays information

technology managers. Application integration is any mechanism that allows different

software systems to share, route, or aggregate information, thus improving operational

efficiency resulting in reduced costs, and enabling better access to information [1]. So,

it is clear that this issue is fundamental to the current model of business process.

In [2], Ballinger focuses on the problem of sharing data, and suggest the Distributed

application development as its solution. He defines the Distributed application

development as the art and engineering of getting data from one machine to another.

Nearly every application, at some point in its lifecycle, needs to share information and

interact with other applications [1]. But, due to generations of proprietary technology,

it is not easy to make application systems talk to each another. It is necessary, as a

natural evolution of network architectures and business processes, to interact with and

integrate application systems that have been built using a variety of hardware

platforms and software technology. As said in [1], application integration is hard.

There are two main categories that groups application integration strategies: data-level

integration and application-level integration.

 1

With data-level integration, applications can share information simply by sharing their

databases. This approach has two main problems: it is not suitable for update

operations as does not keep consistency at the database and does not let applications

share the business logic, the code that implements the business rules. On the other

hand, application-level integration takes more time and effort compared to the other

approach, but it offers much more versatility and maintains the system consistency. In

this approach, an application makes its information and its business logic available to

other applications through an Application Programming Interface (API). An API is a

programming mechanism that allows an application or system function to expose its

capabilities (make them available) to other applications [1]. Using application-level

integration is a better strategy when integrating systems, as it is a more complex but

cleaner and elegant way of handling the application integration issue. Therefore, this

will be the approach used to accomplish with the purpose of this thesis.

Once an interface that exposes the information and the business logic of an

application has been created, it is necessary to expose it to the outside world through

an open, network-enabled API. This network API is created by means of some

communication middleware. This is the point where Web services are introduced;

Web services represent a new type of communication middleware. Web services are

used to build open, nonproprietary APIs. Web services address two main challenges

associated with traditional middleware. The first one relates to pervasiveness and

heterogeneity. The second one relates to the cost of ownership associated with

integration [1].

Middleware provides easy access to complex system facilities and a consistent

interface across various hardware and software environments. Communication

middleware is middleware that lets applications talk to one another across the

network. It hides the complexity of the network. There are many kinds of

communication middleware, each one using its specific protocols. Therefore it is hard

to find one middleware package that supports all languages and platforms, i.e., giving

a solution to the heterogeneous application integration. Then, Web services appear as

a pervasive communication middleware that supports heterogeneous integration, at a

low cost and easier to use than traditional middleware solutions.

 2

1.2 Web Services Basics

As said before, Web services addresses the challenges associated with traditional

middleware. They provide a common way for an application, written in any language,

running on any platform, to talk to any other application. Web services provide a

common, platform-independent language that simplifies heterogeneous application

integration. Web services represent a new middleware integration platform built on

XML and the Web. These are the fundamentals of this technology for which Web

services let applications communicate over the Internet. Web services can securely

navigate their way through firewall, and they rely on new Internet-based technologies

to manage cross-domain security, transactions, and reliability.

In [2], Web services refer to a set of technologies that are the future of distributed

computing. Web services handle satisfactory the two largest design goals of most

distributed computing solutions; interoperability and loose coupling, understanding

for loose coupling that a system exhibits both implementation independence and

versioning without breakage. Web services refer to loosely coupled software

applications distributed across the Internet [3]. Unlike traditional distributed software

applications, for which the distributed components are tightly bound to the application

using them, Web services are entirely self-contained and self-describing. As such, a

Web service is a full encapsulated, modular unit of application logic that can be found

and used by other applications without requiring an intimate knowledge of the inner

working of the service. To summarize, Web service exhibits the following defining

characteristics:

⋅ A Web service is a Web resource. It is possible to access a Web service

using platform-independent and language-neutral Web protocols.

⋅ A Web service provides an interface that can be called from another

program. This application-to-application programming interface can be

invoked from any type of application. The Web API provides access to the

application logic that implements the service.

⋅ A Web service is typically registered and can be located through a Web

service registry. A registry enables services consumers to find services that

match their needs.

 3

⋅ Web services support loosely coupled connections between systems. Web

services communicate by passing XML messages to each other via a Web

API, which adds a layer of abstraction to the environment that makes

connections flexible and adaptable.

1.3 Introduction to TAPAS

Plug-and-play for telecommunications means that the hardware and software "parts",

as well as the complete network elements that constitute a service system have the

ability to configure themselves when installed into a network (to plug) and then to

provide services (to play) according to their own capabilities, the service repertoire

and the operating policies of the system [4].

TAPAS (Telecommunication Architecture for Plug-and-Play Systems) [4,5,6] is an

active research project at the department of Telematics, which aims at providing a

generic platform for enhancing the flexibility, efficiency and simplicity of system

installation, deployment, operation, management and maintenance by enabling

dynamic configuration of teleservices; network components and network-based

service functionality. Since its conception in 1999, a great number of Plug-and-

Players, presentations, reports and thesis about the TAPAS architecture, ranging from

general architecture overview to specific implemented functionality have been

written. Most of these publications are available on the Internet at the TAPAS website

at [http://tapas.item.ntnu.no] and they provide a deep knowledge on the whole

TAPAS concept and its support platform.

TAPAS as a concept is based on the theatre metaphor. Theatres have repertoires

consisting of plays. Plays are performed by actors playing roles which are defined by

manuscripts. A director manages plays and the performance of the actors. The

concepts used in this analogy are shown in Figure 1-1.

 4

http://tapas.item.ntnu.no/

Figure 1-1: Concepts used in the theatre analogy.

TAPAS uses the theater metaphor to define service systems. A service system, in

TAPAS, is viewed as a composition of service components. A service component is

realized by a role figure based on a role defined by a manuscript and is executed by an

actor, which is realized by a software component.

The TAPAS architecture requires a support system for software development,

deployment, execution and management. Moreover, the support is also needed for

generic user functionality to enable the flexibility features of the system. This support

system is denoted as the TAPAS Platform. Four main architectures compose the

TAPAS support platform; the TAPAS Basic architecture [5,7]: also called the TAPAS

Core Platform is the basis for all dynamic behavior functionality, the TAPAS

Mobility architecture [8,9,10]: is the basis for all mobility related issues, TAPAS

Dynamic Configuration [11,12]: is the basis for the framework for dynamic

configuration and reconfiguration of Plug-and-Play systems, and the TAPAS

adaptative Service architecture [12] which handles the complexity and diversity issues

of nowadays services as viewed in the global-scale, i.e. availability, capabilities,

platforms and technologies, decomposition and distribution of services.

 5

Parts of the specified support functionality have been implemented using Java RMI

and socket networking, but this implementation has some lacks that makes it not

suitable to support nowadays network heterogeneity and handle the application

integration issue introduced in section 1.1. The current TAPAS support platform

presents some drawbacks due to its communication infrastructure. The most important

issue is the interoperability with non-Java platforms as its execution environment is

Java dependant.

In this thesis, a new communication infrastructure for the TAPAS Core Platform is

presented and it has been implemented with satisfactory results. This communication

infrastructure comprises extended support to the TAPAS Core platform for Web

services, providing the core platform with the Web services features and its

heterogeneous integration support. The main difference with the original

communication infrastructure is the application of an all-web-services node registry

and communication model, which is mainly to achieve a totally XML-based

architecture.

1.4 TAPAS with Web services support

A TAPAS support system used for experimenting with the concept and functionality

of the architecture has already been implemented using Java RMI and satisfactory

results have been obtained. However, this implementation lacks the interoperability

with other non-Java platforms. The implementation of the communication

infrastructure presented here has been built under the support functionality of the

TAPAS core platform and it has been implemented using JAVA and Web

technologies as a means for service definition, update and discovery.

The thesis is targeting at the application integration issue within the TAPAS platform

by means of Web services technology. Two frameworks under the TAPAS Dynamic

Configuration architecture have been conducted within the TAPAS project and its

core platform: Dynamic Service Management [13] and Dynamic Configuration

Management [14]. These two frameworks are based on the same computing

mechanism for calculating the (re)configuration plans required when plugging a new

service component into a service system. Its core component is a Selection Engine

consisting of a XET engine [27] that employs the XML syntax and the Equivalent

 6

Transformation Paradigm. Since the XET engine can directly operate and reason

about XML expressions and XML clauses, it is employed as the component apparatus

to develop an executable engine for reasoning with both dynamic configuration

management and dynamic service management frameworks.

The main task performed within the scope of this thesis has been the redesign of the

TAPAS communication infrastructure to add extended support for the communication

and interaction with the mentioned selection engine. An architecture able to support

heterogeneous application integration by means of the Web services technology has

been achieved. In the implementation Web services are used for service definition,

discovery and XML-data exchange in the communication process. The provided

functionality will be shown conducting a case-study that comprises experimentation

with an existing TAPAS application, the TeleSchool application [15]. It will validate

the developed implementation for integrating the Selection Engine into the TAPAS

support platform for a dynamic service management framework.

 7

2 Overview of the TAPAS architecture
A great number of Plug-and-Players, presentations, reports and thesis about the

TAPAS architecture, ranging from general architecture overview to specific

implemented functionality have been written. Most of these publications are available

on the Internet at the TAPAS website at [http://tapas.item.ntnu.no] and they provide a

deep knowledge on the whole TAPAS concept and its support platform.

From all the related work on the TAPAS platform, this chapter focuses on four

different architectures already implemented within the TAPAS project; the TAPAS

Basic Architecture: section 2.1 describes the current TAPAS support platform which

is the basis for two dynamic frameworks described afterwards, the TAPAS Dynamic

Configuration is introduced in Section 2.2 while Section 2.3 presents the Dynamic

Service Management that is an XML-based framework. Finally the Selection

Engine in Section 2.4 introduces the computing mechanism on which both previous

dynamic frameworks are based

2.1 TAPAS Basic Architecture

TAPAS aims at providing a generic platform for enhancing the flexibility, efficiency

and simplicity of system installation, deployment, operation, management and

maintenance by enabling dynamic configuration of teleservices and network

functionality. It allows hardware and software components as well as network

elements that constitute a communication system to configure themselves when

installed into the network and then to provide services according to their capabilities.

Moreover, it permits adaptation of the system to the changing environment, in order to

achieve mandated performance levels and at the same time be able to meet user

satisfaction.

This section will focus on the Basic Architecture of TAPAS, which defines many of

the concepts used in the work presented later in this thesis.

2.1.1 Definition of Plug and Play

Plug-and-play is a concept known from the personal computing area. It means that it

is possible to plug-in a component and, without any more effort, the system works

 8

http://tapas.item.ntnu.no/

[17]. This type of Plug-and-Play is denoted Static Plug-and-Play because both the

plugged-in component and the framework has a predefined functionality.

The TAPAS project employs Plug-and-Play in a different and more general way. In

TAPAS the component to be plugged-in has some basic capabilities, or external

visible properties, that are fixed. The functionality, however, is defined as a part of the

plug-in procedure and can be changed dynamically. This means that the definition of

individual components, as well as the structure of components, can be changed online.

This type of Plug-and-Play is denoted Dynamic Plug-and-Play. In addition to making

it possible to dynamically change a component’s functionality, Dynamic Plug-and-

Play is also responsible for making all changes known to possible service users. This

way the ability to use the service is propagated.

The difference between Static Plug-and-Play and Dynamic Plug-and-Play can be

illustrated by an example. Normally when a cellular phone plugs into a network the

system provides Static Plug-and-Play with respect to the telephone service. The

functionality of the phone is known in advance. It will work the same way no matter

what user is logged on and what network it is attached to, as long as the network can

provide the required capabilities. However, one could think of a scenario where a

cellular phone that plugs into a network obtains the service it provides depending on

its own capabilities, which user that logs on, and which network it attaches to. Here

the cellular phone has some basic capabilities, but the functionality depends on the

plug-in procedure, and can be changed if for instance a new user logs on.

From now on Plug-and-Play means Dynamic Plug-and-Play.

2.1.2 The Basic Architecture

The TAPAS basic architecture is based on generic actors in the nodes of the network

that can download manuscripts defining roles to be played. These nodes are network

processing components, such as servers, routers and switches, and user terminals,

such as telephones, laptops, PCs, PDAs, etc.

In TAPAS, a service system consists of service components, which are units related to

some well-defined functionality defined by a play. A play consists of several actors

 9

playing different roles, each possibly having different requirements on capabilities

and status of the executing system. A role-session is a projection of the behaviour of

an actor with respect to one of its interacting actors. An actor is a generic object,

which will constitute a role figure by behaving according to a manuscript defining the

functional behaviour of that particular role in a play. A service component is realised

by a role figure based on a role defined by a manuscript. A role figure, however, is

realised in an executing environment in a node and is utilising capabilities. A

capability is an inherent property of a node. A node may have several capabilities.

These capabilities are offered to actors, which constitute role-figures in various plays.

The ability to play roles depends on the defined required capability and the matching

offered capability in a node where an actor is going to play. Examples of capabilities

are processing, storage and communication resources (e.g., CPU, hard disk and

transmission channels), standard equipment (e.g., printers and media handling

devices), special equipment (e.g., encrypting devices), and data (e.g., user login and

access rights) [28].

2.1.3 The TAPAS layered model

TAPAS basic architecture has several layers as viewed from the functionality and

support platform point of view. These layers of the TAPAS layered model are shown

in Figure 2-1. Then, an operational Plug-and-Play system example is presented

according to this model, and a brief description of each layer is given based on the

support functionality.

 10

Figure 2-1: The TAPAS layered model.

Figure 2-2 shows an example that illustrates the structure of the support functionality.

Then, an overview on the support functionality and the description of the concerning

layers is given.

Figure 2-2: Example of the support functionality structure.

 11

The Actor-environment-execution-module (AEEM) is a process or thread that

executes a collection of actors with associated Plug-and-Play Actor Support (PAS). A

collection of actors is here one or more actors constituting application role-figures or

director role-figures. The TAPAS platform basic functions supported are provided by

the procedures: PlayPlugIn, PlayChangesPlugIn, PlayPlugOut, ActorPlugIn,

ActorPlugOut, ActorBehaviourPlugIn, ActorChangeBehaviour,

ActorBehaviourPlugOut, RoleSessionAction, ChangeActorCapabilities and

Subscribe.

Plug-and-Play Node Execution Support (PNES) makes it possible to run Plug-and-

Play software on a node, and for Plug-and-Play functionality (i.e. executed by actors)

on different nodes to interact with each other. PNES is able to receive requests from

other PNESes, interpret these requests and take proper actions. PNES will also do

start-up and initialization of PASes or PCIs if that is required. PNES implements the

Plug-and-Play functionality that is termed the Plug-and-Play Static Basic Support in

the model. Static in this sense means that changes/extensions of the PNES

functionality must be backward compatible with earlier versions because this

functionality represents the “bootstrap” that is necessary to be able to run Plug-and-

Play applications. Only this functionality must be manually installed at a node before

Plug-and-Play applications can be installed and activated.

Plug-and-Play Actor Support makes it possible to create actors within the context of

an operating system process/thread, to give these actors behavior, and to communicate

information between these actors and their environments. There will be one PAS

instance within each Actor-environment-execution-module as defined above.

Director is both responsible for the management of the Plug-and-Play application

definitions, i.e. its part of the repertoire- and manuscript-bases, and for the

management of information concerning actors, i.e. its playing-base. A director is

involved in many of the functions related to the services provided by PAS.

2.1.4 TAPAS communication model

The TAPAS communication model presented in this section is meant to be a valid

solution for the distributed TAPAS architecture. This communication model has three

 12

main features; it is based on a synchronous communication model, it has a specific

addressing and routing system, and its registry mechanism. The implementation of

Web services architecture in TAPAS comes with changes in the synchronous

communication model and in the registry mechanism. So, it is important to know the

current communication model to better understand the changes made to it.

2.1.4.1 The Synchronous communication model

Figure 2-3 shows the Synchronous communication model using an example with two

nodes having different actors under the TAPAS support platform.

Figure 2-3: The TAPAS Synchronous communication model.

• The Synchronous communication model means that a request from one object to

another is executed before the execution continues at the requesting object.

• Actors only communicate directly with its owner PAS by using local method calls.

PAS communicates directly with PAS instances located at same node and with the

one and only PNES instance at same node, by using remote method calls. PNES

instances communicate with PNES instances at other nodes by using remote

method calls exact the same way as when PAS communicates with PNES. Using

 13

remote or local method calls are completely hidden from the application point of

view.

2.1.4.2 TAPAS specific addressing and routing mechanism

The addressing and routing mechanism of the TAPAS communication model is based

on the Global Actor Identifier concept. The same address identifier type, i.e. the

Global Actor Identifier (GAI), is used for addressing any kind of addressable entity.

The four addressable types are PNES, PAS, Actor and RS (i.e. Role Session). In

Figure 2-4 the addressing and routing mechanism is outlined. A GAI value is

subdivided into different parts, and where the mandatory part denoting the addressed

entity type (i.e. the values PNES, PAS, Actor, RS) determines which of the remainder

parts that needs to be used. E.g. a PNES instance is uniquely identified by the PNES

identifier value, while a role session is identified by a PNES identifier, a PAS

identifier, a Director Actor identifier and a unique number within the specified

Director Actor.

Figure 2-4: Addressing and routing values.

2.1.4.3 The Entity registry mechanism

Some entity registry mechanism must be used in order to find Plug-and-Play entities

in the Internet. For this purpose, the Java “rmiregistry” is used to register the PNES

and PAS entity types. But if we refer to local actor instances belonging to the same

PAS, an internal mechanism based on tables is used. Both registry mechanism are

 14

shown in Figure 2-5. In both situations, between nodes or locally, the GAI identifier

for the addressed entity is the key for identifying a specific entity, and the result of an

identification is a handle to a Java object representing the addressed entity instance.

Figure 2-5: The Entity Registry

The figure shows that this mechanism is used by PAS and PNES instances. There will

be separate “rmiregistry” “instances” on each node, and the different rmiregistry

instances do interactions with each other which it is transparent for the applications.

2.2 TAPAS Dynamic Configuration

The TAPAS dynamic configuration framework is based on the TAPAS basic

architecture. The TAPAS Dynamic Configuration architecture, as introduced is

section 1.3, is the basis for the framework for dynamic configuration and

reconfiguration of Plug-and-Play systems. It provides representation, computation,

and reasoning mechanisms for semantic description and matching of capabilities and

status information. These concepts on dynamic configuration, i.e. capabilities and

status, are introduced in section 2.2.1. These concepts are necessary to understand the

framework presented later in section 2.2.2. The Dynamic Configuration framework is

a framework already implemented and it is fully described at [14].

 15

2.2.1 Dynamic Configuration concepts

In TAPAS Capabilities can be classified into Resources, Functions and Data.

Resources are considered to be physical hardware components with finite capacity,

such as processing, storage and communication units; Functions are pure software or

combined software/hardware components which perform particular tasks; and Data is

just data, the interpretation, validity and life span of which depend on the context of

the usage.

Besides being classified as resources, functions and data, capabilities can also be

characterised by their varieties, i.e., whether they are optionable or absolute. In

addition, each capability can be associated with certain operational and behavioural

properties.

Status is, at a certain time instant, the situation in a Plug-and-Play system with respect

to the actual number of nodes, playing plays, traffic situation as well as operational

and non-operational states of each node or each capability component in the system. It

can comprise observable counting measures, measures for QoS or calculated

predicates related to these measures.

There exist two types of requests: Service Requests and Service Component Requests.

A Service Request message request the installation of a Plug-and-Play service not yet

installed in the system. A Service Component Request message requests the

instantiation of a service component in a running system, i.e. the plug-in of an actor.

Each request carries information on which play or which role is requested.

Trouble reports may also be of different types depending on the type of trouble it

describes. If the message is created because an actor is experiencing trouble reaching

another actor, the trouble report is said to be of type actor unreachable report.

However, if the trouble report is sent because an actor finds that the node where it is

currently running can not offer sufficient capabilities, an insufficient capability report

is sent.

 16

2.2.2 The Framework

The architectural framework for Dynamic Configuration in TAPAS is illustrated in

Figure 2-6, and comprises the following main entities:

1. Capability & Status Repository (CSRep) stores specifications of capabilities

offered by components in a system and maintains information reflecting the

situation and status of the system at a particular time.

Figure 2-6: Architectural framework for dynamic configuration.

2. Play Repository (PlayRep) comprises a set of play definitions defining

functional behaviours of particular service systems, each consisting of several

actors playing different roles with certain requirements on available

capabilities and status. A play definition is an aggregation of the following

four specifications:

 17

(i) Manuscripts define the functional behaviour of each role which not

only embraces its internal behaviour, but also the interactions and

cooperation with other roles.

(ii) Role specifications identify, for each role, its requirements on both

available capabilities and status.

(iii) Play configuration rules describe service system configuration

constraints, such as specification of the maximum number of roles

which are allowed to install at a specific node in order to avoid an

overload situation.

(iv) Reconfiguration rules define application-specific reconfiguration

policies for handling substantial reconfiguration-related events.

3. Capability, Status & Event Monitor (CSEMon) monitors the system

capabilities/status and also maintains the CSRep. Moreover, it listens to

certain events indicating changes to the system and its environment, which

would prevent the system from getting the desired level of services.

4. Configuration Manager (CM) is responsible for: Generation of appropriate

configurations for composing new services to be installed in a system,

Determination of a location for executing a particular role, and the

Computation of reconfiguration schemes for dynamic reconfiguration of

existing service systems.

5. Service Installer is responsible for the installation of a service into the system

by creating corresponding actors for execution of certain roles, according to an

obtained play configuration generated by the CM. Allocation of capabilities as

well as instantiation of a manuscript for each role are also performed by this

entity.

6. Service Reconfigurator initiates and performs reconfiguration of a service

system based on an obtained reconfiguration plan.

2.3 XML-based Framework for Dynamic Service Management

The framework presented in this section is the TAPAS Dynamic Service Management

architecture. This framework has been implemented and it is fully specified in [13].

The Dynamic Service Management framework is presented to show the working

scenario of the Selection Engine. The Selection Engine, introduced in section 1.4 and

further explained in section 2.4, is the computing mechanism of the previously

 18

presented Dynamic Configuration and the Dynamic Service Management

frameworks. The implemented Web services architecture in TAPAS handles the

application integration issue, and the Selection Engine is the application to be

integrated in the TAPAS platform.

This section has been divided into the same subsections as the previous one. First,

subsection 2.3.1 presents the concepts of the Dynamic Service Management

framework. Then, in subsection 2.3.2, the framework itself is described.

The main idea in the Dynamic Service Management framework is to use XML

behavior specifications, which are basically state machine specifications, with

generalized action types as the Service Specifications. The system resources are

represented by the so-called Capability and Status, which characterize all the

information related to resources, functions and data inherent to a particular node and

may be used by a service component to achieve its functionality. Service Adaptation

is achieved by allowing the service components to modify their functionality, or the

code they run, dynamically by requesting changes to their service specification. The

framework uses web services to manage the availability of service components, and

the communication between them.

2.3.1 Service Management concepts

A basic assumption used in the Dynamic Service Management framework, is the

notion of Capability. In short, Capability is a concept representing and abstracting all

the information related to functions, resources and data required by the Role-Figures,

in order to achieve their desired functionality. Role-Figures are specified as a state

machine model that achieves tasks by performing or executing actions. A capability-

based Role-Figure specification is a specification that performs such actions, and

imposes further requirements on whether an action is still executable if its demand for

capabilities is not met at a given time.

Another important concept is Status. It comprises observable counting measures,

measures for Quality of Service (QoS), or calculated predicates related to these counts

and calculated measures. It reflects the resulting state of the system, which cannot

directly be changed and negotiated. Basically, status information show, at a certain

 19

point of time, the situation in the system with respect to the actual number of nodes,

executing programs, number of users, traffic situation, etc.

One more concept here is Capability Categories. It is service designers’ work to map

actions, according to Action Types, to executable routines provided by service

manufacturers. The classification of these executable routines is referred to as

Capability Categories, where each category represents a capability set indicating

operating circumstances and capability requirements that the routines are demanding

for or working within.

Role-Figure specifications and Action Library are made available on a Web-server at

some well-known address, and can be dynamically downloaded to any node for

instantiation. Moreover, a State Machine execution support is needed to execute the

XML-based service specification. We will refer to this execution support by State

Machine Interpreter (SMI), and assign it the responsibility of managing and executing

the Role-Figure specifications and the linking of action definitions with their

implementations. The SMI executes the Role-Figure specifications by invoking the

action codes with matching action type and capability requirements, i.e., the codes

will be selected when the offered Capability Category matches the required Capability

Category for the specific action type.

2.3.2 The Framework

The implementation of this framework has been conducted within the TAPAS project

and its core platform that provided the basis for the implemented system. The

framework for dynamic service management is illustrated in Figure 2-7. The

components of the framework are:

1. Play Repository: a data base that contains the service definitions and includes:

Role-Figure Specifications, Selection Rules and Mapping Rules.

2. Capability and Status Repository (CSRep): a database that provides a snapshot

of the resources of the system. It maintains information on all capability and

status data that may affect the execution of the various Role-Figures at different

nodes.

 20

Node / Device

Service Manager
(SM)

Action
Library

Capability
& Status
(CSRep)

Play
Repository

State Machine
Interpreter

(SMI)

ManuscriptRole-Figure
Specification

Selection
Rules

Mapping
Rules

Capability
Set

Subset of
Action
Lbrary

Funtion Update
requests

Initial Service
requests

Role-Figure
move

Role-Figure
Specification
(instantiated)

Role-Figure

Role-Figure
Specification
(instantiated)

Role-Figure

ManuscriptRole-Figure
Specification
(calculated)

Mapping
table

Figure 2-7: Dynamic Service Management Framework.

3. Action Library: a database that contains codes for the state machine-based

actions. These codes are implemented according to the capability category they

require.

4. Service Manager (SM): is responsible for the handling of Initial Service

requests (to instantiate a Role-Figure), Role-Figure move (to move an already

instantiated Role-Figure from one node to another), and Function Update

requests (to change the functionality of an already instantiated Role-Figure).

5. Requests: supply, on the one hand, the identification of the Role-Figure to be

instantiated or modified. On the other hand, they will provide the information

that will be taken into consideration during the calculation of the Capability

Category. Three types of service requests may be handled by the SM: Initial

Service request, Role-Figure move and Function Update request.

6. Results: are the outcomes of the calculations performed by SM, which contains

a Calculated Role-Figure Specification and a Mapping table.

7. State Machine Interpreter (SMI): is the primary entity in the framework

responsible for the execution of Role-Figures according to instantiated Role-

Figure Specification sent by the SM.

 21

2.4 The Selection Engine

The reasoning component of both frameworks presented is the Selection Engine. This

XET-based engine is responsible for calculating the configuration plans when a

service plug-in request is received. The computation mechanism is developed by

means of the ET (Equivalent Transformation) paradigm which, in brief, works as

follows: Let P and Q be XDD descriptions which model the CSRep and the PlayRep,

respectively. Given a message M (either a request message or a trouble report), the

CM computes a corresponding (re)configuration plan by simplifying the description P

U Q U {M} through repetitive application of semantically-equivalent transformation

rules until the description R which contains the computed configuration is obtained.

By enforcing this semantic-preservation property of each transformation, the

correctness of the computation under this paradigm is always guaranteed [14].

The Selection Engine is founded on the ET paradigm; three declarative-style rule-

based programming languages and inference engines: ETC (Equivalent

Transformation Compiler), ETI (Equivalent Transformer Interpreter) and XET (XML

Equivalent Transformation). Since XET engine can directly operate and reason about

XML expressions and XML clauses, it is employed as the computation apparatus to

develop an executable engine for reasoning with both dynamic configuration and

dynamic service management frameworks.

The interaction with the Selection Engine is done using XML files. But the current

TAPAS core platform does not support this kind of communication. The

implementation of Web services architecture in TAPAS comes forward to solve this

integration problem. With the communication infrastructure presented in this thesis,

the TAPAS support platform can interact successfully with the Selection Engine.

Therefore, it makes possible the integration of the TAPAS Basic architecture with the

TAPAS Dynamic Configuration architecture.

 22

3 Web services architecture in TAPAS
The task performed in this thesis has been a redesign of the TAPAS communication

infrastructure to integrate this platform with the Dynamic Configuration architecture.

The integration has been achieved by means of the Web services technology. The

implementation of Web services architecture in TAPAS provides a feasible approach

to the integration issue, i.e. integrating the XET-selection engine into the TAPAS

support platform. This XET-selection engine is the main computing component

responsible for all the calculations of the (re)configuration plans in the Dynamic

Configuration Architecture, and the selection rules and mapping tables in the

Dynamic Service Management Architecture.

The work comprises the following subtasks:

1) Implementing Web-services support in the TAPAS communication

infrastructure. This task is described in section 3.1.

2) Developing a communication model and an interface for the Selection Engine

in order to fit it into the TAPAS support platform. Section 3.2 discusses this

task.

3) Providing the extended and needed support to the Director object. This issue is

explained in section 3.3

4) Conducting a case-study that comprises experimentation on the TeleSchool

application under the TAPAS support platform. This task is introduced in

section 3.4 and further developed in chapter 5.

The following sections of this chapter describe the task carried out in each one of the

previous points. But the technical details and implementation issues are shown in

chapter 4. Tasks 1-4 represent the stages followed to carry out this thesis and state the

goals of the thesis. The implementation details behind these tasks are presented

separately, in chapter 4, as they are related to the whole thesis and cannot be divided

in evaluative phases.

 23

3.1 Web Services support in TAPAS

The first issue in this thesis will be to give Web services support to TAPAS platform

in order to be compliant with the currently open Internet standards being used. A

TAPAS support system has been already implemented using Java RMI. This

technology constitutes the core communication of the implemented support system,

allowing the communication and method invocation between service components of a

service system. But, because of Internet heterogeneous nature, communication

mechanisms must be platform-independent, international, secure, and as lightweight

as possible; features that Java RMI does not gather. For this reason, the first change

should be done in the communication infrastructure of TAPAS. This change will

involve two kinds of communication used in TAPAS. In one hand, there is the

communication between service components located at the same node. This

communication will be performed using sockets, a more lightweight communication

mechanism than the Java RMI used. On the other hand, there is the communication

between service components located in different nodes. This looks at three main

issues.

1. The communication process runs through different networks crossing

firewalls and it is desirable that the service is available from any endpoint

located in the Internet.

2. Thus, the service system can be scattered on the Internet, having service

components in different networks. A standard mechanism for register and

discover the active components is needed.

3. There is also the requirement that a customer, external to the service

system, would want to use the service offered. This customer, maybe from

a non Java platform, should be able to develop its own client application

able to consume the service deployed in TAPAS. Therefore, some

information on how to implement such a client is needed. This description

information should be available in a standard way so any user can make

proper use of it.

The architecture that comes forward as a natural choice and covers all these three

issues is the Web services architecture.

 24

The Web services framework is divided into three areas — communication protocols,

service descriptions, and service discovery — and specifications are being developed

for each. The specifications that are currently the most salient and stable in each area

are:

• the Simple Object Access Protocol (SOAP, www.w3.org/2000/xp) which

enables communication among Web services;

• the Web Services Description Language (WSDL, www.w3.org/TR/wsdl.html),

which provides a formal, computer-readable description of Web services;

• and the Universal Description, Discovery, and Integration (UDDI,

www.uddi.org) directory, which is a registry of Web services descriptions.

Client
application

?WSDL

WSDL
description

Application Server

 Web Service

 Endpoint

Client
application

XML
request

XML
response

Application Server

 Web Service

Endpoint

Figure 3-1: SOAP-based Web Service

Figure 3-1 represents a common SOAP-based Web service. The server offers a

service description, using WSDL, which will be fetched by the client application. The

client application, with the information given in the WSDL service description, will

access the service endpoint using XML request. These XML requests can carry an

embedded Remote Procedure Call (RPC), compliant with the SOAP specification for

RPC, which is able to run a method in the endpoint service; and the way to do it is

also described in the WSDL description. In this communication process the response

to the XML request is also of XML type. Furthermore, as it is a synchronous

communication the response will be sent back in the same http connection.

 25

In appendix A, an introduction to Web services is given providing the reader with a

complete overview on these specifications and how they are related and used in the

Web services technology.

The task done in this section involves extending the functionality of the Plug-and-Play

Node Execution Support layer of the TAPAS layered model. This layer represents the

basic execution and communication support for running a Plug-and-Play application

at a node. In order to use Web services technology, the PNES must be compliant with

the web services architecture; this is to be able to communicate with an UDDI registry

server, for registering and discovering tasks, and to communicate with other nodes

using SOAP messages. Thus, the PNES must implement some registering

mechanisms to register the TAPAS Server node at the startup. Other mechanisms

implemented are the ones for discovering other active TAPAS Servers scattered on

Internet, and finally, it must implement some communication mechanisms to send and

handle SOAP messages to and from other nodes running a TAPAS Server. As far as

the TAPAS support platform has been developed using Java programming language,

all the communication mechanism mentioned before have been implemented using

the same programming language, modifying the already existing classes and creating

new ones. The most important modifications made to the existing classes are due to

the problem of the serialization of Java objects.

The information encoded in the SOAP message must be comprehensible by any client

application, even if it is not Java based. For this reason, the Java objects used within

the TAPAS support platform cannot be sent across the net without serialization. This

serialization intends to convert the properties of the class into XML compliant data

format; this is using standardized data types and the appropriated metadata. Due to

this serialization work, any system based in any platform can process what it is being

sent and it can create a client able to interoperate with the service offered by our

TAPAS server.

For the implementation of this task, the Apache Axis [26] and the Java Registry [25]

server have been used. Both applications need a server container for which the Jakarta

Tomcat server has been chosen. The Apache Axis is a SOAP aware server able to

send and receive SOAP messages, and handle them in the correct way. Besides this,

 26

Apache Axis gives support for WSDL description of the deployed service in a very

easy way, creating the service WSDL description and the associated Java classes

automatically. The Java Registry server is used as a UDDI based registry that allows

service components to register themselves and discover other ones active in the

network.

3.2 Selection Engine integration in TAPAS

The second issue considered in this thesis is the design of a communication model and

the specification of an interface for the Selection Engine. The purpose of this work is

to fit this computing mechanism, a XET-based selection engine, into the TAPAS

platform.

The Configuration Manager form the Dynamic Configuration framework, as reported

in section 2.2.2, is responsible for the generation of appropriated configurations for

composing new services to be installed in a Plug-and-Play system, determination of a

location for executing a particular role and computation of reconfiguration schemes

for dynamic reconfiguration of existing systems. In the Dynamic Service Management

framework a similar element is defined, the Service Manager (SM). As stated in

section 2.3.2, this element is responsible for instantiation of a Role-Figure, moving an

already instantiated Role-Figure form one node to another and changing the

functionality of an already instantiated Role-Figure. Both elements make use of a

computation mechanism developed by means of the XDD (XML Declarative

Description) [16] paradigm, and uses the XET engine [27] that employs the XML

syntax and the Equivalent Transformation paradigm. The XET engine can directly

operate and reason about XML expressions and XML clauses, for this reason it is

employed as the computation apparatus to develop an executable engine for reasoning

with the dynamic configuration architecture. This engine represents the Selection

Engine introduced in section 2.4.

What has been done in this thesis is the creation of a web service interface for the

Selection Engine to interact with the DirectorActor Role-Figure of the Plug-and-Play

architecture in TAPAS. The interface of the Selection Engine should be able to handle

SOAP requests as this is the standard communication protocol for the Web services

framework. However, as reported before, the selection engine consumes XML

 27

expressions and clauses so it is required for the client application to send XML

requests to it. The SOAP with Attachments API for Java (SAAJ) [25] specification

comes forward as the most suitable solution to handle this. As far as the whole

support platform for TAPAS is implemented using Java, the SAAJ specification

permits to send any kind of information attached to a SOAP message. This way, it is

possible to send a XML request attached to the SOAP message that will be received

by the Selection Engine service interface.

The implementation of the Selection Engine interface has been developed using Java

Servlet technology and it uses the XET Engine provided in [27]. This XET-based

engine comprises a Java library containing all compiled classes that allow the

execution of the methods needed to compile and calculate the XML clauses and

expressions.

The client application, in this implemented model, will send an XML request attached

to a SOAP message to the address where the Selection Engine is running, this address

is specified at the configuration file. On this address there is a Java Servlet waiting for

http connections, and using SAAJ functionality this Servlet will be able to handle the

SOAP message that ships with the http request. The SOAP message will be extracted

and the attached XML file will be processed by the Selection Engine. This process

involves the execution of the received request according to some defined rules and

data. These rules and data are XML files accessible by the Selection Engine and it

will use them to get the results in the form of an XML file too. The resulting XML file

will be attached to a SOAP message and this one will be sent encoded inside the http

response.

3.3 Extended support for the Director role-figure

The third issue handled in this report is providing the extended and needed support for

the Director role-figure.

The Director role-figure defined in [4] is an important Plug-and-Play object

functionality necessary to initialize any play. The director guides actors in the plug-in

phase as well as in the plug-out phase.

 28

At the Dynamic Service Management framework, there is the State Machine

Interpreter which is responsible for executing the results given by the Service

Manager. At the Dynamic Configuration framework there is the Service Installer,

which is responsible for the installation of a service into the Plug-and-Play system

according to an obtained play configuration generated by the Configuration Manager.

Both components are responsible for carrying out the results calculated by the

Selection Engine. However, according to the TAPAS support platform, the executor

of this kind of tasks is the DirectorActor Role-Figure. The Role-Figure of the Director

is the only responsible for the plug-in and instantiation of actors (role-figures).

The solution proposed in this thesis comprises giving the Director Role-Figure an

extended support for interpreting the results given by the Selection Engine. This is

similar to the task performed by the SMI and the SI; somehow the functionality of

these components is integrated into the Director role-figure. Therefore the Director

will be the responsible for interpreting the received results and execute them within

the TAPAS support platform. The calculated configuration results are encoded using

XML and are received by the Director attached to a SOAP message that ships with an

http response as a result of an http request to the Selection Engine. Making use of the

extended support, the Director must be able to read this XML file, select the most

suitable configuration solution and execute it. This execution comprises the creation

of corresponding actors for execution of certain roles - if we are working within the

Dynamic Configuration framework, or carrying out the instantiated Role-Figure

Specification sent by the SM - if we are within the Dynamic Service Management

framework.

The implementation of this issue has been developed using J2SE 1.4.2 SDK, creating

new Java classes to extend the support for the Director Role-Figure. The reading of

the XML files has been implemented using the Simple API for XML (SAX) [25]

provided by the Java API for XML Processing (JAXP) [25]. A SAX parser reads the

file and it executes the calculated service configuration according to the conditions

and pattern specified in a java class that depends on the service requested to the

Selection Engine.

 29

3.4 Conducting a case-study on existing TAPAS application

This task is about conducting a case-study that comprises experimentation with

different scenarios on some existing TAPAS application, TeleSchool application has

been chosen for this purpose.

TeleSchool is an example application built to demonstrate the use of the TAPAS

platform. An implementation of the application already exists that builds on the Basic

TAPAS Architecture. As the name of the application indicates, the functionality of the

application is related to schools and network based learning.

In TeleSchool students and teachers attaches to a school to get access to services. The

services provided are utilized to perform real time lectures, review stored lectures and

to allow communication between students and teachers. The services may include

distribution of multimedia communication.

Four different roles have been defined for the play real time lecture. These are shown

in Table 1. In the current TeleSchool implementation each of these roles are

represented by a Java class containing a description of the role’s manuscript, and

information related to role specifications is specified when requesting actor plug-ins.

Table 1: TeleSchool roles

Role Description

ShoolRTLServer Provides functionality specific for real time lectures.

SchoolServer Defines the behaviour of the server for all clients running TeleSchool.

SchoolClient Defines the behaviour of students and teachers.

SchoolUserInterface Presents the user interface for the students and teachers.

The purpose of this example scenario is to demonstrate the validity of the proposed

communication model. The experimentation with this communication infrastructure

comprises the following issues:

⋅ Registering the TAPAS server node in a UDDI Registry server at the

startup.

⋅ Communication with the Selection Engine in order to configure the plug-in

of the TeleSchool service. This task involves the communication process

between the Director Role-Figure and the Selection Engine which will test

 30

the communication using the SOAP API for Attachments in Java; sending

a XML query attached to a SOAP request and getting back the XML

result.

⋅ Testing the extended support of the Director Role-Figure. Once the result

has been received, the Director must read it and execute the appropriate

actions in order to fulfill the configuration plans calculated by the selection

engine. The configuration plans may include the instantiation of a new

Role-Figure at a certain node, but first, the Director should make sure that

the destination node is an active TAPAS server. For this it is necessary a

discover mechanism.

⋅ Discovering mechanism to find active TAPAS server nodes at the network.

Before sending the plug-in request to a node the Director must be sure that

this node is running a valid TAPAS support system. The implemented

mechanism allows querying the Registry Server for registered nodes at the

network and getting the location of a WSDL description for the offered

web service.

⋅ Communication between TAPAS Server nodes, this is between PNES

entities, using the existing Web open standards. In this framework this is

done exchanging SOAP messages in a web services architecture, encoding

the parameters and all necessary information using standard data types and

the Remote Procedure Call specification given with SOAP.

 31

4 Implementation issues
The implementation of Web services architecture in TAPAS has been conducted

within the TAPAS project and its core platform that provides the basis for the

implemented system. The implementation has been developed using JAVA and Web

technologies as a means for service definition, update and discovery. The main

difference with the original TAPAS support platform is the application of an all-web-

services node registry and communication model, which achieves a XML-based

architecture with application integration support.

Java Web Services Developer Pack (Java WSDP) has been used to develop the main

communication parts of the framework, while Apache Axis has been used as a SOAP

server. In this regard, nodes running the platform will have an entity that supports

Web Services requests and replies. This modified communication layer needs a Web

Server, in this case is the Tomcat server provided with the Java WSDP, and a SOAP

server which can handle the SOAP requests generated in the communication between

nodes and sends back the reply in a synchronous mode. The Registry Server provided

with the Java WSDP is used to register nodes executing Role-Figures. SOAP

messages with attachments are used to send and receive SOAP messages with an

attached query in XML format.

Next section will focus in giving a distributed communication model for the TAPAS

platform with support for a Dynamic Service Management. Besides, the distributed

solution presented here will be compared to the current distributed solution used in the

TAPAS Basic architecture.

The Plug-and-Play distributed solution for the TAPAS platform used Java RMI to run

methods on Java Objects (JO) located in different Java Virtual Machines (JVM). The

proposed TAPAS communication model avoids RMI. The communication between

JO in different JVM in the same node is done using sockets and the communication

between different nodes uses the SOAP protocol. The main problem to face is that the

TAPAS architecture claims for a peer to peer communication, and this is a problem

when using Web services. Web services are conceived as client-server communication

model, but in the TAPAS model every node acts as client and server. When an actor

 32

at any node requests a service from another node the local PNES will act as a Web

service client. This issue can be described in short as follows: first, the PNES instance

at a node will request the registry to know if the receiver node is an active TAPAS

server. If success, it will query the remote node using the RPC specification encoded

in a SOAP request. Notice that this node will be running server able to handle this

SOAP request. At the same time, this node acting as client can receive a SOAP

request from a remote node trying to access the active service, and then it will be

acting as a server application. So both client and server side code should be present at

every node acting as a TAPAS server. This has the inconvenient that a SOAP aware

server must be running at every node and the TAPAS service should be correctly

deployed in it.

This chapter is divided into four sections. The first section 4.1 describes the proposed

communication infrastructure for the TAPAS Platform to bear with Web services

architecture. Section 4.2 explains the technical details of adding Web services support

to the TAPAS core platform and how to implement the Web services architecture in

TAPAS. The interaction process between the Director and the Selection Engine is

presented in section 4.3. Finally, there are some problems regarding the

interoperability issue when using SOAP for application integration. This is described

in section 4.4.

4.1 The proposed communication infrastructure

The main changes made to the distributed model are the communication protocol and

the way in which the synchronous communication among the JO instances is done.

The original communication model is based on Java RMI; this is used to run methods

in remote JO located in different JVMs. There are two situations in which this

happens; the communication between actors belonging to different PAS at the same

node – notice that each PAS runs on a different JVM, and the communication between

actors located in different nodes. When running at the same node, instead of RMI it is

possible to use sockets. And for the communication between nodes, this is, between

PNES, the solution proposed uses SOAP and UDDI. As stated in the Web Services

introduction, SOAP supports a standard for RPC – this is necessary to replace the Java

RMI function, and with UDDI we can publish, discover and query the active PNES

running in the network – this is necessary to replace the RMI registry provided by

 33

Java RMI. With this new distributed solution it is possible to avoid using RMI and

integrate the Web services technology to the TAPAS architecture.

The presentation of the proposed communication infrastructure is divided into two

main sections; first it is presented the Synchronous Communication Model in section

4.1.1 including the implementation details. Next section, the Entity Registry 4.1.2,

illustrates how a registry server has been integrated into the TAPAS support platform

allowing the registration and discovery of active TAPAS Servers at the network.

4.1.1 The Synchronous communication model

The proposed synchronous communication model for the TAPAS platform with Web

services architecture is shown in Figure 4-1. This model avoids using Java RMI so the

communication can be established with any non-Java platform using open Web

standards.

PAS and Actor(s) PAS and Actor(s) PAS and Director
and Actor(s)Act Act Act

Act

PAS
Node 1 PAS PAS

PNES Node 2

PNESPNES

PNES

Figure 4-1: The Synchronous Communication Model.

 34

Communication among actors

belonging to the same PAS instance, the

same JVM, is still done using local

method calls. PAS communicates

directly only with PNES instance at the

same node. This communication

between two JVM is done now using a

socket connection. And the

communication between two nodes, two

PNES instances, uses the SOAP

standard for RPC.

 Legend:
 Single node

 Java Virtual Machine

 Java Object Instance (JO)

 JO communication using ”local
 method” calls

 JO communication using sockets.

 JO communication using SOAP
 messages over HTTP.

 Queing for ”RoleSessionAction” and
 ”SubscribeRequest” type requests.
 All other request types are
 synchronous.

As shown in Figure 4-1, the communication between the actors and its PAS within the

same JVM is done using local method calls. This is in the same way as it was done in

the original Plug-and-Play distributed solution. Regarding the PAS, this

communicates directly with the one and only PNES at the same node, by using socket

connections. All communication between PAS is carried out through the PNES. In the

Plug-and-Play distributed solution remote method calls were used for the

communication between these instances located in different JVM, and there was a

direct communication between PAS located at the same node. PNES communicates

with other PNES at other nodes by using the SOAP specification for Remote

Procedure Calls (RPC). This communication model is illustrated in Figure 4-1.

Regarding the use of sockets between JVMs located at the same node instead of

Remote Method Invocation, is a matter of lightening the communication process.

Distributed object-based applications can be easily developed using Java Remote

Method Invocation (RMI). The simplicity of RMI, however, comes at the expense of

network communication overhead. Low-level sockets can be used to develop

client/server systems, but since most Java I/O classes are not object friendly, we need

the object serialization as the mechanism that allows read/write full-blown objects to

byte streams. Combining low-level sockets and object serialization gives a powerful,

efficient alternative to RMI that enables to transport objects over sockets and

 35

overcome the overhead incurred in using RMI. A detailed implementation using

sockets for this communication is given in Figure 4-2.

Node

pnes
pas1
pas2

pas1

ComCenter

ConnectionHandler

Legend:
 Single node

 Java Virtual Machine

 Local port

 File registry.properties

pas2

ComCenter

pnes

ComCenter

ConnectionHandler

1

2

8

7

5

6

4

3

ConnectionHandler

Figure 4-2: Socket communication model

PAS communicates directly only with the one and only PNES at the same node using socket

connections. There is also a registry.properties file that keeps a mapping table with all the active PAS

and PNES instances and their corresponding local port where the server socket is listening.

When using RMI it is possible to invoke directly a method in a remote object as if it

was at the same JVM, but when using sockets only byte streams can be send through

them. So this information has not any kind of format and does not belong to any Java

 36

data type. The developer of the application is responsible for giving any format to this

raw information sent across the network. For instance, to send Java objects using

sockets it is necessary to serialize them at the client side and deserialize at the server

side - at the receiver.

A communication model and its protocol have been designed and implemented using

sockets in order to emulate the same functionality given with RMI; this is executing

methods on remote objects and keeping a registry where the application can look for

the different PAS and PNES instances running at the same node. Figure 4-2 illustrates

the communication protocol in steps 1-8. These steps are explained bellow:

1. A PAS instance initiates the communication process when it receives a request

from one of its actors and the receiver actor does not belong to the same PAS

instance. This request contains the required request parameters needed in any

standard Plug-and-Play request type, this is a Java object called RequestPars.

2. The entity in charge of getting the port number of the PNES instance, opening

the client socket and serializing the RequestPars object into a byte stream is

the ComCenter. Before establishing the connection, the ComCenter should

check if there is any active PNES instance. In the original distributed Plug-

and-Play solution this was done using the rmiregistry, all instances were

registered in the registry at the start up. And any client entity could retrieve the

receiver’s interface and run any method on the remote object. Now, there is a

mapping table with all the active instances at the node and their corresponding

port number where a server socket is listening from. In that way, if the

receiver entity, PAS or PNES, has not been registered it will not appear in the

mapping table and it will not be possible to connect with it. This mapping

table is implemented as a properties file called registry.properties. This file is

created every time that the PNES instance is started, and deleted when exiting.

3. A PAS instance communicates directly only with the one and only PNES

instance at the same node. The PNES instance is listening from a default local

port specified in the configuration properties file and is waiting for remote

incoming connections. All PAS requests will be addressed to this port number

once the ComCenter has checked that there is an active PNES instance

registered at the mapping table. The ComCenter will get the port number

 37

associated and will send the request parameters of the PAS request through a

socket connection. The socket connection remains open until the

corresponding ResultRequest object is received. This ResultRequest object is

the standard response for all Plug-and-Play requests and it is received as a byte

stream, so the ComCenter has to deserialize it and send it to the initiator of the

request.

4. The ConnectionHandler is the entity responsible for handling the incoming

socket connections. There is a server socket listening from the specified port in

the mapping table. All the incoming connections come from PAS instances,

any other PNES can connect directly with this one using a socket connection.

The ConnectionHandler is expecting a RequestPars object, so it will

deserialize the received stream of bytes from the socket into a RequestPars

object. And then it will invoke the appropriated method on the PNES instance

using a local method call with the given parameters for the request.

5. If the specified receiver at the request parameters is an actor at the same node,

the communication with it will be also using sockets. But if the receiver actor

belongs to a remote PAS, not located at the same node, the communication

will be using the SOAP model. In this case, the actor belongs to a second PAS

instance, pas2, running at the same node.

6. The ComCenter will look for the port number associated to the pas2 instance

at the mapping table. This port number will be used to establish a new socket

connection with the receiver PAS.

7. As in step number 3, the ComCenter will serialize a RequestPars object into a

byte stream and send it using a socket connection. This connection will remain

open until a ResultRequest object is deserialized out from the socket stream.

8. The same as in number 4, the ConnectionHandler will get the RequestPars

object and invoke the appropriate method on the PAS instance using a local

method call. The response of this call is a ResultRequest object that will be

returned to the client socket side. As it is shown, all the connections are

synchronous. So this ResultRequest will go all the way back to the originator

of the first request, in this case the pas1 instance.

In step 5 it was said that the receiver actor could be located at a different node than

the one of the current PNES. In this case a SOAP communication model is used for

 38

the interaction of two different PNES belonging to different nodes. The original

distributed Plug-and-Play solution used RMI to manage this communication between

nodes, just using remote method calls. The PNES queried the rmiregistry of the

remote node and got an interface of the remote PNES instance. This interface was

used then to invoke methods as if it was a local method call.

In order to avoid using RMI, the proposed distributed Plug-and-Play solution uses the

SOAP specification for RPC and responses. This allows remote procedure calls to use

SOAP as a wrapping protocol and sending them using HTTP as a transport protocol.

The communication model using SOAP presents two main issues; using custom

classes in SOAP – described in section 4.1.1.1, and how to connect the SOAP aware

server with the running PNES instance at the node, section 4.1.1.2.

4.1.1.1 Serializing the RequestPars Java object.

The first issue is closely related to the interoperability matter. The Java objects used in

the TAPAS model should be serialized and deserialized before creating the SOAP

request. It is not enough just serializing the Java object into a byte stream and sending

it as raw information. In this case, only Java compatible platform systems would be

able to deserialize the information and get the desired object out of the data stream.

The information sent in the SOAP request must be XML compliant, so any system

using any platform can understand what it is being sent and it can create a client

application able to interoperate with the service offered by the Plug-and-Play server.

Since SOAP is a data transport, we are only interested in the properties of the class.

This means that all attributes of the objects being sent with SOAP should be encoded

using XML standard data types which are supported by all SOAP implementations.

One common way to express the properties of a Java class is to use the JavaBeans

design patterns. These patterns specify a naming convention to be used for the class's

access methods. The methods used for getting and setting property values should

conform to the standard design pattern for properties. These methods are allowed to

throw checked exceptions if desired, but this is optional. The method signatures are as

follows:

 39

public void set<PropertyName>(<PropertyType> value);

public <PropertyType> get<PropertyName>();

The existence of a matching pair of methods that conform to this pattern represents a

read/write property with the name <PropertyName> of the type <PropertyType>. If

only the get method exists, the property is considered to be read only, and if only the

set method exists the property is considered to be write only. In the case where the

<PropertyType> is boolean, the get method can be replaced or augmented with a

method that uses the following signature:

public boolean is<PropertyName>();

If this pattern is followed for naming property accessors, the accessor methods can be

determined at runtime by using the Java reflection mechanism. This is

a convenient way for SOAP implementations to access the data values of a Java class

instance in order to serialize the data in a SOAP message. Following a well-

established naming convention will avoid any problem using custom classes in SOAP.

The JavaBeans design patterns have been applied to all classes required to be

serialized. Set and Get methods have been created in every Java class related to the

RequestPars class, as this is the parameters object needed in the standard TAPAS

request. This is the object that needs to be serialized when sending the SOAP

message.

4.1.1.2 Interaction of the SOAP server with the TAPAS PNES

There is a problem with the communication between the SOAP server and the TAPAS

PNES running at the node. These entities are located in different machine processes,

so it is not possible for the server to invoke directly one method of the PNES using

local method calls.

As far as the method to invoke resides in a different JVM it is not possible to use local

method calls. The SOAP Server receives the parameters of the request, the

RequestPars Java object, but it cannot call the appropriate method of the PNES

instance for running the request received. The solution to this problem comes by using

socket connections to connect the SOAP Server with the PNES. The SOAP Server

 40

will send the parameters of the request to the PNES using a socket connection.

Afterwards the PNES will execute the required actions and the result will be sent back

to the SOAP Server using the same open socket connection. The SOAP Server, then,

will forward this result to the client of the service. This communication model is

illustrated in Figure 4-3 using an example with two PNES running in different Plug-

and-Play Server nodes and with its associated SOAP Server.

PNES PNES SOAP Message
 over HTTP

WsStub WsStub

ExternalHandler ExternalHandler

SOAP aware Server SOAP aware Server

WsSkeleton WsSkeleton

Deployed
Web Service

Legend:
 Single node

 Java Virtual Machine

 Local port

Figure 4-3: SOAP communication model

The PNES uses the WsStub class generated by the SOAP server. This WsStub acts as

a local interface for the remote service; this is in the same way as the stub created

when using RMI. The local PNES can invoke a method of the remote service directly

in this stub as if the service was located at the same JVM. This WsStub is also the

client side of the service and it will request the server hosting the Web service, in this

case the Plug-and-Play server. The communication process is hidden to the client; the

WsStub is responsible of all the settings needed to establish the connection with the

application server endpoint. At the server side, the SOAP aware server will handle the

 41

SOAP request and execute the specified remote procedure call with the corresponding

parameters. This includes establishing a socket connection with the PNES running at

the node and getting the corresponding response. This response will be sent back to

the client, the client request was synchronous, so it is waiting for this response. And at

the client side, the socket connection is also open waiting for the synchronous

response.

4.1.2 The entity registry

The registry mechanism has been modified compared to the mechanism used in the

original TAPAS platform. The registry mechanism shown in Figure 4-4 is based on

the UDDI service. Web services technology, based on XML messages, is used for

discovery and registration procedures.

PAS and Actor(s) PAS and Actor(s) PAS and Director
and Actor(s)act1 act2 act1 act1

act1
act2

act1 act1
Node 1

pas2 pas1 pas1

pas1
pnes1

PNES pas1
pas2

pnes1

Node 2

pnes1

PNES

pnes1

Legend:
 Single node

 Java Virtual Machine

 Java Object Instance (JO)

 Local registry for individual
 actors within a PAS
 (Java HashTable)

 Local registry for all PASs and
 PNES instances at a node
 (Java Properties file)

Registry -
Server

UDDI
DB

 42

Figure 4-4: The Registry Server with UDDI service

In the current distributed Plug-and-Play solution the rmiregistry is used to register and

retrieve the remote interfaces of the PNES running at the network. In order to supply

this functionality at the presented communication infrastructure in this thesis, it is

needed two different registries. One of them is an internal registry implemented as a

properties file, this registry exists in every node running as a TAPAS Server and it

keeps a local database with all the PAS and PNES running at the node. This registry is

the one that was introduced in section 4.1.1, The Synchronous Communication model,

when talking about the sockets communication model. As reported then, this local

registry is used by the PAS to communicate with other PAS located at different JVMs.

The other registry shown in Figure 4-4 is the Registry Server. For the implementation

of this communication infrastructure it has been used the Registry Server provided

with the Java Web Service Developer Pack, which is modeled as a UDDI-based

database at the figure.

This registry is unique for the whole Plug-and-Play service; there is only one registry

at the network that keeps a database with all the active Plug-and-Play Server nodes in

Internet. The Plug-and-Play Service within the TAPAS project is registered with a

defined schema into the registry. This TAPASSchema has a Unique Universal

IDentifier (uuid), a key identifier that must be known by every Plug-and-Play Server

node in order to register its service with the correct schema and ensure that the

registered node is unique in Internet. When a schema is registered for the first time

into the registry, it will be provided with a uuid that must be used in the XML

definition of the schema. This TAPASSchema XML definition, together with its DTD

and the uuid provided, is used at the discovery process of other active nodes, using

this unique schema we ensure that the located nodes belong to our own service

definition.

The communication with the Registry Server has been developed using the Java API

for XML Registries (JAXR) [25] which provides a convenient way to access standard

business registries over the Internet. JAXR gives a uniform way to use business

registries that are based on open standards (such as ebXML) or industry consortium-

led specifications (such as UDDI).

 43

4.2 Adding Web Services to TAPAS

When a different developer wants to create a client application for the TAPAS service

it should refer to the WSDL service definition provided by the Web service provider.

This description defines all the data types used in the request, the response and the

way to call a remote procedure. So the developer can know which data types have

been used to encode the Java class attributes that are being sent in the SOAP message.

The content of this file is shown in Appendix B.

The Apache Axis library contains two programs for use at build time: WSDL2Java

and Java2WSDL. These programs create Java classes from a WSDL description and

viceversa.

Application Server

 Web Service

 Endpoint

<get> WSDL
from server

<java>
WSDL2Java

<javac>

<java> client

WSDL
file

Java
proxy

Java
client

XML
request

XML
response

WSDL
description

Figure 4-5: Overall workflow of creating a SOAP client application

Figure 4-5 shows how to create a SOAP client application using the WSDL2Java tool

provided with the Apache Axis 1.1. As illustrated in the figure, first it is retrieved the

WSDL description of the service that we want to create the client for. This WSDL

 44

description is created automatically by the TAPAS Server, and it can be retrieved

form the endpoint using a simple http get request. Then, using the WSDL2Java tool a

bunch of proxy classes is created. This proxy classes have the same function as the

ClientStub created with the “rmic” tool of the Java RMI. They represent a local

implementation of the remote service, allowing the client application to make calls on

them as if they were the same remote service.

It is developer task to create the appropriated Java client program that will use these

generated proxy classes. The developed client application makes use of the service

interface provided by the proxy class which is in charge of the whole communication

process with the TAPAS Server. All this process is hidden to the developer and to the

client application. The communication is realized between these proxy classes and the

Web Service endpoint exchanging SOAP messages that encode the XML requests and

responses.

4.3 Interaction between Selection Engine and Director

In this section it is given the implementation details of the communication

infrastructure used between the Selection Engine and the Director Role-Figure. This

communication mechanism was introduced in section 3.2, Design of a communication

model and an interface for the Selection Engine so as to fit into the TAPAS support

platform.

The communication mechanism is based on the SOAP with Attachments API for Java

which provides a standard way to send XML documents over the Internet from the

Java platform. It is used mainly for the SOAP messaging that goes on behind the

scenes in JAX-RPC and JAXR implementations. And it is based on the SOAP 1.1 and

SOAP with Attachments specifications, which define a basic framework for

exchanging XML messages.

A SAAJ client is a standalone client. That is, it sends point-to-point messages directly

to a Web service that is implemented for request-response messaging. Request-

response messaging is synchronous, meaning that a request is sent and its response is

received in the same operation. A request-response message is sent over a

SOAPConnection object via the method SOAPConnection.call, which sends the

 45

message and blocks until it receives a response. A standalone client can operate only

in a client role, that is, it can only send requests and receive their responses.

This SAAJ client is integrated into the Director giving it the necessary communication

support for interacting with the Selection Engine. The class that implements this

SAAJ client at the client side is the ServiceReqClient, and at the server side there is

the ServiceReqServlet class. This servlet comprises the web service interface of the

Selection Engine, it will receive an XML query attached to the SOAP message and it

will run the appropriated methods on the XET-based engine to process the query and

get the XML result. The core XET engine of the Selection Engine is provided in a

Java library, so its use by the service servlet is straight forward; just running the

methods implemented in the package using the given parameters.

The query needed for the Selection Engine and calculated result are XML files. These

files are transmitted as attached parts of the SOAP message. Figure 4-6 shows the

high-level structure of a SOAP message that has two attachments. And a short

description of every component part of the message is also given later to better

understand how these attachments ship with the SOAP message.

Figure 4-6:SOAPMessage Object with Two AttachmentPart Objects

 46

A SOAPMessage object represents an XML document that is a SOAP message. A

SOAPMessage object always has a required SOAP part, and it may also have one or

more attachment parts. The SOAP part must always have a SOAPEnvelope object,

which must in turn always contain a SOAPBody object. The SOAPEnvelope object

may also contain a SOAPHeader object, to which one or more headers can be added.

The SOAPBody object can hold XML fragments as the content of the message being

sent. If it is wanted to send content that is not in XML format or that is an entire XML

document, the message will need to contain an attachment part in addition to the

SOAP part. A SOAP message may include one or more attachment parts in addition

to the SOAP part. There is no limitation on the content in the attachment part, so it

can include images or any other kind of content, including XML fragments and

documents. Common types of attachment include sound, picture, and movie data:

.mp3, .jpg, and .mpg files.

4.4 Problems related to SOAP

Interoperability is an ongoing issue with SOAP. The developers of SOAP toolkits

work on interoperability tests to verify that foundational data types such as strings,

integers, Booleans, arrays, and base64 encoded binary data can all be exchanged

between clients and servers. But complex types are not yet standardized. Consider the

HashTable class: Java implements java.util.HashTable and .NET has its own

implementation in System.Collections.HashTable. It is possible to return one of

these from a service implemented in one of the languages specified before:
public HashTable getEmptyHashTable() {

return new HashTable();

}

A client written to use the same toolkit as the service will be able to invoke this SOAP

method and get a hashtable back. A client written in another toolkit, or in a different

language, will not be able to handle this. If we were writing our server API by coding

a WSDL file first and then by writing entry points that implemented this WSDL, we

would probably notice that there is no easy way to describe a hashtable; consequently,

we would define a clean name-value pair schema to represent it. Because we are

developing web services the easy way, by writing the methods and letting the run time

do the WSDL generation, we do suffer from the hashtable problem.

 47

5 Experimentation Scenario
In this part it is presented a case-study that comprises experimentation with an

existing TAPAS application, the TeleSchool application [15]. It will demonstrate the

feasibility of integrating the Selection Engine into the TAPAS support platform under

the Dynamic Service Management framework introduced in section 2.3. Web services

technology is used for service definition, update and discovery. The Dynamic Service

Management is used as the environment where the TeleSchool service will be plugged

using the TAPAS support platform with the implemented Web services architecture.

This part is divided into three main sections. First, the experimentation scenario is

shown and the goals of the example will be stated. Secondly, some information on

how to set up the programs and tools used for the demonstration is given. In the third

section, the demonstration itself is presented. It includes some code examples,

messages exchanged in the communication process and some configuration

properties.

5.1 Describing the scenario

The experimentation scenario, shown in Figure 5-1, is composed of four nodes. Two

of the nodes are running the TAPAS support software; this means that there will be an

active PNES instance running in each of them, these nodes are called TAPAS Server

nodes. The Server node stores the source code of the TAPAS core platform that will

be downloaded on the runtime when required by a TAPAS Server node. This Server

also performs the functionality of the Play Repository which will store the source

code of the TeleSchool play which is the service we want to plug into the system. The

remaining node is the Selection Engine node; this node is running a servlet application

that performs the functionality of the XET-based Selection Engine. This node is also

running a Registry Server for service publishing and discovery.

 48

TAPAS Server TAPAS Server

Web Server

Play RepositoryRegistry Server
and

Selection Engine Server

rules.xml
data.xml

tapas.node1

tapas.node2

tapas.selection.engine

tapas.registry.server

tapas.web.server

NTNU
Network

Figure 5-1: View of the experimentation scenario

⋅ TAPAS Server: it is running a Web Server with SOAP support. In the

demonstration this node is running the Apache Tomcat server as the Web server

and the Apache Axis 1.1 as a SOAP aware server.

⋅ Web Server: remote web server with access to a database which contains the code

of the service that it is going to be plugged into the system. In this case, the Play

Repository contains the manuscripts of the TeleSchool play and the TAPAS

support system code.

⋅ Registry Server: it is executed by the Java Registry Server included in the Java

Web Services Developer Pack.

⋅ Selection Engine Server: it is performed by a servlet running at the server. This

servlet has access to the execution methods of the Selection Engine and to a

database with the XML files needed by the Selection Engine.

This scenario is targeting at validating the feasibility of the implemented Web

services architecture in TAPAS. The TAPAS service is described using WSDL and

 49

the nodes offering this service can be discovered using the Registry Server. The

communication between the TAPAS Server nodes is performed exchanging SOAP

messages and the communication between the Director and the Selection Engine is

performed by means of the SAAJ specification exchanging XML files attached to the

SOAP messages.

5.2 Setting up the environment

In order to run the demonstration some settings are needed. The TAPAS Server nodes

must be executing the TAPAS support system which is performed by the PNES. The

PNES instance, with Web services support, needs a web server to handle the incoming

SOAP messages and put into operation the endpoint of the offered service. The

developed implementation in this thesis uses the Apache Tomcat as a Web server and

the Apache Axis 1.1 as a SOAP server.

The Apache Ant build tool is used to compile the source code into the corresponding

directories and to deploy the web service in the Apache Axis server. The file

build.xml provided with the demonstration code contains the necessary compile and

deploy tasks. The execution of these tasks is necessary before running the servers and

starting the TAPAS support system.

The Tomcat server must be started before running the TAPAS support system; as the

PNES instance needs its functionality for registering the service at the Registry

Server. The Apache Axis is integrated into the Tomcat server, so both applications are

started at the same time when the Tomcat server is started. From this moment, a

WSDL description of the deployed service at the node is available at the endpoint

address. This description can be used by any developer to create its own client

application to interact with the offered service. In this example the WSDL description

can be retrieved from each node using the internet address

http://tapas.node1/axis/services/wsPNES?wsdl. The full WSDL description is shown

in Appendix B.

The TAPAS support system needs some configuration properties in the start up

process. An example of these configuration properties, which are specified in the

confPlug-and-Play.properties file, is shown in Figure 5-2. This configuration file has

 50

http://tapas.node1/axis/services/wsPNES?wsdl

some improvements compared to the original configuration file used in TAPAS. For

instance, comments and blank spaces are now allowed, i.e. providing an easy way to

update and add more properties to the configuration file.

F

A

R

D

t

d

p

I

i

i

s

The location of the codebase
codebase=http://tapas.web.server/WsPlug-and-Play/Plug-and-PlayRoot/

homeinterface GAI
homeinterface=Actor://tapas.node1/pas1/WsPlug-and-Play.Director1

debugserver=localhost
nodeprofile=profDefault

Local port where the local PNES is listening for local PAS instances requests
communicationport=9999

URL of the Selection Engine Server. Only necessary at the Director’s node.
xetServer=http://tapas.selection.engine/saaj-service/ServiceRequest

Working directory where the query.xml and result.xml are located
dirWorking=C:/Program files/jwsdp-1.3/webapps/axis/WEB-INF/classes/files/

Query's file names for each service available
School = tele-query.xml
Intellcom = intell-query.xml
igure 5-2: Configuration file properties

nother element necessary for the demonstration which requires some settings is the

egistry Server. The Java Registry Server that ships with the Java Web Services

eveloper Pack has been used for this purpose. Before using the Registry Server for

he first time, it is necessary to publish the service taxonomy at the registry. This is

one executing the PublishScheme Java application located at the soaPlug-and-Playi

ackage. When the TAPAS service taxonomy is registered, a Universal Internet

Dentifier (uiid) is then provided by the Registry Server. This uiid identifies uniquely

n Internet the TAPAS service described by the WSDL description. The provided uiid

s used on the publishing and discovery processes of the nodes that provide the

ervice.

51

The Home Interface (HI) node, specified at the configuration properties file, is where

the Director Role figure is created when a play is plugged in the repertory base. This

node requires different settings than the other TAPAS Server nodes. The Director

instance is the initiator of the Service Plug-In process and it is the only instance that

communicates directly to the Selection Engine. It needs access to the XML query files

that will be sent to the Selection Engine. The location of these XML query files is

specified at the configuration properties file; the working directory property. In this

demonstration only the Initial Service Request query is used and its content is shown

in Appendix B.

The Selection Engine node comprises a servlet application with access to the XET-

based selection engine. The start up of this node only requires a running web-server

and the application servlet to be deployed at this server. The service endpoint of this

servlet application is known by the Director node and it is specified at the

configuration properties file.

Next section comprises the steps involved in the communication process with the

Selection Engine and further execution of the calculated results. For a better

comprehension of the process some fragments of the exchanged SOAP messages are

shown with the explanation. The TCP Monitor of the Apache Axis has been used to

capture the XML messages going back and forth between a SOAP client and server.

To do this it is only necessary to run the TCP Monitor and configure the listening and

destination ports. The monitor will receive the incoming requests in the listening port

and redirect them to the real port where the service endpoint is listening. The start up

of the TCP Monitor can be found at the Apache Axis user guide [26].

5.3 Demonstration

The experimentation scenario has been run using some features of the Dynamic

Service Management framework under the TAPAS support platform. According to

the Dynamic Service Management framework [13], the available requests specified in

XML are Initial Service request, Role-Figure move and Function Update request.

These requests are processed by the Selection Engine and the results are a Role Figure

Specification and a Mapping table. This calculated Role Figure Specification and

Mapping table are then sent to the proper State Machine Interpreter (SMI) to

 52

instantiate it and then execute it. The SMI is the primary entity in the framework

responsible for the execution of Role-Figures according to instantiated Role-Figure

Specifications sent by the Service Manager. It is assumed that every node executing

Role-Figures is running a SMI, and is characterized by a set of capabilities [13].

In this demonstration the Director Role-Figure will send an Initial Service request to

the Selection Engine. This request specifies the Role-Figure to be plugged and the

node that will perform it. The Role Figure Specification and the Mapping table are

sent back to the Director who will redirect them to the specified node at the Initial

Service Request. The steps followed in this communication process are described in

the next sections: Publish the TAPAS Server node, Plug-in the TeleSchool play and

Plug-in the TeleSchool service using the Initial Service request.

5.3.1 Register the TAPAS Server node

At the start up of the TAPAS support system, the PNES instance registers itself

automatically into the Registry Server using the uiid provided in the

tapasconcepts.xml file. The code which performs this task is in the soaPlug-and-

Playi.RegistryServer Java class. And the configurable properties used by this

application are at the registryprops.properties file. These properties specify the

address of the Registry Server, identification data of the PNES willing to register and

the information required by the Registry Server to register a new active node offering

the TAPAS service. An example of the registry connection properties used at the

configuration file is shown in Figure 5-3.

##Registry Specific properties

query.url=http://tapas.registry.server/RegistryServer/
publish.url=http://tapas.registry.server/RegistryServer/
user.name=testuser
user.password=testuser

##if you are behind a firewall this needs to be configured
http.proxy.host=
http.proxy.port=

 53

Values used for the publish process at the start up of the TAPAS support system
at each node
org.name=NTNU
org.description=TAPAS project
person.name=Telematics
phone.number=
email.address=

classification.scheme=TAPASScheme
classification.name=TAPASServices
classification.value=wsPNES
service.name=wsPNES
service.description=TAPAS WebServices PNES support
svcbinding.description=wsPNES ServiceBinding
svcbinding.accessURI=http://tapas.node1/axis/services/wsPNES

Specific values used by the PublishScheme Java class to register the wsPNES
service taxonomy in the Registry Server

tapas.scheme.name=TAPASScheme
tapas.scheme.description=A ClassificationScheme for TAPAS
tapas.classification.name=TAPASServices
tapas.classification.value=TAPASServices
tapas.scheme.link=http://129.241.209.39:8080/axis/services/wsPNES?wsdl
tapas.scheme.linkdesc=wsPNES Web Service Description

Figure 5-3: Example of the registryprops.properties configuration file.

The two TAPAS server nodes considered at the demonstration scenario are registered

at the Registry Server. It is assumed that both nodes are running the Apache Axis

server which will provide the WSDL description of the service. The WSDL

description is validated by the Registry Server at the registration process. Figure 5-4

illustrates an overview of the registering process and the involved elements.

 54

When the TAPAS service is started at a node ,
the PNES instance is registered in the database
of the Registry Server . This registration process
is done according to the UDDI specification .

The communication process is synchronous and
uses the connection properties established in the
registryprops .properties file .

The tapasconcepts .xml file which contains the
uiid of the TAPAS service and the
tapasconcepst .dtd file are needed to associate
the node to the correct service . This ensures that
the offered service is the TAPAS service and
validates its WSDL description .

TAPAS Server TAPAS Server

Registry Server

Figure 5-4: Publishing the TAPAS Server node at the start up in the Registry.

5.3.2 Plug-in the TeleSchool play

In this step, the TeleSchool manuscript is put into the repertory base. The PlayPlugIn

process can be started by any node running the TAPAS support system at the network.

The PlayPlugIn command includes the location of the Web-server that contains the

manuscripts. The command is inserted at the command line window of the PNES

instance, this is done in the same way as it is done when running the original TAPAS

system. The TeleSchool play manuscript is downloaded from the Web-server to the

repertory base. This action comprises the instantiation of a Director Role figure if it

does not exist. The Director is instantiated at the Home Interface node, which

specified at the configuration properties file. The Actor Support layer is needed to

instantiate the Director Role Figure. If the actor support is not running at the node a

PAS instance will be started. As a result of this action the PAS is started at the node

specified in the configuration file as Home Interface. The Director Role figure is also

created if none existed before. The whole process is illustrated in Figure 5-5.

 55

TAPAS Server TAPAS Server

Manuscripts
and TAPAS

Support
System

Node 3 (Web-Server)

Web-server

The Play plug-in process is realized in the same
way as in the original TAPAS architecture . The
requesting PNES instance downloads the
manuscripts from the web -server and creates the
Director role -figure, if it does not already exist , at
the node specified as Home Interface .

Di: Director no i B: TAPAS Boot
AEEM: Actor Environment and Execution Support
PNES: Plug-and-Play Node Execution Support
PAS: Plug-and-Play Actor Support

PAS

D1

AEEM

PNES B

Node 2

PAS

AEEM

PNES B

Node 1

Figure 5-5: TeleSchool Play Plug-in.

5.3.3 Plug-in the TeleSchool service

The Service plug-in process is the fundamental part of this demonstration. In this

stage the application integration is presented. The TAPAS support system is

developed with Java and the Selection Engine, the remote application we want to use

consumes XML documents. The integration problem, as reported throughout this

thesis, has been solved with the implementation of Web services architecture in

TAPAS.

The Service plug-in process has been divided into four snapshots, each one associated

to one of the messages exchanged in the plug-in procedure. The illustrations are

followed by the exchanged SOAP message in the communication process. These

messages have been captured using the TCP Monitor provided with the Apache Axis.

The steps involved in this process are: sending the Initial Service Request query to the

Selection Engine (Figure 5-6), the Director processes the response (Figure 5-8),

ensuring that the receiver node exists (Figure 5-10), sending the ActorPlugIn request

to the destination node (Figure 5-11).

 56

rules .xml
data.xml

tapas.node1 tapas.node2

tapas.selection .engine

NTNU
Network

PAS

D1

AEEM

PNES B

Node 2

PAS

AEEM

PNES B

Node 1 The Director role figure is the initiator of the
service plug -in request . In the first step of the plug -
in process the Director sends the Initial Service
Request xml query attached to the SOAP message
using the SAAJ specification . The query is sent to
the Selection Engine using a client application .

The Selection Engine node is executing a servlet
application which extracts the xml query from the
request message . Then, this query is processed by
the Selection Engine .

Di: Director no i B: TAPAS Boot
AEEM: Actor Environment and Execution Support
PNES: Plug-and-Play Node Execution Support
PAS: Plug-and-Play Actor Support

query .xml

Figure 5-6: Sending the Initial Service Request query to the Selection Engine.

The SOAP message carries the query.xml file attached to the message. This

attachment part is compliant to the SAAJ specification and represents the Initial

Service Request. The message captured by the TCP Monitor is shown in Figure 5-7.

POST /saaj-service/ServiceRequest HTTP/1.1
Content-Type: multipart/related; type="text/xml";
boundary="----=_Part_1_8344960.1083145695955"
Content-Length: 981
SOAPAction: ""\par
Cache-Control: no-cache
Pragma: no-cache
User-Agent: Java/1.4.2_01
Host: 127.0.0.1\par
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
------=_Part_1_8344960.1083145695955
Content-Type: text/xml

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:rdf="urn:org.tapas.rdf" xmlns:tns="urn:org.tapas">
 <SOAP-ENV:Body>
 <tns:Intelcom/>\
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
57

------=_Part_1_8344960.1083145695955Content-Type: text/xml
<InitialServiceRequest type="InitialServiceRequest">
 <sender />
 <dateTime />
 <serviceType>TeleSchool</serviceType>
 <roleRequesting>SchoolClient</roleRequesting>
 <preferredConfiguration>
 <nodeInstalling>http://comp1.tapas.org</nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed>Bluetooth</connectionUsed>
 <userSubscription>Advanced</userSubscription>
 <MMSupport>Speaker</MMSupport>
 </contextInfo>
 <Result>\
 <Manus>Svar_MName</Manus>
 <ActionGroup>Svar_Gi</ActionGroup>
 <Category>Svar_CapCategory</Category>
 </Result>
</InitialServiceRequest>
------=_Part_1_8344960.1083145695955--

Figure 5-7: SOAP message with attached Initial Service Request XML file.

After receiving the query, the Selection Engine processes it and calculates the Role-

Figure Specification and the Mapping table as it was reported in section 2.3.2 of this

thesis. Figure 5-8 shows the Selection Engine server node sending back the SOAP

response to the Director node.

rules .xml
data.xml

tapas.node1 tapas.node2

tapas.selection.engine

NTNU
Network

PAS

D1

AEEM

PNES B

Node 2

PAS

AEEM

PNES B

Node 1

The Selection Engine processes the received query
using the rules .xml and the data .xml files from the
database. The result .xml file contains the
calculated Role-Figure Specification and the
Mapping table . The xml result is attached to the
SOAP response message and it is sent back to the
Director.

Di: Director no i B: TAPAS Boot
AEEM: Actor Environment and Execution Support
PNES: Plug-and-Play Node Execution Support
PAS: Plug-and-Play Actor Support

result .xml

 58

Figure 5-8: Sending to the Director the calculated Role-Figure Specification and Mapping table.

The SOAP response is presented in Figure 5-9. This response contains the calculated

Role-Figure Specification and the Mapping table. These results are provided by the

Selection Engine in a XML file, the result.xml. This file is attached to the SOAP

message following the SAAJ specification.

 59

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.4
Set-Cookie: JSESSIONID=8BE643B5A3D29407CDDA77C431EFB2ED;
Path=/saaj-service
SOAPAction: ""
Content-Type: multipart/related; type="text/xml";
boundary="----=_Part_1_1340668.1083145700439"
Content-Length: 4666
Date: Wed, 28 Apr 2004 09:48:20 GMT
Server: Sun-Java-System/JWSDP-1.3
------=_Part_1_1340668.1083145700439
Content-Type: text/xml
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:rdf="urn:org.tapas.rdf"
xmlns:tns="urn:org.tapas" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <tns:Intelcom/>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

------=_Part_1_1340668.1083145700439Content-Type: text/xml
<Answer>
 <InitialServiceRequest type="InitialServiceRequest">
 <sender/>
 <dateTime/>
 <serviceType> TeleSchool </serviceType>
 <roleRequesting> SchoolClient </roleRequesting>
 <preferredConfiguration>
 <nodeInstalling> http://comp1.tapas.org </nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed> Bluetooth </connectionUsed>
 <userSubscription> Advanced </userSubscription>
 <MMSupport> Speaker </MMSupport>
 </contextInfo>
 <Result>
 <Manus> SchoolClient_Advanced </Manus>
 <ActionGroup> G5 </ActionGroup>
 <Category> C30 </Category>
 </Result>
 </InitialServiceRequest>

 <InitialServiceRequest type="InitialServiceRequest">
 <sender/>
 <dateTime/>
<serviceType> TeleSchool </serviceType>
 <roleRequesting> SchoolClient </roleRequesting>
 <preferredConfiguration>
 <nodeInstalling> http://comp1.tapas.org </nodeInstalling>
 </preferredConfiguration>

 60

 <contextInfo>
 <connectionUsed> Bluetooth </connectionUsed>
 <userSubscription> Advanced </userSubscription>
 <MMSupport> Speaker </MMSupport>
 </contextInfo>
 <Result>
 <Manus> SchoolClient_Advanced </Manus>
 <ActionGroup> G4 </ActionGroup>
 <Category> C21 </Category>
 </Result>
 </InitialServiceRequest>
 <InitialServiceRequest type="InitialServiceRequest">
 <sender/>
 <dateTime/>
 <serviceType> TeleSchool </serviceType>
 <roleRequesting> SchoolClient </roleRequesting>
 <preferredConfiguration>
 <nodeInstalling> http://comp1.tapas.org </nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed> Bluetooth </connectionUsed>
 <userSubscription> Advanced </userSubscription>
 <MMSupport> Speaker </MMSupport>
 </contextInfo>
<Result>
 <Manus> SchoolClient_Advanced </Manus>
 <ActionGroup> G2 </ActionGroup>
 <Category> C10 </Category>
 </Result>
 </InitialServiceRequest>
 <InitialServiceRequest type="InitialServiceRequest">
 <sender/>
 <dateTime/>
 <serviceType> TeleSchool </serviceType>
 <roleRequesting> SchoolClient </roleRequesting>
 <preferredConfiguration>
 <nodeInstalling> http://comp1.tapas.org </nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed> Bluetooth </connectionUsed>
 <userSubscription> Advanced </userSubscription>
 <MMSupport> Speaker </MMSupport>
 </contextInfo>
 <Result>
 <Manus> SchoolClient_Advanced </Manus>
 <ActionGroup> G3 </ActionGroup>
 <Category> C1 </Category>
 </Result>
</InitialServiceRequest>
 <InitialServiceRequest type="InitialServiceRequest">
 <sender/>
 <dateTime/>
 <serviceType> TeleSchool </serviceType>
 <roleRequesting> SchoolClient </roleRequesting>
 <preferredConfiguration>
 <nodeInstalling> http://comp1.tapas.org
 </nodeInstalling>
 </preferredConfiguration>
61

F

T

r

R

d

s

d

t

T

s

F

 <contextInfo>
 <connectionUsed> Bluetooth </connectionUsed>
 <userSubscription> Advanced </userSubscription>
 <MMSupport> Speaker </MMSupport>
 </contextInfo>
 <Result>
 <Manus> SchoolClient_Advanced </Manus>
 <ActionGroup> G1 </ActionGroup>
 <Category> C1 </Category>
 </Result>
 </InitialServiceRequest>
</Answer>
------=_Part_1_1340668.1083145700439—

igure 5-9: SOAP message response with attached XML result file.

he next step, once the result.xml file has been read by the Director, is to execute the

equested query. The Initial Service Request comprises the plug-in of a SchoolClient

ole figure at a specified node. But before sending the ActorPlugIn request to the

estination node, the PNES should ensure that this is an active TAPAS node. This is

hown in Figure 5-10, the PNES instance queries the Registry Server in order to

iscover the registered TAPAS Server nodes. Then, it looks for the destination node at

he received result. If the information regarding the destination node is correct and the

APAS service is operative, the ActorPlugIn request will be sent. Otherwise the

ervice plug-in is cancelled and a message error is shown.

rules .xml
data.xml

tapas.node1 tapas.node2

tapas.selection.engine

NTNU
Network

PAS

D1

AEEM

PNES B

Node 2

PAS

AEEM

PNES B

Node 1 The xml result calculated by the Selection Engine
is processed by the Director role figure . The
response message specifies the node where the
new Role-Figure should be instantiated .
Before sending the the ActorPlugIn request to the
selected node , the PNES instance should ensure
that it is an active TAPAS server node . The PNES
sends a discovery request to the Registry Server
and looks for the receiver node information . If the
the receiver node , the tapas .node1, is registered
correctly as a TAPAS server node , the PNES will
send it the ActorPlugIn request .

Ai: Actor no i Di: Director no i
B: TAPAS Boot
AEEM: Actor Environment and Execution Support
PNES: Plug-and-Play Node Execution Support
PAS: Plug-and-Play Actor Support

tapas.registry.server

service
discovery

igure 5-10: Discovery and identification of the destination TAPAS Server node.

62

Figure 5-11 illustrates the last step in the service plug-in process. The ActorPlugIn

request encoded in a SOAP message is sent to the destination node. The parameters of

this request include the Mapping table calculated at the Selection Engine. All

parameters are serialized from Java data types to standard types. These standard data

types should be supported by any XML-based platform. Any developer, under any

platform, can create its own client application able to understand the parameters and

the request logic sent encoded in the SOAP message. This feature renders possible the

implemented Web-services architecture in TAPAS to interoperate with other non-Java

platforms, thus offering a feasible solution to the application integration within the

TAPAS platform.

rules .xml
data.xml

tapas.node1 tapas.node2

tapas.selection.engine

NTNU
Network

PAS

D1

AEEM

PNES B

Node 2

PAS

AEEM

PNES B

Node 1 The Director, after assuring that the receiver exists
as a service node , sends an ActorPlugIn request .
The request includes the Mapping table calculated
at the Selection Engine . This Mapping table is
mapped as a hashtable Java type in the parameters
of the request . The request parameters are
represented by a Java class which is sent encoded
in the SOAP message.
The receiver node , through the Apache Axis
server, processes the SOAP message and its
contained ActorPlugIn request . The result is the
plug-in of a new SchoolClient role figure .

Ai: Actor no i Di: Director no i
B: TAPAS Boot
AEEM: Actor Environment and Execution Support
PNES: Plug-and-Play Node Execution Support
PAS: Plug-and-Play Actor Support

A1

tapas.registry.server

SOAP
request

Figure 5-11: Sending the ActorPlugIn request encoded in a SOAP message.

The SOAP message, shown in Figure 5-12, is sent from the Director to the destination

node where the new SchoolClient Role figure will be instantiated. The SOAP message

encodes the parameters of the ActorPlugIn request as it is described in the WSDL

description of the service. Only the parameters are sent with the message. The service

endpoint, supported by the Apache Axis server, will extract the request parameters

and it will execute the appropriated methods at the local PNES instance.

 63

 64

POST /axis/services/wsPNES HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.1
Host: 127.0.0.1
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 8663
<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:syncRequestFromPNES
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns1="http://WsPlug-
and-Play">
 <in0 href="#id0"/>
 </ns1:syncRequestFromPNES>
 <multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:RequestPars"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns2="http://WsPlug-and-Play">
 <mapTable href="#id1"/>
 <requestType xsi:type="xsd:int">4</requestType>
 <sender href="#id2"/>
 <receiver href="#id3"/>
 <PlayPlugIn xsi:type="xsd:int">1</PlayPlugIn>
 <PlayChangesPlugIn xsi:type="xsd:int">2</PlayChangesPlugIn>
 <PlayPlugOut xsi:type="xsd:int">3</PlayPlugOut>
 <ActorPlugIn xsi:type="xsd:int">4</ActorPlugIn>
 <ActorPlugOut xsi:type="xsd:int">5</ActorPlugOut>
 <ActorBehaviourPlugIn xsi:type="xsd:int">6</ActorBehaviourPlugIn>
 <ActorBehaviourPlugOut xsi:type="xsd:int">8</ActorBehaviourPlugOut>
 <ActorChangeBehaviour xsi:type="xsd:int">7</ActorChangeBehaviour>
 <ActorPlay xsi:type="xsd:int">9</ActorPlay>
 <subscribeRequest xsi:type="ns2:SubscribeRequest" xsi:nil="true"/>
 <subscribeReport xsi:type="ns3:ArrayOf_xsd_string" xsi:nil="true"
xmlns:ns3="http://xml.apache.org/xml-soap"/>
 <subscribeCancel xsi:type="xsd:string" xsi:nil="true"/>
 <RoleSessionAction xsi:type="xsd:int">13</RoleSessionAction>
 <ActorCapabilities xsi:type="xsd:int">14</ActorCapabilities>
 <RT xsi:type="soapenc:Array" soapenc:arrayType="xsd:string[15]"
xmlns:ns4="http://xml.apache.org/xml-soap">
 <item>none</item>
 <item>PlayPlugIn</item>
 <item>PlayChangesPlugIn</item>
 <item>PlayPlugOut</item>
 <item>ActorPlugIn</item>
 <item>ActorPlugOut</item>
 <item>ActorBehaviourPlugIn</item>
 <item>ActorChangeBehaviour</item>
 <item>ActorBehaviourPlaugOut</item>
 <item>ActorPlay</item>
 <item>SubscribeRequest</item>
 <item>SubscribeReport</item>
 <item>SubscribeCancel</item>
 <item>RoleSessionAction</item>
 <item>ActorCapabilities</item>
 </RT>

<play xsi:type="ns2:Play" xsi:nil="true"/>
65

<actorPlugInReq href="#id4"/>
 <plugOutRoleSession xsi:type="ns2:RoleSession" xsi:nil="true"/>
 <plugOutActor xsi:type="ns2:GAI" xsi:nil="true"/>
 <apo xsi:type="xsd:boolean">false</apo>
 <upgradePars xsi:type="ns5:ArrayOf_xsd_string" xsi:nil="true"
xmlns:ns5="http://xml.apache.org/xml-soap"/>
 <applicationMessage xsi:type="ns2:ApplicationMessage" xsi:nil="true"/>
 <roleSession href="#id5"/>
 <capOpType xsi:type="xsd:int">0</capOpType>
 <capabilities xsi:type="ns2:CapabilitySet" xsi:nil="true"/>
 </multiRef>
 <multiRef id="id5" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns6:RoleSession"
xmlns:ns6="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <roleSessionId xsi:type="xsd:string">RS://129.241.209.39/pas1/WsPlug-and-
Play.Director1/0</roleSessionId>
 <initiator href="#id2"/>
 <cooperator href="#id3"/>
 </multiRef>
 <multiRef id="id2" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns7:GAI"
xmlns:ns7="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <type xsi:type="xsd:string">Actor</type>
 <node xsi:type="xsd:string">129.241.209.39</node>
 <address xsi:type="xsd:string">129.241.209.39</address>
 <PAS xsi:type="xsd:string">pas1</PAS>
 <name xsi:type="xsd:string">WsPlug-and-Play.Director1</name>
 <hmhandles href="#id6"/>
 <initialized xsi:type="xsd:boolean">true</initialized>
 </multiRef>
 <multiRef id="id1" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns8:Map"
xmlns:ns8="http://xml.apache.org/xml-soap"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <item>
 <key xsi:type="xsd:string">G4</key>
 <value xsi:type="xsd:string">C21</value>
 </item>
 <item>
 <key xsi:type="xsd:string">G2</key>
 <value xsi:type="xsd:string">C10</value>
 </item>
 <item>
 <key xsi:type="xsd:string">G5</key>
 <value xsi:type="xsd:string">C30</value>
 </item>
 <item>
 <key xsi:type="xsd:string">G3</key>
 <value xsi:type="xsd:string">C1</value>
 </item>
 <item>
 <key xsi:type="xsd:string">G1</key>
 <value xsi:type="xsd:string">C1</value>
 </item>
 </multiRef>
 <multiRef id="id3" soapenc:root="0"

 66

<type xsi:type="xsd:string">Actor</type>
 <node xsi:type="xsd:string">129.241.208.154</node>
 <address xsi:type="xsd:string">129.241.208.154</address>
 <PAS xsi:type="xsd:string">pas1</PAS>
 <name xsi:type="xsd:string">SchoolClient</name>
 <hmhandles href="#id6"/>
 <initialized xsi:type="xsd:boolean">true</initialized>
 </multiRef>
 <multiRef id="id4" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns10:ActorPlugInReq" xmlns:ns10="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <location href="#id7"/>
 <role href="#id8"/>
 <play href="#id9"/>
 <rqCaps href="#id10"/>
 <rsCaps href="#id11"/>
 </multiRef>
 <multiRef id="id6" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns11:Map"
xmlns:ns11="http://xml.apache.org/xml-soap"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <item>
 <key xsi:type="xsd:string">PNES://129.241.208.154/pas1/pas1</key>
 <value xsi:type="xsd:string">http://129.241.208.154:8080/axis/services/wsPNES</value>
 </item>
 </multiRef>
 <multiRef id="id9" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns12:Play"
xmlns:ns12="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <playId xsi:type="xsd:string">School</playId>
 <playVer xsi:type="xsd:string">v1_1</playVer>
 <playLoc xsi:type="xsd:string">http://www.stud.ntnu.no/~vilaarme/WsPlug-and-Play/Plug-
and-PlayRoot/</playLoc>
 <verA xsi:type="xsd:int">0</verA>
 <verB xsi:type="xsd:int">0</verB>
 </multiRef>
 <multiRef id="id8" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns13:Role"
xmlns:ns13="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <roleId xsi:type="xsd:string">SchoolClient</roleId>
 </multiRef>
 <multiRef id="id7" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns14:GAI"
xmlns:ns14="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <type xsi:type="xsd:string">Actor</type>
 <node xsi:type="xsd:string">129.241.208.154</node>
 <address xsi:type="xsd:string">129.241.208.154</address>
 <PAS xsi:type="xsd:string">pas1</PAS>
 <name xsi:type="xsd:string">SchoolClient</name>
 <hmhandles href="#id6"/>
 <initialized xsi:type="xsd:boolean">true</initialized>
 </multiRef>
 <multiRef id="id11" soapenc:root="0"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 67

F

<capabilities href="#id12"/>
 <Add xsi:type="xsd:int">2</Add>
 <Set xsi:type="xsd:int">1</Set>
 <Remove xsi:type="xsd:int">3</Remove>
 <all xsi:type="ns16:ArrayOf_xsd_string" xsi:nil="true"
xmlns:ns16="http://xml.apache.org/xml-soap"/>
 </multiRef>

 <multiRef id="id10" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns17:CapabilitySet" xmlns:ns17="http://WsPlug-and-Play"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <capabilities href="#id13"/>
 <Add xsi:type="xsd:int">2</Add>
 <Set xsi:type="xsd:int">1</Set>
 <Remove xsi:type="xsd:int">3</Remove>
 <all xsi:type="ns18:ArrayOf_xsd_string" xsi:nil="true"
xmlns:ns18="http://xml.apache.org/xml-soap"/>
 </multiRef>
 <multiRef id="id12" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns19:Vector"
xmlns:ns19="http://xml.apache.org/xml-soap"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <multiRef id="id13" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns20:Vector"
xmlns:ns20="http://xml.apache.org/xml-soap"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 </soapenv:Body>
 </soapenv:Envelope>

igure 5-12: SOAP message that encodes the ActorPlugIn request.

68

6 Conclusion and further work
The purpose of this thesis was to provide a viable solution to the application

integration issue present in the TAPAS platform. Therefore it enables the interaction

with non-Java platforms and achieves a cross-platform distributed system.

Furthermore, it was required to integrate the XET-based Selection Engine of the

TAPAS Dynamic Configuration architecture into the TAPAS core platform. The

solution proposed in this thesis is the implementation of Web services architecture in

TAPS. In addition, a demonstration using an existing TAPAS application was needed

to show the feasibility of the implemented Web service architecture in TAPAS.

The communication infrastructure of the TAPAS architecture has been redesigned.

The communication between nodes running the TAPAS service is done exchanging

SOAP messages. The parameters of the TAPAS requests are serialized into standard

data types understandable by any Web compatible platform. Thus, this allows any

client to interact with the TAPAS service deployed at the node. The Registry is based

on the UDDI service, and Web services technology is used for discovery and upgrade

procedures with the Registry.

The integration with the Selection Engine has been achieved. The TAPAS platform is

able to send XML queries to the Selection Engine for its process. The calculated

result, also in XML format, is consumed by the TAPAS node and the required actions

are executed.

The TeleSchool TAPAS application is used as the scenario for the demonstration. The

demonstration shows examples of the SOAP messages sent back and forth between

the client and the server application. Upon a request of the Director, a SchoolClient

Role figure is instantiated at the corresponding node with the results calculated by the

Selection Engine.

This implementation has been proved to be valid for the application integration issue

of this thesis. However, it was also desired a lightweight support platform with a

simple communication protocol and faster than the RMI implementation used in the

TAPAS core platform. The implemented communication infrastructure with Web

 69

services support presents extra run-time checks, and the text-based data used in XML

makes it inefficient. So the TAPAS application using Web services is several times

slower than the implemented using binary data like Java RMI. In addition, sending

plain-text XML across the open Internet makes it vulnerable to security breaches.

Therefore more work is needed in the security field to overcome the lacks of the Web

services implementation.

At this time, some thesis and projects are working on XML specifications of the

manuscripts. The manuscripts and the Role-figures specifications used for this thesis

were implemented in Java. This adds extra time in the communication process as the

parameters have to be serialized and deserialized at the endpoints. Working with

XML specifications of the Role figures and XML manuscripts will simplify the

communication process. So, further work has to be done in this area to achieve an

all-XML based architecture for the TAPAS platform.

 70

References

1. Anne Thomas Manes, “Web Services: A Manager’s Guide”, Addison-Wesley Information

Technology Series, June 2003.

2. Keith Ballinger, “.NET Web Services: Architecture and Implementation”, Addison-Wesley,

February 2003.

3. Walsh, Aaron E., “UDDI, SOAP, and WSDL: The Web Services Specification Reference Book”,

Prentice Hall PTR, 2002.

4. Aagesen, F. A., Helvik, B. E. Wuwongse, V., Meling, H., Bræk, R., Johansen, U. (1999) Towards

a Plug and Play Architecture for Telecommunications. IFIP Fifth International Conference on

Intelligence in Networks (SmartNet99), Bankok – Thailand. Available online:

http://tapas.item.ntnu.no/publication/smartnet99.pdf

5. Finn Arve Aagesen, Bjarne Helvik, Ulrik Johansen and Hein Meling. (2001) Plug and Play for

telecommunication functionality – architecture and demonstration issues, The International

Conference on Information Technology for the New Millennium (IConIT2001), Thammasat

University, Bangkok - Thailand, May 2001.

6. Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E. (2002) Support Specification and

Selection in TAPAS. Proc. IFIP WG6.7 Workshop and EUNICE Summer School on Adaptable

Networks and Teleservices, Trondheim, Norway, September, 109-116.

7. Ulrik Johansen, “Dynamic Plug and Play - What is it, what are the advantages of using it?”

presented at IT-PRO 2000, Sandefjord, Norway.

8. Mazen Malek Shiaa and Finn Arve Aagesen, “Mobility management in a Plug and Play

architecture”, IFIP TC6 Seventh International Conference on Intelligence in Networks, Saariselka,

Finland, April 2003. Published by Kluwer Academic Publishers.

9. Mazen Malek Shiaa and Lars Erik Liljeback, “User and Session Mobility in a Plug-and-Play

Network Architecture”, IFIP WG6.7 Workshop and EUNICE Summer School on Adaptable

Networks and Teleservices, Trondheim -Norway, September 2002.

10. Mazen Malek Shiaa and Finn Arve Aagesen, “Architectural Considerations for Personal Mobility

In the Wireless Internet”, Personal Wireless Communication (PWC2002), Singapore, October

2002.

 71

http://tapas.item.ntnu.no/publication/smartnet99.pdf

11. Aagesen, F. A., Anutariya, C., Shiaa, M. M., Helvik, B. E. (2002). Support Specification and

Selection in TAPAS. IFIP WG6.7 Workshop and Eunice Summer School on Adaptable Networks

and Teleservices, September 2002, Trondheim – Norway.

[http://tapas.item.ntnu.no/publication/euniceCap2002.pdf]

12. Aagesen, F. A., Helvik, B. E., Anutariya, C., and Shiaa M. M. (2003) On Adaptable Networking,

Proc. 2003 Int’l Conf. Information and Communication Technologies (ICT 2003), Thailand.

13. Mazen Malek Shiaa, Shanshan Jiang, Paramai Supadulchai and Joan J. Vila-Armengol (2004). An

XML-based Framework for Dynamic Service Management. The 2004 IFIP International

Conference on Intelligence in Communication Systems (INTELLCOMM 04), 23 - 26 November

2004, Bangkok, Thailand. [Submitted]

14. Aagesen, F. A., Anatariya, C., Shiaa, M., M., Helvik, B. E. (2003). Dynamic Configuration of

Plug-and-Play Systems. NOMS 2004, Korea.

15. Johansen, U., Aagesen, F. A., Helvik, B. E., Meling, H. (1999). Demonstrator – Requirements and
functional description. Plug-and-Play Technical Report, Department of Telematics, NTNU, ISSN
1500-3868

16. Wuwongse, V., Anutariya, C., Akama, K. and Nantajeewarawat, E. (2001) XML Declarative

Description (XDD): A Language for the Semantic Web. IEEE Intelligent Systems 16(3): 54–65.

17. Inger Anne Tøndel, Dynamic Configuration of Plug-and-Play Systems, Project Report,

Department of Telematics, NTNU, 2003. Available online at

http://tapas.item.ntnu.no/publications/IngerAnnP.doc .

18. Eirik Lühr, Mobility support for wireless devices - within the TAPAS platform, MSc thesis,

Department of Telematics, NTNU, 2004. Available online at

http://tapas.item.ntnu.no/publications/EirikTh.pdf .

19. Kim Topley, “Java Web Services in a Nutshell”, O’Reilly, June 2003.

20. Dion Almaer, “Creating Web Services with Apache Axis”, May 2002,

http://www.onjava.com/pub/a/onjava/2002/06/05/axis.html [Accessed February 2004]

21. Robert Englander, “Java and SOAP”, O’Reilly, May 2002, Chapter 5: Working with Complex

Data Types.

 72

http://tapas.item.ntnu.no/publication/euniceCap2002.pdf
http://tapas.item.ntnu.no/publications/IngerAnnP.doc
http://tapas.item.ntnu.no/publications/EirikTh.pdf
http://www.onjava.com/pub/a/onjava/2002/06/05/axis.html

22. Brett McLaughlin, “Java and XML, 2nd Edition”, O’Reilly, September 2001, Chapter 12: SOAP.

Available online: O’Reilly Book Excerpts

http://www.onjava.com/pub/a/onjava/excerpt/java_xml_2_ch2/index.html [Accessed February

2004]

23. Robert Hustead, “Mapping XML to Java, Part 1”, http://www.javaworld.com/javaworld/jw-08-

2000/jw-0804-sax.html [Accessed March 2004]

24. Dennis M. Sosnoski, “XML documents on the run, Part 1”, February 2002,

http://www.javaworld.com/javaworld/jw-02-2002/jw-0208-xmljava.html [Accessed March 2004]

25. SUN Microsystems, the Web services Homepage, Java Web Services Developer Pack (WSDP)

documentation, http://java.sun.com/webservices/index.jsp [Accessed June 2004]

26. The Apache homepage, Apache Axis 1_1, http://ws.apache.org/axis/ [Accessed June 2004]

27. KR laboratory, XET Engine homepage, http://kr.cs.ait.ac.th/xet/ [Accessed June 2004]

28. TAPAS, website. Available online: http://tapas.item.ntnu.no [Accessed June 2004]

29. Castro-Leon, Enrique, The Web within the Web, IEEE Spectrum Magazine, pp. 36-40, February
2004.

 73

http://www.onjava.com/pub/a/onjava/excerpt/java_xml_2_ch2/index.html
http://www.javaworld.com/javaworld/jw-08-2000/jw-0804-sax.html
http://www.javaworld.com/javaworld/jw-08-2000/jw-0804-sax.html
http://www.javaworld.com/javaworld/jw-02-2002/jw-0208-xmljava.html
http://java.sun.com/webservices/index.jsp
http://ws.apache.org/axis/
http://kr.cs.ait.ac.th/xet/
http://tapas.item.ntnu.no/

Appendix A: Overview of Web Services
XML is a universal standard for representing data, so XML-based programs are

inherently interoperable. Basically, XML uses the lowest common data denominator

available, which is text. Here is how it works: data in XML form is consigned to

specific fields. There might be one field for “price,” for example, and another for

“quantity.” Once information is in XML form, it can be extracted from different

databases and compared, so long as the two databases have equivalent fields, such as

price and quantity. But what if the databases have fields that are similar but not

equivalent? It would be a problem today, but perhaps not tomorrow. Emerging Web

service innovations would add extra data, called metadata, that would let a database

“announce” its structure. Then two different databases with similar fields could be

compared by a software program with no human intervention at all [29].

Since Web services are used to create interoperable Web applications, there must be

some mechanism to move XML data across the Internet. The easiest way would be to

take advantage of an already existing protocol, the obvious candidate being the

Hypertext Transport Protocol—the ubiquitous “http” part of a Web address. But

HTTP was designed to move HTML data. For an Internet connection to transport

XML instead of HTML for a Web service, a new mechanism was needed to allow

XML data to piggyback on HTTP messages, the means by which Web sites receive

commands from the keyboards of surfers and transmit data back for display. That

mechanism is a new standard, Simple Object Access Protocol; developed by

independent programmers in conjunction with researchers at Microsoft Corp., in

Redmond, Wash [29]. Together, XML and SOAP give Web service applications

unparalleled interoperability.

Web sites have to be able to announce to the service that they contain data—such as

clearinghouse information, commodities listings, or an airline schedule— that might

be useful to it. So another specification was developed: Universal Discovery,

Description, and Integration. Basically, UDDI lets Web services look for databases in

the same way that Google lets humans look for Web pages. One way that’s done is

 74

through UDDI registries, a Yellow Pages–like directory in which companies list their

businesses and the Web-related services they provide [29].

Web Services Description Language is a standard that allows a machine to figure out

on its own just what is at a site once it is been identified. A program accessing a Web

service retrieves a WSDL description from the service. The description itself is

specially formatted XML data telling the prospective user the procedures it can call

and a little bit about them.

Figure A-0-1 shows an overview of the Web Services architecture and its typical

workflow. The four specifications presented above: XML, SOAP, UDDI and WSDL

are put together in the Web Services architecture to provide a solution to the

heterogeneous application integration.

Figure A-0-1: Web services architecture

The Web service provider publishes its service using the UDDI service. Any Web

service requestor, looking for a specific Web service, can query the UDDI service to

find the desired service. As a result of this query, the requestor gets the location of the

service endpoint where it can retrieve the WSDL service description. With the WSDL

definition the Web service requestor can create a client application that can

 75

interoperate with the Web service provider. The implementation of this client

application has to be compliant with the WSDL description in order to call the Web

service provider correctly.

Because of WSDL, a program calling a Web service can check the configuration of

the Web service as the program runs, allowing the calling program to adjust for any

changes that may have occurred in the Web service. This lets programmers separately

develop and test the different components of an application, which will continue to

run correctly even if one of its constituent modules is upgraded. Of course, benefits

like these come at a price. There are extra run-time checks, and the text-based data

used in XML makes it inefficient. So applications using Web services are several

times slower than applications using binary data. In addition, sending plain-text XML

across the open Internet makes it vulnerable to security breaches [29].

Table 2 shows the layered model for the Web Services architecture. The table

contains the four fundamental specifications used in nowadays Web services

implementations.

Table 2: The Web Services layered model.

Function Traditional Web Activities Web Services

Find a Web site Search engine UDDI

Site description Search engine site description WSDL

Transport protocol HTTP SOAP

Data format HTML XML

 76

Appendix B: Configuration files
In this appendix, the most important configuration files can be found. These files are

important to configure the programs used in the demonstration. Other files, like the

WSDL definition of the TAPAS service, are presented for a better understanding of

the communication process.

The first configuration file presented is the file used for the Apache Ant tool. This is a

build file in XML used to make the compilation and deploying tasks easy. The

Apache Ant tool is very useful in the development process of the implementation

presented in this thesis.

<!--
 General purpose build script for web applications and web services,
 including enhanced support for deploying directly to a Tomcat 4
 based server.
 This build script assumes that the source code of your web application
 is organized into the following subdirectories underneath the source
 code directory from which you execute the build script:
 docs Static documentation files to be copied to
 the "docs" subdirectory of your distribution.
 src Java source code (and associated resource files)
 to be compiled to the "WEB-INF/classes"
 subdirectory of your web applicaiton.
 web Static HTML, JSP, and other content (such as
 image files), including the WEB-INF subdirectory
 and its configuration file contents.
 $Id: build.xml.txt,v 1.7 2002/12/28 09:08:58 jfclere Exp $
-->
<!-- A "project" describes a set of targets that may be requested
 when Ant is executed. The "default" attribute defines the
 target which is executed if no specific target is requested,
 and the "basedir" attribute defines the current working directory
 from which Ant executes the requested task. This is normally
 set to the current working directory.
-->
<project name="Plug-and-Play ws" default="compile" basedir=".">
<!-- ===================== Property Definitions =========================== -->
<!--
 Each of the following properties are used in the build script.
 Values for these properties are set by the first place they are
 defined, from the following list:
 * Definitions on the "ant" command line (ant -Dfoo=bar compile).
 * Definitions from a "build.properties" file in the top level
 source directory of this application.
 * Definitions from a "build.properties" file in the developer's
 home directory.
 * Default definitions in this build.xml file.

77

You will note below that property values can be composed based on the
contents of previously defined properties. This is a powerful technique
 that helps you minimize the number of changes required when your development
 environment is modified. Note that property composition is allowed within
"build.properties" files as well as in the "build.xml" script.
-->
 <property file="build.properties"/>
 <property file="${user.home}/build.properties"/>
<!-- ==================== File and Directory Names ======================== -->
<!--
 These properties generally define file and directory names (or paths) that
 affect where the build process stores its outputs.
 app.name Base name of this application, used to
 construct filenames and directories.
 Defaults to "myapp".
 app.path Context path to which this application should be
 deployed (defaults to "/" plus the value of the
 "app.name" property).
 app.version Version number of this iteration of the application.
 build.home The directory into which the "prepare" and
 "compile" targets will generate their output.
 Defaults to "build".
 catalina.home The directory in which you have installed
 a binary distribution of Tomcat 4. This will
 be used by the "deploy" target.
 dist.home The name of the base directory in which
 distribution files are created.
 Defaults to "dist".
 manager.password The login password of a user that is assigned the
 "manager" role (so that he or she can execute
 commands via the "/manager" web application)
 manager.url The URL of the "/manager" web application on the
 Tomcat installation to which we will deploy web
 applications and web services.
 manager.username The login username of a user that is assigned the
 "manager" role (so that he or she can execute
 commands via the "/manager" web application)
-->
 <property name="app.name" value="myapp"/>
 <property name="app.path" value="/${app.name}"/>
 <property name="app.version" value="0.1-dev"/>
 <property name="build.home" value="${basedir}/build"/>
 <property name="catalina.home" value="../../../.."/> <!-- UPDATE THIS! -->
 <property name="dist.home" value="${basedir}/dist"/>
 <property name="docs.home" value="${basedir}/docs"/>
 <property name="manager.url" value="http://localhost:8080/manager"/>
 <property name="src.home" value="${basedir}/src"/>
 <property name="web.home" value="${basedir}/web"/>

 <property name="axis.app" value="c:/Archivos de programa/jwsdp-1.3/webapps/axis/WEB-
INF/classes"/>
 <property name="fetched.dir" value="${build.home}/fetched"/>
 <property name="generated.dir" value="${build.home}/generated"/>
<!-- ================== Custom Ant Task Definitions ======================= -->
<!--
 These properties define custom tasks for the Ant build tool that interact
 with the "/manager" web application installed with Tomcat 4. Before they
 can be successfully utilized, you must perform the following steps:
 - Copy the file "server/lib/catalina-ant.jar" from your Tomcat 4
 installation into the "lib" directory of your Ant installation.

 78

 79

 - Create a "build.properties" file in your application's top-level
 source directory (or your user login home directory) that defines
 appropriate values for the "manager.password", "manager.url", and
 "manager.username" properties described above.
 For more information about the Manager web application, and the functionality
 of these tasks, see <http://localhost:8080/tomcat-docs/manager-howto.html>.
-->
 <taskdef name="install" classname="org.apache.catalina.ant.InstallTask"/>
 <taskdef name="list" classname="org.apache.catalina.ant.ListTask"/>
 <taskdef name="reload" classname="org.apache.catalina.ant.ReloadTask"/>
 <taskdef name="remove" classname="org.apache.catalina.ant.RemoveTask"/>
<!-- ==================== Compilation Control Options ==================== -->
<!--
 These properties control option settings on the Javac compiler when it
 is invoked using the <javac> task.
 compile.debug Should compilation include the debug option?
 compile.deprecation Should compilation include the deprecation option?
 compile.optimize Should compilation include the optimize option?
-->
 <property name="compile.debug" value="true"/>
 <property name="compile.deprecation" value="false"/>
 <property name="compile.optimize" value="true"/>
<!-- ==================== External Dependencies =========================== -->
<!--
 Use property values to define the locations of external JAR files on which
 your application will depend. In general, these values will be used for
 two purposes:
 * Inclusion on the classpath that is passed to the Javac compiler
 * Being copied into the "/WEB-INF/lib" directory during execution
 of the "deploy" target.
 Because we will automatically include all of the Java classes that Tomcat 4
 exposes to web applications, we will not need to explicitly list any of those
 dependencies. You only need to worry about external dependencies for JAR
 files that you are going to include inside your "/WEB-INF/lib" directory.
-->
<!-- Dummy external dependency -->
<!--
 <property name="foo.jar"
 value="/path/to/foo.jar"/>
-->
<!-- ==================== Compilation Classpath =========================== -->
<!--
 Rather than relying on the CLASSPATH environment variable, Ant includes
 features that makes it easy to dynamically construct the classpath you
 need for each compilation. The example below constructs the compile
 classpath to include the servlet.jar file, as well as the other components
 that Tomcat makes available to web applications automatically, plus anything
 that you explicitly added.
-->
 <path id="compile.classpath">
 <!-- Include all JAR files that will be included in /WEB-INF/lib -->
 <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** -->
<!--
 <pathelement location="${foo.jar}"/>
-->
 <pathelement location="${jaxp-api.jar}"/>
 <pathelement location="${dom.jar}"/>
 <pathelement location="${sax.jar}"/>
 <pathelement location="${xalan.jar}"/>
 <pathelement location="${jaxrpc-api.jar}"/>

 80

 81

 <pathelement location="${jaxrpc-spi.jar}"/>
 <pathelement location="${jaxrpc-impl.jar}"/>
 <pathelement location="${saaj-api.jar}"/>
 <pathelement location="${saaj-impl.jar}"/>
 <pathelement location="${ant.jar}"/>
 <pathelement location="${jaxb-api.jar}"/>
 <pathelement location="${jaxb-libs.jar}"/>
 <pathelement location="${jaxb-impl.jar}"/>
 <pathelement location="${jaxb-xjc.jar}"/>
 <pathelement location="${jaxr-api.jar}"/>
 <pathelement location="${jaxr-impl.jar}"/>
 <!-- Include all elements that Tomcat exposes to applications -->
 <pathelement location="${catalina.home}/common/classes"/>
 <fileset dir="${catalina.home}/common/endorsed">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${catalina.home}/common/lib">
 <include name="*.jar"/>
 </fileset>
 <pathelement location="${catalina.home}/shared/classes"/>
 <fileset dir="${catalina.home}/shared/lib">
 <include name="*.jar"/>
 </fileset>
 </path>
<!-- ==================== Clean Target ==================================== -->
<!--
 The "clean" target deletes any previous "build" and "dist" directory,
 so that you can be ensured the application can be built from scratch.
-->
 <target name="clean"
 description="Delete old build and dist directories">
 <delete dir="${build.home}"/>
 <delete dir="${dist.home}"/>
 <delete dir="${axis.app}/WsPlug-and-Play"/>
 </target>
<!-- ==================== Compile Target ================================== -->
<!--
 The "compile" target transforms source files (from your "src" directory)
 into object files in the appropriate location in the build directory.
 This example assumes that you will be including your classes in an
 unpacked directory hierarchy under "/WEB-INF/classes".
-->
 <target name="compile" depends="prepare"
 description="Compile Java sources">
 <!-- Compile Java classes as necessary -->
 <mkdir dir="${build.home}/WEB-INF/classes"/>
 <javac srcdir="${src.home}"
 destdir="${build.home}/WEB-INF/classes"
 debug="${compile.debug}"
 deprecation="${compile.deprecation}"
 optimize="${compile.optimize}">
 <classpath refid="compile.classpath"/>
 </javac>

 <!-- Copy application resources -->
 <copy todir="${build.home}/WEB-INF/classes">
 <fileset dir="${src.home}" excludes="**/*.java"/>
 </copy>
 <!-- Copy to the AXIS server -->
 <copy todir="${axis.app}">
82

 83

 <fileset dir="${build.home}/WEB-INF/classes"/>
 </copy>
 </target>
<!-- ==================== Install Target ================================== -->
<!--
 The "install" target tells the specified Tomcat 4 installation to dynamically
 install this web application and make it available for execution. It does
 not cause the existence of this web application to be remembered across
 Tomcat restarts; if you restart the server, you will need to re-install all
 this web application.
 If you have already installed this application, and simply want Tomcat to
 recognize that you have updated Java classes (or the web.xml file), use the
 "reload" target instead.
 NOTE: This target will only succeed if it is run from the same server that
 Tomcat is running on.
 NOTE: This is the logical opposite of the "remove" target.
-->
 <target name="install" depends="compile"
 description="Install application to servlet container">

 <install url="${manager.url}"
 username="${manager.username}"
 password="${manager.password}"
 path="${app.path}"
 war="file://${build.home}"/>
 </target>
<!-- ==================== Prepare Target ================================== -->
<!--
 The "prepare" target is used to create the "build" destination directory,
 and copy the static contents of your web application to it. If you need
 to copy static files from external dependencies, you can customize the
 contents of this task.
 Normally, this task is executed indirectly when needed.
-->
 <target name="prepare">
 <!-- Create build directories as needed -->
 <mkdir dir="${build.home}"/>
 <mkdir dir="${build.home}/WEB-INF"/>
 <mkdir dir="${build.home}/WEB-INF/classes"/>
 <mkdir dir="${fetched.dir}"/>
 <mkdir dir="${generated.dir}"/>

 <!-- Copy static content of this web application -->
 <copy todir="${build.home}">
 <fileset dir="${web.home}"/>
 </copy>

 <!-- Copy external dependencies as required -->
 <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** -->
 <mkdir dir="${build.home}/WEB-INF/lib"/>
 </target>
<!-- =================== Import WSDL Target ========================== -->
<!--
 This target creates the proxy classes for the WS
-->
 <target name="import-wsdl-server">
 <java
 classname="org.apache.axis.wsdl.WSDL2Java"
 fork="true"
 failonerror="true"
84

F

T

D

c

d

 classpath="compile.classpath">
 <arg value="--server-side"/>
 <arg value="--skeletonDeploy"/>
 <arg value="true"/>
 <arg file="${fetched.dir}/wsPNES.wsdl"/>
 <arg value="--output"/>
 <arg file="${generated.dir}"/>
 <arg value="--verbose"/>
 <arg value="--package"/>
 <arg value="soaPlug-and-Playi"/>
 </java>
 </target>
<!-- =================== Deploy Target ========================== -->
<!--
 This target deploys the service specified in the wsdd file into axis server
-->
 <target name="deploy">
 <java
 classname="org.apache.axis.client.AdminClient"
 fork="true"
 failonerror="true"
 classpath="compile.classpath">
 <arg value="-p"/>
 <arg value="80"/>
 <arg value="${build.home}/WEB-INF/deploy.wsdd"/>
 </java>
 </target>
<!-- =================== Undeploy Target ========================== -->
<target name="undeploy">
 <java
 classname="org.apache.axis.client.AdminClient"
 fork="true"
 failonerror="true"
 classpath="compile.classpath">
 <arg value="${build.home}/WEB-INF/undeploy.wsdd"/>
 </java>
 </target>
</project>
igure B- 1: File build.xml

o deploy the TAPAS service in the Apache Axis it is necessary a Web Service

eployment Descriptor (WSDD). The deploy.wsdd file presented in Figure B- 2 is

ompliant with this WSDD format and it is used by the deploy task of the Ant tool to

eploy the service in Axis.

85

<!-- Use this file to deploy some handlers/chains and services -->
<!-- Two ways to do this: -->
<!-- java org.apache.axis.client.AdminClient deploy.wsdd -->
<!-- after the axis server is running -->
<!-- or -->
<!-- java org.apache.axis.utils.Admin client|server deploy.wsdd -->
<!-- from the same directory that the Axis engine runs -->

 86

<deployment
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <!-- Services from PNESInterfaceService WSDL service -->

 <service name="wsPNES" provider="java:RPC" style="rpc" use="encoded">
 <parameter name="wsdlTargetNamespace" value="http://localhost/axis/services/wsPNES"/>
 <parameter name="wsdlServiceElement" value="PNESInterfaceService"/>
 <parameter name="wsdlServicePort" value="wsPNES"/>
 <parameter name="className" value="soaPlug-and-Playi.WsPNESSoapBindingSkeleton"/>
 <parameter name="wsdlPortType" value="PNESInterface"/>
 <parameter name="allowedMethods" value="*"/>

 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:Play"
 type="java:WsPlug-and-Play.Play"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://xml.apache.org/xml-soap"
 qname="ns:mapItem"
 type="java:soaPlug-and-Playi.MapItem"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:RoleSession"
 type="java:WsPlug-and-Play.RoleSession"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:RequestResult"
 type="java:WsPlug-and-Play.RequestResult"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:GAI"
 type="java:WsPlug-and-Play.GAI"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:Role"
 type="java:WsPlug-and-Play.Role"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
87

 88

 <typeMapping

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:SubscribeRequest"
 type="java:WsPlug-and-Play.SubscribeRequest"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />

 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:RequestPars"
 type="java:WsPlug-and-Play.RequestPars"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:ApplicationMessage"
 type="java:WsPlug-and-Play.ApplicationMessage"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://xml.apache.org/xml-soap"
 qname="ns:ArrayOf_tns1_GAI"
 type="java:WsPlug-and-Play.GAI[]"
 serializer="org.apache.axis.encoding.ser.ArraySerializerFactory"
 deserializer="org.apache.axis.encoding.ser.ArrayDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
 qname="ns:CapabilitySet"
 type="java:WsPlug-and-Play.CapabilitySet"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://xml.apache.org/xml-soap"
 qname="ns:ArrayOf_xsd_int"
 type="java:int[]"
 serializer="org.apache.axis.encoding.ser.ArraySerializerFactory"
 deserializer="org.apache.axis.encoding.ser.ArrayDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://xml.apache.org/xml-soap"
 qname="ns:ArrayOf_xsd_string"
 type="java:java.lang.String[]"
 serializer="org.apache.axis.encoding.ser.ArraySerializerFactory"
 deserializer="org.apache.axis.encoding.ser.ArrayDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 <typeMapping
 xmlns:ns="http://WsPlug-and-Play"
89

qname="ns:ActorPlugInReq"
 type="java:WsPlug-and-Play.ActorPlugInReq"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 </service>
</deployment>

Figure B- 2: Web Service Deployment Descriptor deploy.wsdd

The TAPAS service definition in WSDL format is presented in Figure. Following this

service definition, any developer under any platform can create its own client

application to interact wit the service provider. The parameters used in the request and

the logic of the remote procedure call are described in this file.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://localhost/axis/services/wsPNES"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://localhost/axis/services/wsPNES"
 xmlns:intf="http://localhost/axis/services/wsPNES"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns1="http://Plug-and-Play"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

 <schema targetNamespace="http://xml.apache.org/xml-soap"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 <complexType name="Vector">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
type="xsd:string"/>
 </sequence>
 </complexType>

 <complexType name="mapItem">
 <sequence>
 <element name="key" nillable="true" type="xsd:string"/>
 <element name="value" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>

 90

 91

 <complexType name="Map">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
type="apachesoap:mapItem"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOf_xsd_string">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>

 <complexType name="ArrayOf_xsd_int">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>
 </restriction>
 </complexContent>
 </complexType>

 <complexType name="ArrayOf_tns1_GAI">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="tns1:GAI[]"/>
 </restriction>
 </complexContent>
 </complexType>

 </schema>

 <schema targetNamespace="http://Plug-and-Play"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 <complexType name="ActorPlugInReq">
 <sequence>
 <element name="location" nillable="true" type="tns1:GAI"/>
 <element name="role" nillable="true" type="tns1:Role"/>
 <element name="play" nillable="true" type="tns1:Play"/>
 <element name="rqCaps" nillable="true" type="tns1:CapabilitySet"/>
 <element name="rsCaps" nillable="true" type="tns1:CapabilitySet"/>
 </sequence>
 </complexType>

 <complexType name="GAI">
 <sequence>
 <element name="type" type="xsd:string"/>
 <element name="node" type="xsd:string"/>
 <element name="address" type="xsd:string"/>
 <element name="pas" type="xsd:string"/>
 <element name="name" type="xsd:string"/>
 <element name="hmhandles" type="apachesoap:Map"/>
 <element name="initialized" type="xsd:boolean"/>
 </sequence>
 </complexType>

 92

 <complexType name="CapabilitySet">
 <sequence>
 <element name="capabilities" type="apachesoap:Vector"/>
 <element name="Add" type="xsd:int"/>
 <element name="Set" type="xsd:int"/>
 <element name="Remove" type="xsd:int"/>
 </sequence>
 </complexType>

 <complexType name="Play">
 <sequence>
 <element name="playId" type="xsd:string"/>
 <element name="playVer" type="xsd:string"/>
 <element name="playLoc" type="xsd:string"/>
 <element name="verA" type="xsd:int"/>
 <element name="verB" type="xsd:int"/>
 </sequence>
 </complexType>

 <complexType name="SubscribeRequest">
 <sequence>
 <element name="requestor" nillable="true" type="GAI"/>
 <element name="eventTypes" type="apachesoap:ArrayOf_xsd_int"/>
 <element name="PlayPlugIn" type="xsd:int"/>
 <element name="PlayChangesPlugIn" type="xsd:int"/>
 <element name="PlayPlugOut" type="xsd:int"/>
 <element name="ActorPlugIn" type="xsd:int"/>
 <element name="ActorPlugOut" type="xsd:int"/>
 <element name="ActorBehaviourPlugIn" type="xsd:int"/>
 <element name="ActorBehaviourPlugOut" type="xsd:int"/>
 <element name="ActorChangeBehaviour" type="xsd:int"/>
 <element name="ActorPlay" type="xsd:int"/>
 <element name="SubscribeRequest" type="xsd:int"/>
 <element name="SubscribeReport" type="xsd:int"/>
 <element name="SubscribeCancel" type="xsd:int"/>
 <element name="RoleSessionAction" type="xsd:int"/>
 <element name="ActorCapabilities" type="xsd:int"/>
 <element name="ActorCreate" type="xsd:int"/>
 <element name="ActorRemove" type="xsd:int"/>
 <element name="RoleSessionCreate" type="xsd:int"/>
 <element name="RoleSessionRemove" type="xsd:int"/>
 <element name="RT" type="apachesoap:ArrayOf_xsd_string"/>
 <element name="scope" type="apachesoap:ArrayOf_tns1_GAI"/>
 <element name="applType" type="apachesoap:ArrayOf_xsd_string"/>
 <element name="whenType" type="xsd:int"/>
 <element name="Immediately" type="xsd:int"/>
 <element name="Periodically" type="xsd:int"/>
 <element name="SpecifiedTime" type="xsd:int"/>
 <element name="WhenCancel" type="xsd:int"/>
 <element name="whenValue" type="xsd:int"/>
 </sequence>
 </complexType>

 <complexType name="ApplicationMessage">
 <sequence>
 <element name="roleSessionId" type="xsd:string"/>
 <element name="messageType" type="xsd:string"/>
 <element name="message" type="apachesoap:ArrayOf_xsd_string"/>

 93

 </sequence>
 </complexType>

 <complexType name="RoleSession">
 <sequence>
 <element name="roleSessionId" nillable="true" type="tns1:RoleSession"/>
 <element name="initiator" nillable="true" type="tns1:GAI"/>
 <element name="cooperator" nillable="true" type="tns1:GAI"/>
 </sequence>
 </complexType>
 <complexType name="Role">
 <sequence>
 <element name="roleId" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="RequestResult">
 <sequence>
 <element name="FAIL" type="xsd:int"/>
 <element name="OK" type="xsd:int"/>
 <element name="removed" type="xsd:boolean"/>
 <element name="resCaps" nillable="true" type="tns1:CapabilitySet"/>
 <element name="resultCause" nillable="true" type="xsd:string"/>
 <element name="resultType" type="xsd:int"/>
 <element name="roleSession" nillable="true" type="tns1:RoleSession"/>
 <element name="subscribeIdentifier" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="RequestPars">
 <sequence>
 <element name="requestType" type="xsd:int"/>
 <element name="sender" nillable="true" type="tns1:GAI"/>
 <element name="receiver" nillable="true" tyep="tns1:GAI"/>
 <element name="PlayPlugIn" type="xsd:int"/>
 <element name="PlayChangesPlugIn" type="xsd:int"/>
 <element name="PlayPlugOut" type="xsd:int"/>
 <element name="ActorPlugIn" type="xsd:int"/>
 <element name="ActorPlugOut" type="xsd:int"/>
 <element name="ActorBehaviourPlugIn" type="xsd:int"/>
 <element name="ActorBehaviourPlugOut" type="xsd:int"/>
 <element name="ActorChangeBehaviour" type="xsd:int"/>
 <element name="ActorPlay" type="xsd:int"/>
 <element name="SubscribeRequest" type="xsd:int"/>
 <element name="SubscribeReport" type="xsd:int"/>
 <element name="SubscribeCancel" type="xsd:int"/>
 <element name="RoleSessionAction" type="xsd:int"/>
 <element name="ActorCapabilities" type="xsd:int"/>
 <element name="RT" type="tns1:ArrayOf_xsd_string"/>
 <element name="play" nillable="true" type="tns1:Play"/>
 <element name="actorPlugInReq" nillable="true" type="tns1:ActorPlugInReq"/>
 <element name="plugOutRoleSession" nillable="true"
type="tns1:RoleSession"/>
 <element name="plugOutActor" nillable="true" type="tns1:GAI"/>
 <element name="apo" type="xsd:boolean"/>
 <element name="upgradePars" type="tns1:ArrayOf_xsd_string"/>
 <element name="applicationMessage" nillabe="true"
type="tns1:ApplicationMessage"/>
 <element name="roleSession" nillable="true" type="tns1:RoleSession"/>
 <element name="subscribeRequest" nillable="true"
type="tns1:SubscribeRequest"/>

 94

 <element name="subscribeReport" type="apachesoap:ArrayOf_xsd_string"/>
 <element name="subscribeCancel" type="xsd:string"/>
 <element name="capOpType" type="xsd:int"/>
 <element name="capabilities" nillable="true" type="tns1:CapabilitySet"/>
 </sequence>
 </complexType>
 </schema>
</wsdl:types>

 <wsdl:message name="syncRequestFromPNESResponse">
 <wsdl:part name="syncRequestFromPNESReturn" type="tns1:RequestResult"/>
 </wsdl:message>
 <wsdl:message name="syncRequestFromPNESRequest">
 <wsdl:part name="in0" type="tns1:RequestPars"/>
 </wsdl:message>
 <wsdl:portType name="PNESInterface">
 <wsdl:operation name="syncRequestFromPNES" parameterOrder="in0">
 <wsdl:input message="impl:syncRequestFromPNESRequest"
name="syncRequestFromPNESRequest"/>
 <wsdl:output message="impl:syncRequestFromPNESResponse"
name="syncRequestFromPNESResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="wsPNESSoapBinding" type="impl:PNESInterface">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="syncRequestFromPNES">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="syncRequestFromPNESRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://Plug-and-Play" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="syncRequestFromPNESResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost/axis/services/wsPNES" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="PNESInterfaceService">
 <wsdl:port binding="impl:wsPNESSoapBinding" name="wsPNES">
 <wsdlsoap:address location="http://localhost/axis/services/wsPNES"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Figure B- 3: WSDL TAPAS service definition. File wsPNES.wsdl

The following files are used in the processes of publishing and discovery with the

Registry Server. These files have to be present at each node in order to use the UDDI

service adequately. The tapasconcepts.xml file, Figure B- 4, contains the uiid that

identifies uniquely the TAPAS service at the Registry. And the tapasconcepts.dtd file,

 95

Figure B- 1, specifies the format of the information provided at the publishing and

discovery stages.

Figure B- 4: File tapasconcepts.xml

<?xml version="1.0" encoding="UTF-8"?>

<PredefinedConcepts>
<JAXRClassificationScheme id="uiid" name="TAPASScheme" >
<JAXRConcept id="uiid/TAPASServices" name="TAPASServices" parent="uiid" code="TAPASServices" />
<JAXRConcept id="uiid/wsPNES" name="TAPASServices" parent="uiid/TAPASServices" code="wsPNES" />
</JAXRClassificationScheme>
</PredefinedConcepts>

F

T

D

t

R

s

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT PredefinedConcepts (JAXRClassificationScheme*)>
<!ELEMENT JAXRClassificationScheme (JAXRConcept*)>
<!ATTLIST JAXRClassificationScheme
 id CDATA #REQUIRED
 name CDATA #REQUIRED
 description CDATA #IMPLIED
>
<!ELEMENT JAXRConcept (JAXRConcept*)>
<!ATTLIST JAXRConcept
 id CDATA #REQUIRED
 name CDATA #REQUIRED
 parent CDATA #REQUIRED
 code CDATA #IMPLIED
>
<!ELEMENT Command (JAXRClassificationScheme*, JAXRConcept*, namepattern*)>
<!ATTLIST Command
 commandname CDATA #REQUIRED
 path CDATA #IMPLIED
>
<!ELEMENT namepattern (#PCDATA)>

<!ELEMENT Result (JAXRClassificationScheme*, JAXRConcept*)>
<!ATTLIST Result
 commandname CDATA #REQUIRED
 status CDATA #REQUIRED
 error CDATA #IMPLIED
>

igure B- 5: File tapasconcepts.dtd

he Initial Service Request, Figure B- 6, is the XML query that it is sent from the

irector to the Selection Engine at the Service Plug-in process. This query specifies

he Role figure to be plugged and the node that will instantiate it. The Initial Service

equest is one of the request types considered at the Service Management framework,

ection 2.3. And it is the request used for the demonstration in chapter 5.

96

F

<InitialServiceRequest type="InitialServiceRequest">
 <sender />
 <dateTime />
 <serviceType>TeleSchool</serviceType>
 <roleRequesting>SchoolClient</roleRequesting>
 <preferredConfiguration>
 <nodeInstalling>http://comp1.tapas.org</nodeInstalling>
 </preferredConfiguration>
 <contextInfo>
 <connectionUsed>Bluetooth</connectionUsed>
 <userSubscription>Advanced</userSubscription>

 <MMSupport>Speaker</MMSupport>
 </contextInfo>
 <Result>
 <Manus>Svar_MName</Manus>
 <ActionGroup>Svar_Gi</ActionGroup>
 <Category>Svar_CapCategory</Category>
 </Result>
</InitialServiceRequest>

igure B- 6: Initial Service Request.

97

	Preface
	Abstract
	Table of contents
	Table of figures and tables
	Introduction
	Application integration
	Web Services Basics
	Introduction to TAPAS
	TAPAS with Web services support

	Overview of the TAPAS architecture
	TAPAS Basic Architecture
	Definition of Plug and Play
	The Basic Architecture
	The TAPAS layered model
	TAPAS communication model
	The Synchronous communication model
	TAPAS specific addressing and routing mechanism
	The Entity registry mechanism

	TAPAS Dynamic Configuration
	Dynamic Configuration concepts
	The Framework

	XML-based Framework for Dynamic Service Management
	Service Management concepts
	The Framework

	The Selection Engine

	Web services architecture in TAPAS
	Web Services support in TAPAS
	Selection Engine integration in TAPAS
	Extended support for the Director role-figure
	Conducting a case-study on existing TAPAS application

	Implementation issues
	The proposed communication infrastructure
	The Synchronous communication model
	Serializing the RequestPars Java object.
	Interaction of the SOAP server with the TAPAS PNES

	The entity registry

	Adding Web Services to TAPAS
	Interaction between Selection Engine and Director
	Problems related to SOAP

	Experimentation Scenario
	Describing the scenario
	Setting up the environment
	Demonstration
	Register the TAPAS Server node
	Plug-in the TeleSchool play
	Plug-in the TeleSchool service

	Conclusion and further work
	References
	Appendix A: Overview of Web Services
	Appendix B: Configuration files

