

TAPAS for wireless PDA

by
Eirik Lühr

“Within the TAPAS framework wireless devices are to be
integrated and their mobility to be supported. The task of this
project compromises Re-specification and Implementation of
Plug-and-Play support functionality using J2ME for wireless
PDA. The PaP functionality, so far, is supported mainly for
PCs using J2SE. The task could also include a small
application for testing these devices.”

Department of Telematics, NTNU, Trondheim
Spring 2003

Abstract
Telematics Architecture for Plug-and-play Systems, or TAPAS, is a software
architecture that facilitates for dynamic introduction of new distributed services, or
upgrading of existing ones, in a communication network. The Department of
Telematics, in cooperation with SINTEF, have implemented a prototype of this
architecture using the Java programming language. This reports main area of focus
lies in re-specifying and implementing a ‘lightweight’ version of TAPAS,
MicroTAPAS, for use on small handheld wireless devices – Personal Digital
Assistants (PDA’s). In addition, suitable target platforms and operating systems are
discussed, along with the introduction of a small application that will illustrate the
basic features of this new architecture.

Chapter one will introduce the reader to the basic principles behind TAPAS and
present some of the research previously done on the topic. Similar technologies are
also briefly presented, before an introduction to TAPAS for wireless components.
Chapter two moves on to discuss the concepts of the new architecture, its extended
support functionality and changes made to the layered design model.

In chapter three, a brief introduction to Java 2 Micro Edition (J2ME) is given before
explaining the implementation of various parts of the system. Chapter four discusses
possible development environments, and various elements of hardware and test set-up.

The simple test application, MicroTester, is presented in chapter five and is then used
in chapter six for testing the new architecture. Chapter six also includes some
discussions dealing with the performance of MicroTAPAS on different processor
architectures. The report is rounded off with an overview of faced challenges and
solutions, suggested improvements and a conclusion, in chapters seven through nine.

In the relative short period that this project has lasted, there has been a significant
evolution taking place in the industry that surrounds small handheld wireless devices.
Important new technologies have become available that enabled the development of
features which were impossible, or nearly so, to implement when the project first
started. While this has made the area extremely interesting and full of surprises, it has
also made the job that much harder, and at times it has been frustrating to not know
when, if at all, a promised feature or platform would become available. Nevertheless,
the whole experience has been truly enjoyable and a very instructive.

Eirik Lühr, July 2003

 i

Contents
Abstract ..i
Figures and tables.. iv
1 Introduction...1

1.1 Introduction to TAPAS..1
1.2 Previous work on TAPAS ...3
1.3 Similar technologies and comparisons ..4
1.4 TAPAS for wireless components ..6

2 MicroTAPAS architecture concepts..7
2.1 Requirements and considerations ..7
2.2 MicroTAPAS Support Functions ..7
2.3 MicroTAPAS layered design model..8

3 MicroTAPAS implementation ...11
3.1 Overview of J2ME ..11
3.2 Communication model ..13
3.3 Addressing and routing values ..15
3.4 Dynamic connections and device mobility..16
3.5 The configuration file ..18
3.6 Requests and Results ...18
3.7 Final remarks...19

4 Development environment ...20
4.1 Software packages to aid in development ...20
4.2 Target devices and operating systems ...20
4.3 Test environment proposal ..21

5 Sample application - MicroTester ...23
5.1 Functional requirements ..23
5.2 Non-functional requirements...24
5.3 MicroTester overview ...24
5.4 Screenshots..24
5.5 Class diagram ..26
5.6 Message sequence charts ...26
5.7 Suggested improvements...30

6 Setup and testing of MicroTAPAS ..31
6.1 Installation and start-up ...31
6.2 Testing...33
6.3 Performance...37

7 Faced challenges and solutions ..39
8 Suggested improvements and further issues...41

8.1 Dynamic connections ..41
8.2 The configuration file ..41
8.3 Encryption & checksums...41
8.4 Mobility ...41
8.5 Reliability ..42
8.6 Interoperability with TAPAS...42
8.7 Applications...42

9 Conclusion ...43
List of acronyms ...44
Bibliography..45
General online references and resources ..47
Appendix A – J2ME and PocketPC.. I

 ii

A.1 Overview of J2ME CDC profiles...I
A.2 PocketPC2000 link file ..I

Appendix B - TAPAS ..II
B.1 TAPAS architecture ... II
B.2 TAPAS communication model .. II
B.3 TAPAS addressing.. III
B.4 Configuration files .. III

Appendix C – Setup and Testing.. V
C.1 Hardware used.. V
C.2 Test data from HeapTest .. V

 iii

Figures and tables
FIGURE 1.1: THE TAPAS THEATRE MODEL...1
FIGURE 1.2: THE TAPAS DATA MODEL ..2
FIGURE 1.3: TAPAS BASIC INSTANCE STRUCTURE ...2
FIGURE 2.1: MICROTAPAS LAYERED DESIGN MODEL – ARCHITECTURE ..9
FIGURE 2.2: MICROTAPAS LAYERED DESIGN MODEL - OPERATING MICROTAPAS SYSTEM EXAMPLE ...9
FIGURE 3.1: OVERVIEW OF J2ME AND OTHER JAVA TECHNOLOGIES ..12
FIGURE 3.2: MICROTAPAS SYNCHRONOUS COMMUNICATION MODEL ...14
FIGURE 3.3: SIMPLIFIED THREADED COMMUNICATION..14
FIGURE 3.4: SCHEMATIC OVERVIEW OF ACTUAL COMMUNICATION FLOW (ACTORPLUGOUT)15
FIGURE 3.5: GAI FOR MICROTAPAS ...16
FIGURE 3.6: SCHEMATIC FIGURE OF THE FUNDAMENTAL ELEMENTS OF THE DYNAMIC CONNECTION......17
FIGURE 5.1: SCREENSHOTS FROM THE MICROTESTER APPLICATION RUNNING ON A PDA25
FIGURE 5.2: SCREENSHOTS FROM THE APPLICATION RUNNING ON A LAPTOP COMPUTER25
FIGURE 5.3: MICROCHAT CLASS DIAGRAM ...26
FIGURE 5.4: MSC FOR PLUGIN OF THE MICROTESTERSERVER ...27
FIGURE 5.5: MSC FOR PLUGOUT OF THE MICROTESTERSERVER ...27
FIGURE 5.6: MSC FOR PERFORMING AN ACTORCHANGEBEHAVIOUR...28
FIGURE 5.7: MSC FOR SENDING A ROLESESSIONACTION TO THE MICROTESTERSERVER.......................29
FIGURE 5.8: MSC FOR THE REGISTRATION OF THE MICROTESTER ACTOR ..29
FIGURE 5.9: MSC FOR CANCELLING OF A PREVIOUS REGISTRATION OF THE MICROTESTER ACTOR30
FIGURE 6.1: MICROTAPASBOOT DIRECTORY ON A LAPTOP COMPUTER ...32
FIGURE 6.2: SCREENSHOTS FROM THE IPAQ SHOWING TWO DIRECTORIES (ON LEFT) AND A MENU33
FIGURE 6.3: SUMMARY OF PERFORMANCE TEST-RESULTS...38

TABLE 4.1: POSSIBLE DEVELOPMENT PACKAGES ..20
TABLE 4.2: POSSIBLE TARGET TERMINALS (PDA’S) ...21
TABLE 6.1: NODE CONFIGURATIONS ...31

 iv

1 Introduction
A brief introduction to TAPAS, along with a short description of previous work is
presented in this section, before looking at a few similar technologies. Finally, the
reader is introduced to the idea of TAPAS for wireless components in the last section
of this introductory chapter.

1.1 Introduction to TAPAS
Telematics Architecture for Plug-and-play Systems (TAPAS) is a project running at
the Department of Telematics since 1997 and supported by the Norwegian Research
Council. TAPAS enables “…the hardware and software "parts", as well as complete
network elements that constitute a communication system to have the ability to
configure themselves when installed into a network and then to provide services
according to their own capabilities, the service repertoire and the operating policies of
the system.” [MELH1]. Several papers have been presented in different international
conferences, as well as Master thesis, dealing with the different parts of the
architecture and introducing solutions and proposals on its various features.

Figure 1.1: The TAPAS theatre model

TAPAS use a theatre metaphor to model the entities that constitute the architecture,
and an overview is presented in Figure 1.1 [AAGF3, page 7]. Depending on its
Capability, an Actor is the generic object that can be instantiated and behave
according to a certain Role in a Play (a service may be implemented in one or more
plays), which is described in a Manuscript. The Play has a defined autonomous,
functionality. The Repertoire is the total set of plays available. A Role session is the
projection of behaviour of an actor, in relation to one of its interacting actors. Finally,
there is the Director, who is the repertoire and actor manager, and a guide to actors in
plug-in/out phases [MELH2, page 8].

 1

Figure 1.2 [LILL, page 3] shows the data model of TAPAS and illustrates how the
different concepts in the architecture relate to each other.

is

manages

ha
s

m
an

ag
es

im
pl

em
en

ts

im
pl

em
en

ts

has

de
mon

str
ate

s

correspondsto

needs

is
de

sc
rib

ed
by

canexecutes

projects

Domain

ActiveEntities

Director

Manuscript

RoleSessionRole

Play

Reportoire

Capabilities

ApplicationRoleFigureDirectorRoleFigure

Actor

Component

Figure 1.2: The TAPAS data model

TAPAS has been implemented in Java 2 Standard Edition (J2SE), with extensive use
of Java Remote Method Invocation (RMI) for communication and the Java Abstract
Windowing Toolkit (AWT) for debugging and application windows. A working
version of TAPAS, as well as documentation and relevant publications, is available
for download from the Internet [MELH1].

The TAPAS basic instance structure [AAGF3, page 9] is illustrated by Figure 1.3.

A c to r

A c to r

A c to r

D ir e c to r
r o le - f ig u re

C o m p o n e n t

A p p l ic a t io n
ro le - f ig u re

C o m p o n e n t

A p p l ic a t io n
r o le - f ig u re

R e p e r to ir e -
b a s e

M a n u s c r ip t -
b a s e

P la y in g -b a s eA p p lic a t io n
ro le - f ig u reA p p lic a t io n

ro le - f ig u re

Figure 1.3: TAPAS basic instance structure

As we will see in later chapters, TAPAS, as currently implemented, is not suited for
deployment to all the target platforms envisioned in the architecture, among them
PDA’s and other small handheld devices. Throughout the rest of this report, extensive
knowledge of both TAPAS and J2SE is assumed, as it is outside the scope of this
report to introduce the reader to these fundamentals. It is appropriate, however, to
give a quick overview of the work previously done on TAPAS, the papers published
on the subject as well as a comparison to similar popular technologies.

 2

1.2 Previous work on TAPAS
In recent years, a number of different papers have been published about TAPAS, often
as an input to various international conferences, dealing with different aspects of the
TAPAS architecture, or closely related areas of research. In addition to these papers,
university students have completed and presented a few Master of Science (MSc)
diploma theses as well. This report draws from some of this work previously done on
the subject, and a quick overview of a selected few documents are presented below.

[MALM1] presents mobility management within TAPAS, and the paper starts with a
brief introduction to essential TAPAS concepts and the TAPAS layered model, before
presenting different approaches for actor, terminal, user and session mobility
management. For each type of mobility management, they have presented “an early
set of mobility management algorithms or methods”, as well as exploring “a few
issues related to implementation design and propose as set of components to facilitate
the deployment of this platform in the available PaP applications.” The report
concludes, in essence, that several issues discussed in the paper need further
investigation. The authors argue that “we need to break up the overall PaP
architecture into subsystems to provide selected types of mobility, which for some
will be in the support and for others in the application layers” and further “we need to
find efficient ways to map our methods and procedures into proper applications and
communication platforms”.

Another interesting paper about the subject is “Capability Specification and Selection
in TAPAS” [AAGF1]. The paper’s abstract gives a clear understanding about what is
discussed in the paper; “A theoretical framework for support specification and
selection in Plug-and-Play (PaP) architecture is proposed with a representation,
computation and reasoning mechanism for semantic description and matching of
support required by a particular PaP service system and support offered by a running
PaP system.”. In essence, this means that description and matching of required and
offered capabilities between different PaP support systems is introduced. The next
section of the paper introduces the PaP system and provides definitions of the
capability and status concepts used in subsequent sections. Then follows different
sections which each introduces and/or discusses topics such as significant functions in
support management, framework for support specification and selection, before
illustrating the theory with a demonstration of the concepts using an application
example, and finally concluding the paper and presenting further research topics.

 “User and Session mobility in a Plug-and-Play architecture” [LILL], a master thesis,
revolves around user and session mobility in TAPAS. The report first presents general
object and engineering models for mobility support in TAPAS, before focusing on
user and session mobility. In the chapter titled “The mobility architecture”, the
candidate states the functional and non-functional requirements for the framework and
presents a UML use-case diagram of the user and session mobility, as well as class
diagrams. In order to store user and session information between sessions, a system
utilising XML-files was devised. These XML-files store information such as roles,
session descriptions and user profiles. The reminder of the thesis presents and
discusses two sample applications, chat and file transfer, providing UML-diagrams
and message sequence charts for both.

These reports and papers try to expand the overall objective of the architecture, and
develop elaborated support functionality. This report is a continuation of this trend, as
it extends the TAPAS support functionality to wireless handheld devices.

 3

1.3 Similar technologies and comparisons
The purpose of this section is to compare TAPAS with a few existing technologies, be
it programming languages or complete architectures, to provide the reader with an
overall look at the standing of TAPAS in comparisons to these other technologies.

1.3.1 Active and controllable networks
Active Networks are classified by two approaches: active packets and active nodes.
The first builds on the integration and deployment of services in the user flow, while
the second is based on deploying services dynamically in nodes. Below is a short
presentation of the different approaches to the field of active networks.

The U.S. Department of Defence’s (DoD) Defence Advanced Research Projects
Agency (DARPA) has set in motion an active networks program that aims at
producing a new networking platform. The architecture “is based on a highly dynamic
runtime environment that supports a finely tuned degree of control over network
services. The packet itself is the basis for describing, provisioning, or tailoring
resources to achieve the delivery and management requirements.” [DARP]

The Distributed Computing and Communications Lab at Columbia University have
developed a programming language and environment, called NetScript, for building
networked systems, and is thoroughly described in [COLU]. The programs that are
designed and implemented in this language are organized as mobile agents that after
deployment to remote systems can be executed either under local or remote control.
The purpose of the project is to simplify the development of networked systems, and
their remote programming, as “networked systems are difficult to design, implement,
deploy and manage.” [COLU]

An Active Networks project at Massachusetts Institute of Technology (MIT), which
has been funded by DARPA, has developed the Java-based Active Node Transfer
System (ANTS), for experimenting with active networks [MITE].

There are a number of other projects on active networks as well, among them the
SwithWare project undertaken by the University of Pennsylvania and Bellcore, which
is described in [UPEN].

These are just a few of the research projects going on in the field of active networks.
There are some obvious similarities between TAPAS and the technologies presented
above, in particular the ‘active nodes’ approach. However, TAPAS is based on code-
on-demand and not pre-programmed packets, as is the case for active networks. The
nodes in TAPAS need only to run a fixed-sized executable and have a set of basic
settings, such as initial web address and configuration files, while active networks
need to include how packets be interpreted in the packets themselves.

1.3.2 Mobile IP & Cellular IP
Mobile and Cellular IP has been the target of significant international research efforts
over the last decade, and continue to be a major field of study.

When a computer is connected to a specific network, it is allocated an IP address,
when that computer moves to another network it is given a new IP address, i.e. by
Dynamic Host Configuration Protocol (DHCP). This scheme works fine in most cases,
but a problem arises if files or resources on that computer are sought by others, since
they would not know that computers address. This is where mobile IP comes into the

 4

picture, and with this transparent scheme, computing continues as normal when a host
is moved from one subnet to another. When the computer is connected to its home
base, packets are routed in the usual way. When it is connected elsewhere, two agent
processes take over the routing, the home agent (HA) and the foreign agent (FA)
running at fixed nodes on the two subnets. When the mobile host leaves its home
domain, the HA is informed of this, and the FA of the visited domain relays back to
the HA that the host is available in that domain. The HA then operates as a proxy,
relaying all traffic to the mobile host through the visited domains FA.

According to [COUG, page 104], “The MobileIP solution is effective but hardly
efficient. A solution that treats mobile hosts as first-class citizens would be preferable,
allowing them to wander without giving prior notice and routing packets to them
without any tunnelling or rerouting.” This is clearly a drawback to the technology, but
could be amended in the future to work along the lines of how cellular phones roam
networks.

There is no support for terminal mobility in TAPAS, but, as explained in section 1.2,
[MALM1] discuss a Mobility Management platform for TAPAS. In addition [LILL]
has proposed a scheme for user and session mobility, using the principles of mobile IP,
including home and foreign agents. In the future, terminal mobility could however be
added to the implementation of the TAPAS architecture, as the target terminals are
highly mobile and could benefit from being truly mobile devices.

1.3.3 Mobile Agents, Multi agent and Agent based systems
A mobile agent is a program, script or package that physically travels around a
network, and performs operations on hosts that have agent capabilities. These agents,
which operate autonomously, usually has very specific tasks, such as fetching prices
of merchandise from on-line stores, or to collect weather information. Apart from
interacting with all sorts of operating systems, databases or information systems,
agents can also interact with other agents, meeting in agent-gathering places to
exchange information. There are a number of different mobile agent architectures and
languages available today, such as Knowledge Query and Manipulation Language
(KQML) as presented in [UMBC], which is part of the broader ARPA Knowledge
Sharing Effort [STAU], and is a “language and protocol for exchanging information
and knowledge”. Although agent technologies have received a lot of attention in
recent years, [REID] argues that “mobile agency has failed to become a sweeping
force of change, and now faces competition in the form of message passing and
remote procedure call (RPC) technologies”.

The very autonomous nature of mobile agents sets them wide apart from TAPAS’
request/response interactions, although the resulting action might be comparatively
equal, and a TAPAS node can almost be seen upon as a stationary agent.

1.3.4 Summary
After looking at the technologies discussed above, one could say that TAPAS can be
viewed as a mix between the ‘active networks’ and ‘mobile agents’ technologies;
although it should be clear that not any one existing technology completely overlaps
with that of TAPAS.

 5

1.4 TAPAS for wireless components
This project is motivated by the need to integrate wireless devices and the project
definition states a clear aim for this, “Within the TAPAS framework, wireless devices
are to be integrated and their mobility to be supported.”

The TAPAS support platform has so far not taken into consideration the limitations of
the Java implementation for small wireless devices. This section will justify the need
for the re-specification, and implementation, of the TAPAS architecture for porting to
these devices. The modified architecture with this new support will henceforth be
referred to as MicroTAPAS.

The strongest argument for a complete re-specification of the TAPAS architecture is
the limitations of the target terminals. These terminals are small handheld devices
with limited computational power and memory, and simply do not have support for
the Java 2 Standard Edition (J2SE) virtual machine, needed to run traditional Java
applications. The other argument is that these highly mobile devices should use a
support system, MicroTAPAS, that takes into account their mobility by extending the
support functions of the original architecture.

TAPAS, as mentioned above, is implemented using J2SE, and to ease the re-
specification and development of TAPAS into MicroTAPAS, for porting to small
wireless handheld devices, such as Java enabled PDAs and mobile phones, Java 2
Micro Edition (J2ME) was considered the only real alternative. The modular
extension and compatibility with the original platform will enable the developers to
re-use proven and well-documented components from what has already been
implemented in the TAPAS architecture. Using Java also simplifies the task of
deploying the architecture to different operating systems, taking advantage of Java’s
“write once, run everywhere” characteristics.

From the inherent limitations of J2ME, as will be discussed in chapter 1, it became
apparent that a number of the features of Java, as used in TAPAS, are not available or
are too resource demanding in J2ME. Therefore, the support functionality of TAPAS
had to be re-specified and implemented in accordance with the Application
Programming Interface (API) of J2ME.

MicroTAPAS aims at taking into consideration the limitations posed by small
handheld devices. Naturally, the basic design ideas and model behind TAPAS will be
used for the re-specification of MicroTAPAS, or in other words, no significant
changes will be applied to the basic concept of plug and play functionality

 6

2 MicroTAPAS architecture concepts
This chapter will present the basic architecture concepts behind MicroTAPAS. Most
of the features discussed below have actually been implemented in MicroTAPAS and
will be discussed in further in chapter 3, MicroTAPAS implementation.

2.1 Requirements and considerations
In summary, the requirements for MicroTAPAS are almost identical to those stated
for TAPAS, as described in [MELH2, page 9], with some added support functionality
specifically tailored for dealing with its wireless and mobile nature.

The initial idea was to have the traditional TAPAS system as it is, i.e. running on a
fixed network, and having MicroTAPAS nodes communicating with this system and
using its director, without any changes to the current TAPAS system, thus allowing
interoperation between the two. When we had to take into consideration the
limitations of the development language and the target devices, however, it became
evident that a few architectural changes of the whole system had to take place in order
for our system to be feasible. This resulted in a stand-alone architecture, complete
with a test application, explicitly adapted to the possibilities and limitations presented
by wireless handheld devices. As such. The issue of interoperability with the basic
TAPAS platform need to be targeted and addressed in future work.

These small, lightweight devices are easy to carry around an office building or
campus, and do not rely on cables to communicate with offered services, be it office
applications, such as elaborate collaboration software or simple chat applications, or
directly to the Internet. The dynamic nature of the TAPAS architecture seems a
perfect match for such devices, in that it offer its users maximum freedom, without
the hassle of manually downloading, configuring and installing applications and
services.

The biggest limitation, in terms of implementation, that had to be considered was the
relative lightweight nature of J2ME. Some of the features of J2SE, i.e. Java
Foundation Classes (JFC)/Swing*, are absent from J2ME, and implemented support
functionality and mechanisms of TAPAS had to be re-invented with the limitations of
J2ME in mind.

Another consideration we had to take into account was that the target devices would
have somewhat limited capabilities compared to that of a traditional desktop or laptop,
both in terms of computational power, the availability of ‘hard’ and ‘soft’ memory
and display capabilities.

2.2 MicroTAPAS Support Functions
The MicroTAPAS support functions are almost identical to those offered by TAPAS,
and those inherited from TAPAS have by [MELH2, page 9] been summarised and
grouped as follows:

• Managing the availability of application functionality (i.e. the plays)
o PlayPlugIn(PlayId, PlayVer, PlayLoc)
o PlayChangesPlugIn(PlayId, PlayVer, PlayLoc)

* JFC/Swing is a group of Java features to develop advanced Graphical User Interfaces (GUI) first
announced in 1997, and is an extension of the Java Abstract Windowing Toolkit (AWT).

 7

o PlayPlugOut(PlayId, PlayVer)

• Managing the existence of active entities in operational systems (i.e. the actors)
o ActorPlugIn(Location, RoleName)
o ActorPlugOut(RoleSessionId)

• Dynamic redefinition of actor behaviour (i.e. roles)

o ActorBehaviourPlugIn(RoleName)
o ActorChangeBehaviour(NewRoleName)
o ActorBehaviourPlugOut()

• Interactions between actors, actors capability change, and monitoring TAPAS

activities
o RoleSessionAction(RoleSessionId, MsgType, MsgParameters)
o ChangeActorCapabilities(ChangeType, CapabilitySet)
o SubscribeRequest(EventType, Scope, ApplicationTypes, WhenReport)

In addition to these basic support functions, there is the added support for dynamic
connections. A dynamic connection in this context is defined as a connection that may,
or may not, be available at a given moment, and MicroTAPAS will have added
support for dealing with this. This new functionality will be discussed further in
section 3.4.

• Handling of dynamic connections
o ActorRegister(RoleSessionId, ActorPlugInReq)
o ActorRegisterCancel(RoleSessionId)

2.3 MicroTAPAS layered design model
The MicroTAPAS layered design model slightly modified version of the same model
in TAPAS [MELH2, page 18]. The original model is included in Appendix B.1.
When comparing the layered design model of TAPAS to that of the proposed
MicroTAPAS architecture, there are two notable differences.

Firstly, in the MicroTAPAS architecture, there is a limitation of only one virtual
machine running on each node at a given time, as opposed to the TAPAS architecture,
where several instances can run simultaneously. This limitation stems from the lack of
system resources in the MicroTAPAS targeted operating environment (i.e. on a PDA),
most notably main memory and processing capacity.

Secondly, it was decided that there should only be one Plug-And-Play Actor Support
(PAS) instance at each node. Following this decision it became clear that it would be
advantageous to combine the functionality of the PAS layer and that of the Plug-And-
Play Node Execution Support (PNES) layer into one layer. This new layer is called
MicroPNES. The essential working of the new MicroPNES layer is identical to those
of the combined ‘old’ PNES and PAS layers. By combining these two layers, we
removed the need for communication and management between them and the
resulting implementation thus becomes more time and memory efficient and less
demanding for the intended devices to handle.

 8

Ap
pl

ic
at

io
ns

Pa
P

sp
ec

ifi
c

la
ye

rs

Infrastructure layer
TAPAS Communication Infrastructure

TAPAS static
basic support

TAPAS
dynamic
basic support

MicroTAPAS Node Execution Support (MiroPNES)

Director (Actor)

TAPAS
extensions

TAPAS
specific
applications

Non-TAPAS applications
interfaced to TAPAS
applications

TAPAS Extended
Management (PXM)

TAPAS
Extended
Support

TAPAS applications
(Actors)

Non-TAPAS
applications

Figure 2.1: MicroTAPAS layered design model – architecture

Figure 2.1 shows the modified MicroTAPAS layered design model architecture. The
PaP Actor Support (PAS) layer has been removed to make the architecture leaner for
deployment on the handheld devices. Previously, it was common to instantiate several
instances of a PAS within each node, where each instance could govern its own actors.
In MicroTAPS however, it was, due to device constraints, decided to remove the
possibility to instantiate more than one PAS on each node, thus removing the need for
a separate layer to handle that functionality.

Figure 2.2 shows the nodes in a typical MicroTAPAS system, and the role of each of
these nodes. A client node is a node that uses the services/resources of a server. The
server is where the Director runs, and in this figure is running on a stationary
computer (i.e. laptop or desktop), as it runs on a Java Virtual Machine (JVM), as
opposed to the other two nodes who run the smaller J2ME VM, CVM, which would,
for example, be PDA’s.

Legend:

Node1: Client

CVM

a1 a2

MicroPNES
B

Opsys/Network

Node2: Server

JVM

d1 a3

MicroPNES
B

Opsys/Network

Node4: Client

CVM

a4

MicroPNES
B

Opsys/Network

Node3: Web-server

Web-server

Opsys/Network

TAPAS generic
support

Plays

aX - MicroActor X
dX - MicroDirector X
B - MicroTAPAS bootstrap

Dynamic available
Static available
Non-TAPAS entities

Wireless communication

Figure 2.2: MicroTAPAS layered design model - operating MicroTAPAS system example

 9

The communication link between the Clients and the rest of the system is here seen to
be wireless, and that would almost always be the case for handheld devices. One
could, however, connect the two other nodes wirelessly to the system as well. For
clarity, Appendix B.1 includes a similar system example for the original TAPAS
architecture.

 10

3 MicroTAPAS implementation
This chapter deals with the actual implementation of MicroTAPAS, and starts with a
brief discussion on the language in which to carry out the implementation, Java 2
Micro Edition (J2ME), and the choices made in relation to this. Subsequent sections
deals with those modules of the original TAPAS architecture that have had extensive
changes to them. These sections, thus, also serve to highlight the principal
implementation-differences between the two architectures. The last section points out
those changes that are not covered by any of the other sections.

All of the features discussed in sections 3.2 through 3.7 have to a lesser or greater
degree, been implemented, and within each section is a short paragraph stating to
which extent the feature has been implemented, and how extensive it has been tested.
All proposed features that have had relatively little work done on them are
summarized in chapter 1.

3.1 Overview of J2ME
This section will introduce the basic concepts behind the Java 2 Micro Edition (J2ME)
platform API, and what limitations these pose for the MicroTAPAS architecture.

“J2ME is a family of specifications that defines various downsized versions of the
standard Java 2 platform; these downsized versions can be used to program consumer
electronic devices ranging from cell phones to highly capable Personal Data
Assistants (PDAs), smart phones and set-top boxes.” [TOPK, page3]

One of the things these devices have in common is that they lack the memory or
computational resources, as found in modern desktop and laptop computers, to
support the traditional requirements of either Java 2 Standard Edition (J2SE) or,
naturally, Java 2 Enterprise Edition (J2EE).

J2ME consists of configurations, virtual machines (VM) and profiles. There are two
types of configurations, each with their own VM; the Connected Limited Device
Configuration (CLDC) using KVM, and the Connected Device Configuration (CDC)
with its CVM. When to use what configuration depends on the available resources of
the target device. According to [SUN1], CLDC is targeted at the low-end spectre of
consumer electronics, and the devices will typically have around 512 KB memory,
and run on 16 or 32-bit processors. Mobile phones and low-end PDAs would fall into
this category. CDC, on the other hand, is targeted at systems that lie between those
served by CLDC and J2SE. These devices will typically boast more than 2 MB of
memory and run on 32-bit processors. Powerful PDAs and palmtop computers would
be typical platforms for this configuration. Virtually all Java enabled mobile phones
on the market today support the CLDC, while only a few hybrid phone-PDA models
have support for CDC, among them are the QTEK 1010 PocketPC.

Figure 3.1 [SUN2] shows some of the configurations and profiles that are available
for J2ME, along with the distinct separation between the two available configurations.
The figure also illustrates where in the Java-series two configurations belong.

 11

Figure 3.1: Overview of J2ME and other Java technologies

A brief overview of the different profiles in J2ME CDC has been included in
Appendix A.1.

3.1.1 Choosing a configuration
Before any work with the MicroTAPAS implementation could be done, the
capabilities of the two configurations (CLDC and CDC) had to be compared before
choosing one of them as the platform for development. Finally, the chosen
configuration and its profiles had to be investigated to establish what changes would
be necessary to the original architecture for it to conform to the chosen configuration.

After scrutinising the original TAPAS source code, a few core elements were found
that were of instrumental importance to the new system. In other words, those
elements were considered so basic that a re-specification without them would become
at least very demanding and difficult, if not impossible. The most notable such
element was the J2SE package ‘java.net’, and its URLClassLoader class. This package
is used by TAPAS to dynamically download required files/classes from a web-server.
Without this package, the TAPAS system would loose much of its intended flexibility
and, thus, usefulness. This was to become the limiting factor in the decision of which
J2ME configuration to use, as the J2ME CLDC specification does not include the
‘java.net’ package.

In addition to the discovery above, the general limitations of CLDC compared to
those of CDC was found to be too limiting for any development, and possible further
expansions. Thus CDC was chosen as the configuration on which foundation the re-
specification and development of MicroTAPAS would take place.

3.1.2 Limitations
Although CDC looked as to provide, basically, the same set of functionality as J2SE,
it became apparent that at least one crucial component was not included. According to

 12

[TOPK, page 240] “Since CDC devices are typically used in the role of the RMI
client, only the client RMI functionality is included in this profile”. Especially the
inability to run a RMI registry at each node proved to be a challenge. This obstacle
clearly had to be dealt with, as all TAPAS nodes, whether ‘clients’ or ‘servers’, starts
its own RMI registry, thus operating as RMI server.

Another challenge faced was the fact that the J2ME architecture is so new that all the
relevant profiles have yet to be fully specified or implemented. A brief overview of
the various profiles has been included in Appendix A.1.

It should at this point be stressed, once again, that the J2ME technology is relatively
young, and that amendments and further enhancements to the technology occur at a
monthly, or even weekly, basis. Some of the specific techniques discussed above are
thus almost certain to be changed in the future. Further discussions and subsequent
research papers should consider this, and investigate what changes has occurred since
this report was published. The remaining part of this report will focus on the use of
J2ME and its CDC configuration as the platform for re-specifying TAPAS and
implementing the MicroTAPAS architecture.

3.2 Communication model
The biggest difference between TAPAS and MicroTAPAS, in terms of how the
communication is carried out, is the absence of RMI. Previously we have established
that because of the inability to create a RMI registry in J2ME, the communication
model for MicroTAPAS had to be re-invented, as opposed to re-using components
from TAPAS. It was decided to carry out all communication by using a combination
of Java sockets and local method calls. It is also worth mentioning that having
handhelds start their own RMI server consumes already limited resources, and even if
J2ME offered this option, as it seems likely it will in the future, it is an unnecessary
dispersion of limited resources.

In TAPAS, communication between nodes, between local PAS and PNES instances
and, in some cases, between Actor and PAS instances, RMI was used. In
MicroTAPAS however, the communication between MicroPNES and Actors are
carried out using local method calls. For communication between different PNES
instances, sockets * are used. See Appendix B for an overview of the TAPAS
communication model. Figure 3.2 below shows the synchronous communication
model of MicroTAPAS. The MicroComServer is the entity that is responsible for
handling all inter-node communication in MicroTAPAS, and its operation is entirely
transparent to the user.

* A socket is one endpoint of a two-way communication link between two programs running on a
network. A socket is bound to a port number so that the TCP layer can identify the application that data
is destined to be sent to.

 13

Node3: MicroTAPAS clientNode2: MicroTAPAS serverNode1: MicroTAPAS client

MicroPNES

act1 act2

MicroComServer

MicroPNES

dir1 act3

MicroComServer

MicroPNES

act4

MicroComServer

Legend:

Single node

Virtual machine

Java object instance

Local method call

Socket connection

Figure 3.2: MicroTAPAS synchronous communication model

When different nodes are communicating in TAPAS, ‘threading’ of messages are
quite common (i.e. for actorPlugIn and actorPlugOut). Threading in this case means
that the originator of the initial request might receive one or several other requests,
whereupon yet a new request is sent, before receiving the result of the initial request.
When using RMI, this causes no problem, with sockets, on the other hand, if not
handled properly, might lead to confusion as to which request a particular result
belongs to, and could finally leave the system in an inconsistent state. This lead to the
introduction of unique request ID’s. When a request is constructed, a unique number
is inserted, the request-id, and the result to this specific request will contain that id,
and based on these ID’s it is simple to determine which result belongs to which
request.

Figure 3.3 shows the simplified flow of messages between two nodes during a request
initiated by Node A to Node B. Each request contains a unique ID, which is included
in the result sent back to the initiator of the request. It can be seen from the figure, that
a problem might arise if the messages did not contain ID’s, as Node A would not
know which result belongs to which request (it can not be assumed that the first result
received belongs to the last request sent).

NodeA NodeB

RequestA1(id=1)

RequestB1(id=2)

Result(id=2, OK)
Result(id=1, OK)

idle
Figure 3.3: Simplified threaded communication

The rather complex Figure 3.4 illustrates how an actual ActorPlugOut request from
Node B to the Director at Node A would look like. The reader will notice the

 14

introduction of the MicroComServer, and its MicroRPServer and MicroRRServer. These
new additions to the architecture greatly simplify communication between nodes.

The flow of the communication is explained in the paragraph below. Numbers in
parenthesis correspond to the numbers in the figure. This is a threaded communication
similar to the one shown in Figure 3.3, and shows the different mechanisms for
ensuring an error-free communication link

The MicroRRServer, which operates at a well known port (default port is 9998) is
responsible for handling results of a request sent earlier. Before a request is sent from
one node to another (2), the local MicroPNES instance registers the request with its
MicroRRServer (1). This registration contains the unique ID of the request, and the
port it will use to receive this result. When a result is received by the MicroRRServer
(13), it is easy to determine (by looking up the request ID) whether it expects this
result, and, if so, which port to use when delivering it to the initiating MicroPNES
instance (14). The MicroRPServer, which also operates at a well known port (default
port is 9999), is responsible for receiving any requests (of type RequestPars) sent to
the node (2). It forwards the request to its parent MicroPNES instance using a local
method call (3). When the request is finished processing by MicroPNES and the
return value (of type RequestResult) is received (11), this return value is sent both to
its own MicroRRServer (12) and to the MicroRRServer belonging to the originator of
the request (13).

MicroPNES A MicroComServer A

MicroRRServer A

MicroRPServer A

MicroPNES BMicroComServer B

MicroRRServer B

MicroRPServer B

4

5

6

14

2

3

7

9

10

8

11

12
13

1

Figure 3.4: Schematic overview of actual communication flow (ActorPlugOut)

This new feature has been implemented and tested, and seems to be working as
planned. There have been some instability issues when running this on the handheld
device, due to sockets closing before the entire message was sent through, but this has
been partly fixed by leaving the sockets open a bit longer than usual, before closing
them down to conserve system resources.

3.3 Addressing and routing values
The addressing and routing in MicroTAPAS are based on the same principles as that
of TAPAS, although the absence of the PAS layer required a slight modification. The
PAS instance identifier in the original scheme has been replaced by a copy of the
MicroPNES instance identifier. This is done to make future integration with TAPAS
easier. Appendix B.3 contains an overview of the original TAPAS addressing scheme.

 15

Local role session identifier
Local Actor instance identifier
MicroPNES instance identifier
MicroPNES instance identifier
Entity type specificaton

Dir1

RS MicroPNES Dir1MicroPNES <number>

Actor MicroPNES Act2MicroPNES

PNES MicroPNES

Act2

Act1

pnes1

Figure 3.5: GAI for MicroTAPAS

All the necessary alternations have been made to the original code, and the new
addressing scheme works fine in the prototype.

3.4 Dynamic connections and device mobility
An important addition in MicroTAPAS, is the support of dynamic connections. When
using wireless handheld devices, it will not be uncommon to enter an area where the
network connection suddenly is lost. The loss of a connection can be the result of
physical obstructions within an area of coverage, or can simply occur if the device
leaves the specific are of coverage. MicroTAPAS have been modified to handle such
dynamic connections through the introduction of three relatively simple entities.
These entities are described below and depicted in Figure 3.6.

• The MicroPingServer class listens at a pre-specified port for any incoming
socket request from a MicroPingClient. The connection is accepted,
whereupon it is immediately closed – signalling to the client, that the port, and
thus the node itself, is online.

• The MicroPingClient operates in one of two modes, depending upon whether

the node contains, or houses, the Director actor or not (i.e. server and client
nodes).

o If the node contains the Director, this client is responsible for

retrieving a list, from the MicroConnectionManager, of all the nodes
that currently have any actors plugged in with the Director, and at
predefined intervals ping these nodes to establish whether they are
online or not. If a node appears to be offline, an actorPlugOut request
is issued to the Director, and upon completion, removes the entry from
its ActorRegistry. This also makes it possible to track which actors are
plugged in at which nodes, and any changes to these.

o If the node, however, does not contain the Director, it simply pings the
node at which the Director resides, at predefined intervals. If, or when,

 16

a connection can not be established, an actorPlugOut request is issued
to the local MicroPNES instance. Upon completion of this request, the
client will continue to monitor the connection. If the connection to the
network, and the Director node, can be re-established, the client will
issue an automatic actorPlugIn request for those actors that were
previously plugged-out.

• The MicroConnectionManager is the class that keeps track of which actors

have been plugged in, their addresses and their initial RoleSession id’s (used
for plugging out an actor). When an actor is plugged in, it will automatically
notify the local MicroPNES instance and the MicroPNES at the home
interface node of its existence, this operation is called actorRegister. When an
actor performs a normal plug-out, likewise, the actor notifies these instances,
and is called actorRegisterCancel. The actorRegister, and actorRegisterCancel
functionality have been added to the MicroApplicationActor class, which all
actors inherit, thus making this functionality transparent to any developers of
MicroTAPAS applications. It was decided to keep this functionality outside
the director, as both client nodes and director nodes need an instance of this
entity to deal with dynamic connections.

The MicroConnectionManager introduced above have characteristics similar to those
of a manager dealing with terminal mobility (i.e. MobilityManager), as discussed in
[MALM1]. This functionality may be extended to cover support for dealing with
mobility issues, the functionality of the MicroConnectionManager should then be
incorporated into that enhanced support functionality.

Figure 3.6 shows the components needed for dealing with dynamic connections in
MicroTAPAS. MicroPNES A houses the director, while MicroPNES B is a normal
client-node in the MicroTAPAS system. When Actor B is plugged in it notifies both
the MicroConnectionManager (MCM) located at the director node (1), and its local
instance of MCM (2), of its existence, i.e. it registers itself with enough information,
so that an actorPlugOut request can be issued at a later stage, if necessary (i.e. loss of
connection). While the system is up and running, ping requests (X and Y) are
constantly (at predefined intervals) sent among all the registered nodes of the system,
thus ensuring that all nodes that are registered are actually alive. If a node ceases to
respond to the requests it is automatically assumed to be down or offline, and
appropriate action is taken.

MicroPNES A
(HomeInterface) MicroPingServer A

MicroPingClient A

MicroConnection
Manager A

MicroPNES BMicroPingServer B

MicroPingClient B

MicroConnection
Manager B

YX

Actor B

1

2

Figure 3.6: Schematic figure of the fundamental elements of the dynamic connection.

 17

This feature has to some degree been implemented in the prototype, and limited
testing has been performed with positive results. In the future, these ping requests
could be extended to include information about the originator node. The information
could be internal state, clock synchronising or other variables.

3.5 The configuration file
In response to the altered nature of MicroTAPAS, a number of changes to the
configuration file system have taken place. This file, by default named ‘tapas.cfg’,
resides at each node in a MicroTAPAS network, and contains key configuration
information.

Previously, the contents of this file was read prior to loading the support system itself,
then the values were passed as arguments to the newly created MicroPNES instance.
This has now been changed, so that the file is read directly by each MicroPNES
instance upon initialisation. The main reason behind this change was that the eventual
introduction of new configuration values would lead to changes in the bootstrap
package at each node, something that is self-contradictory to the flexible nature of
TAPAS. Comments can now be inserted into the configuration file, by prefixing each
line with a hash (#), blank lines are also tolerated; both are improvements over the
original implementation. As a comparison, Appendix B.4 includes an example of how
the old and new configuration files may look like.

Currently, there are four required attributes in the configuration file:

• codebase: The Internet address of the binary files of the whole system.
Example: ‘codebase = http://10.0.0.1/tapasroot/’

• homeinterface: The MicroTAPAS address (GAI) of the Director.
Example: ‘homeinterface =

Actor://10.0.0.1/MicroPNES/MicroTAPAS.MicroDirector1’

• debugserver: The IP address and port of the debugserver
Example: ‘debugserver = 10.0.0.1:9990’

• nodeprofile : The profile of this node. This attribute should reflect the type of
terminal in use. This attribute is currently not in use by MicroPNES.
Example: ‘nodeprofile = profMicro’

3.6 Requests and Results
To support the added functionality of dynamic connections, new types of requests
were introduced. These new types of requests, ActorRegister and
ActorRegisterCancel, are used when registering a newly created actor locally and
with the Director node, or cancel registration of a plugged out actor.

Slight modifications also had to be done on RequestPars and RequestResult when the
concept of unique message ID’s were introduced. The ID’s themselves are
automatically inserted into a RequestPars upon creation, and is simply the systems
currentTimeMillis variable, for example the number of milliseconds since January 1,
1970. When creating a new result, the ID from the original request is included as a
parameter in the instantiation of the result.

 18

All necessary changes have been made, and no problems have been encountered
during testing of these modifications.

3.7 Final remarks
It was by [LILL, page 72] reported that “it takes forever from you send the first
PlayPlugIn request until the director is up and running and the play plugged in”. Upon
investigation, this problem seemed to stem from a while(true) loop [PNES.java, line
247], which consumed almost all system resources, in the creation process of new
PAS instances at a node. The removal of the PAS layer naturally solved this problem
in MicroTAPAS, but the original architecture would benefit from a different approach
to the creation process.

Presently, there is no concrete model of how TAPAS and MicroTAPAS could
interoperate, and this should be investigated in a separate report. It is clear that the
overall system would benefit from such a solution, as applications could work across
different platforms, although it is suspected that for a valuable solution to be
presented, much work and careful considerations would have to be invested.

 19

4 Development environment

4.1 Software packages to aid in development
Although the actual development work on MicroTAPAS was carried out using an
ordinary text editor, it is believed that any individual working on such a complex
system would benefit from using a more dedicated development environment.

Some of the software packages mentioned below also contain software emulators of
the target devices, thus making it more convenient to test the system before final
deployment. In addition, different target operating systems normally require different
packaging and deployment techniques, with which the software also can assist.

Below in Table 4.1 is a list of three readily available and popular development tools
on the market. They should all be well suited for developing software for wireless,
handheld devices, such as MicroTAPAS. The list is not meant to be exhaustive, and
given the speed at which new software arrives, producing such a list would be a
daunting task anyway.

Software J2ME CDC platforms

OS/CPU type
Evaluation
version

IBM WebSphere Studio Device
Developer 5.0

QNX/Arm, Pocket PC/Arm,
Linux/Arm, ++

Metroworks CodeWarrior
Wireless Studio 7 PDA Edition

Linux/Arm, Pocket PC/Arm

Microsoft Pocket PC/Arm N/A
Table 4.1: Possible development packages

4.2 Target devices and operating systems
It can be quite a challenge to get the complete picture of what types of personal digital
assistants (PDA’s) are available out there, and it does not stop there. Additionally you
have to consider what types of processors they all have and what operating system
(OS) they run. This is important at this stage, as not all versions of the different J2ME
CDC virtual machines are guaranteed to run on all devices, even if they are from the
same maker and run the same OS. This section will try to highlight a few of the
different options one have, starting with operating systems.

4.2.1 Operating systems
There are essentially three different types of OS’s for PDA’s that are available today*,
Palm OS from Palm Computing Inc., Pocket PC from Microsoft (formerly Windows
CE) and Linux. Due to the nature of the Palm OS, and the devices on witch in runs, it
is not possible to run the J2ME CDC VM on these terminals, and those devices
running Palm OS (Palm, Handspring, Sony etc.) are not included in any further
discussion.

The two PDA operating systems left, Linux and Pocket PC are well suitable for
deploying and running J2ME CDC applications.

* The EPOC operation system from Psion is not included due to their announcement in 2002 that they
were pulling out of the market.

 20

4.2.2 Processors
In addition to operating systems, there are a few different processors to consider as
well. Those that are most popular by the PDA manufacturers are StrongArm and
Intel’s XScale, for which there are proprietary CVM’s available.

4.2.3 Manufactures
There are many different manufacturers of PDA’s, including Hewlett Packard,
Toshiba, Sharp, Siemens, Viewsonic, Dell and Packard Bell, and the list is constantly
growing. However, who manufactures a device does not really matter, but rather what
OS it is running, and to a certain degree what type of processor is has. For this
specific project, it is also important that a device have the ability to communicate
wirelessly with a network, using the IEEE 802.11b standard, either through built-in
WLAN, through WLAN cards attached to the CompactFlash expansion slot or by
other means.

4.2.4 Summary
In the table shown below, a few of the possible deployment devices are listed

Currently, there are no Secure Digital (SD) WLAN expansion cards, as there are for
CompactFlash (CF) slots, however, that may change in the near future. The
aforementioned table does therefore not contain devices that lack CF slots, or does not
have built-in WLAN, this includes devices from Toshiba and Viewsonic, among
others.

Make/model OS CPU RAM/ROM Exp.

slot(s)*
HP iPAQ H5450† MS Pocket PC

2002
XScale 400
MHz

64MB/48MB SD,
MMC

SHARP Zaurus SL-
5500

Linux 2.4
(Embedix)

StrongArm
206 MHz

64MB/16MB CF, SD

Toshiba e740‡ MS Pocket PC
2002

Xscale
400MHz

64MB/32MB CF, SD

Fujitsu-Siemens
Pocket LOOX 600§

MS Pocket PC
2002

XScale 400
MHz

64MB/32MB CF, SD,
MMC

Dell Axim X5
Handheld

MS Pocket PC
2002

XScale 300
MHz

32MB/32MB CF, SD,
MMC

Table 4.2: Possible target terminals (PDA’s)

4.3 Test environment proposal
For a minimum test environment, it would be advisable to have at least one WLAN
running, with an attached web-server, and at lest one handheld device connected
wirelessly. In addition one or more stationary (i.e. desktop or laptop) computers
should also be connected. For a more realistic environment, at least two WLAN’s
should be running on different subnets, and a number of handheld devices that could
be placed within ‘reach’ of both WLAN’s. This would ensure that all the implemented
support functionality could be tested to its full potential, and it would provide data for

* Expansion slots: CF = Compact Flash, SD = Secure Digital, MMC = Multimedia Card.
† Built in WLAN (802.11b), Bluetooth and biometric fingerprint reader.
‡ Built-in WLAN (802.11b).
§ Built-in Bluetooth.

 21

analyzing traffic-load and performance as well – something that would be difficult
with only a few terminals running.

In addition to this hardware, one has to use a software package with support for
development on handhelds, and a web-server. We have seen, however, that two of the
three packages mentioned above, either is free or offers a free evaluation version that
should be well suited for academic development and testing. The free Apache
(http://www.apache.org) web-server is an excellent alternative for a web-server
choice.

Minimum test-environment setup

• One laptop/desktop computer with WLAN, running a web-server, and
installed Java2 SDK version 1.4.1 or later. The MicroTAPAS Director will run
at this node, and will in later chapters be referred to as the server.

• One laptop/desktop computer with WLAN, and installed Java2 SDK version
1.4.1 or later. This node will run as a client.

• One PDA with WLAN and an installed CDC compatible CVM, this node will
also run as a client.

This setup will allow the three terminals to connect using an ad-hoc wireless network,
and will allow testing between the server and the two clients. Given the relatively low
complexity of the communication protocols and added support functionality of
MicroTAPAS, in normal circumstances this set-up would probably be sufficient to
test the implementation of the new architecture.

Realistic test-environment setup

• Two laptop/desktop computer running web-servers and WLANs at different
subnets. The MicroTAPAS Director should also run at these nodes.

• Two or more PDA’s with WLAN and an installed CDC compatible CMV.

This will allow the testers to test inter PDA communication, Director-PDA
communication and how well the PDAs adjust when switching from one subnet to
another. Provided the testing would occur within a relatively small area, and a limited
number of nodes would participate, an ad-hoc network strategy would probably be
sufficient, if not, two wireless access points would have to be set up in addition to the
mentioned hardware. This is a more realistic set-up than the minimum set-up, as it
would allow for more extensive testing, not only of functionality, but of reliability as
well. Stress-tests could be designed such that any communication and computational
bottlenecks in the architecture could be found and dealt with.

 22

http://www.apache.org/

5 Sample application - MicroTester
In order to test the functionality of MicroTAPAS, a sample, or test, application had to
be developed, and tried out on at least two hosts, a client and a server. This
application is MicroTester. The MicroTester application was especially developed to
allow for testing of the support functionality of the MicroTAPAS architecture. This
application will be used for a thorough test of the implemented functionality in
chapter 1.

5.1 Functional requirements
• Upon start-up of the actor MicroTester (client) the user will be presented with

a Graphical User Interface (GUI) for executing commands, and view status
information, the is the main application window.

• All available commands should be accessible by menu items on a menu

toolbar in the application window.

• The application will automatically plug out when the application window is
closed.

• It should be possible to PlugIn the MicroTesterServer (server) at the Director

node.

• It should be possible to PlugOut the server from the Director node.

• It should be possible to send a RoleSessionAction from the client to the server,
and from the server to the client.

• It should be possible to ActorChangeBehaviour the client actor to an almost

identical MicroTesterNew actor, and back again to the original client.

• It should be possible to ActorRegister the client.

• It should be possible to ActorRegisterCancel the client.

• When executing a command, the application window should display
information to the user that indicates that work is in progress. This will ensure
that time-consuming tasks will not be perceived as a lock-up.

• It should be possible to stop the execution of a command once it has been

started.

• The application should run as equally well on a desktop/laptop computer as on
a handheld device.

 23

5.2 Non-functional requirements
• The program shall be easy and intuitive to use. This includes extra thought

given to the input of information on a device lacking a standard mouse and/or
keyboard – i.e. a PDA having a touch-screen and a stylus*.

• The program shall be compact and well written in order to minimise the

necessary download time to, and memory footprint needed on, a handheld
device.

5.3 MicroTester overview
The MicroTester program consists of three actors; MicroTester, MicroTesterNew
(clients) and MicroTesterServer (server). Each plugged in actor of type MicroTester
or MicroTesterNew will instantiate a copy of TesterMainWindow. This window will
be used by a user to interact with the application, and to display various information
back the user. The window consists of a menu bar, containing three groups of choices
(File, Basic and Extended), a text-output area and a status bar at the bottom.

The File menu consists of a Stop and Exit command. When an action is selected from
one of the two other menus, the Stop action will be enabled, and, if chosen, will stop
the execution of the current command. By choosing the Exit command, the window
will close and the client actor will be plugged out. The Basic menu consists of four
commands and each performs according to their names, PlugIn (plugs in the server),
PlugOut (plugs out the server), Upgrade (performs an ActorChangeBeahviour) and
RoleSessionAction (sends a role session action to the server). The Extended menu
consists of only two commands, ActorRegister (registers the actor for dealing with
dynamic connections) and ActorRegisterCancel (cancels a previous registration).

The text-output area simply displays various messages to the user, including what
action has been selected, the result of the performed action and the time (in
milliseconds) it took to complete. The status bar at the bottom of the screen displays
the text ‘Ready!’ when the client is idle. When the client is busy performing a task,
the text ‘Working’ is displayed, along with a number of ‘#’ characters. Each 0,5
seconds another ‘#’ appears, until six in a row is displayed, whereupon the counter is
reset and starts over again with one. This is done to provide the user with the
information that work is in progress and that any unresponsiveness from the user
interface stems from this, and not an program error.

When instructed to, the client will plug in the MicroTesterServer at the Director node,
i.e. at the same node as the Director actor resides. The only purpose of the server is to
respond to an incoming RoleSessionAction sent from the client. The response from
the server will be shown in the application window belonging to the client, and
includes a short greeting along with the current date and time on the server node. The
server can at any time be plugged out executing the PlugOut-command located in the
Basic menu in the application window.

5.4 Screenshots
In Figure 5.1 and Figure 5.2 several screenshots are shown of the application
executing on a PDA, running the Microsoft PocketPC2000 operating system, and a
laptop computer running Microsoft Windows XP, respectively.

* A ’stylus’ is the name given to the pen look-alike used by users to interact with the touch sensitive
screen on some PDAs.

 24

Figure 5.1: Screenshots from the MicroTester application running on a PDA

The three included screenshots from the PDA show the two menus Basic and
Extended (left and right), as well as some output from a test-run. In the middle screen,
both the PlugIn and PlugOut commands have successfully completed. In the screen on
the right, note that it is the upgraded MicroTesterNew actor which is running, and
both the Register and RegisterCancel operations have completed successfully.

Figure 5.2: Screenshots from the application running on a laptop computer

The screenshot from the laptop computer shows the application running, and, as is
shown in the text output area, the MicroTesterServer has been plugged in, and a
RoleSessionAction command has been executed, with the response from the server
also shown. Behind the application window, various debug windows are shown; from
left to right: MicroPNES, MicroDirector1 and MicroTesterServer.

 25

5.5 Class diagram
Figure 5.3 is the class diagram of the MicroTester application. The diagram was
automatically generated using the open-source tool ESS-Model [S4].

Figure 5.3: MicroChat class diagram

5.6 Message sequence charts
This section contains the Message Sequence Charts (MSC) from the MicroTester
application, and show the communication between the server and client. Each heading
corresponds to the choice from the menu bar in the application window.

5.6.1 PlugIn
The MSC in Figure 5.4 shows how the MicroTesterServer is plugged in at the
Director node. The request sent from the client is a normal ActorPlugIn request,
specifying what and where is to be plugged-in.

 26

MicroTesterWindow MicroTester MicroPNES MicroPNES

MicroTesterServer

MicroDirector1

Node B Node A

Display(OK)

RequestResult
(OK)

RequestResult
(OK)

RequestResult
(OK)

RequestResult
(OK)

RequestResult
(OK)

RoleSessionAction
(WINCOMMAND,

plugIn)

ActorPlugIn
(serverGAI, role)

ActorPlugIn
(serverGAI, role) ActorPlugIn

(serverGAI, role)

ActorPlugIn(serverGAI, role, play,
playVer, playLoc)

ActorPlugIn(...)

create

Figure 5.4: MSC for PlugIn of the MicroTesterServer

5.6.2 PlugOut
The MSC for this action, Figure 5.5, shows how the MicroTester server is plugged out
and terminated. Instead of sending the plug-out request directly from the client to the
Director, the client instructs the MicroTeserServer to plug-out, whereupon it sends the
necessary request to the Director. Note that ApplicationMessages (contained in the
RoleSessionAction request) is a partly asynchronous operation. The request is
delivered to the MicroPNES instance of the node where the recipient is plugged-in,
synchronously, and then the request is put in a buffer (implemented by a Vector) to be
consumed by the recipient at its leisure (usually that means immediately), and this
part is performed asynchronously.

MicroTesterWindow MicroTester MicroPNES MicroPNES MicroTesterServer MicroDirector1

Node B Node A

RoleSessionAction
(WINCOMMAND,

plugOut)

ApplicationMessage
(PLUGOUT) ApplicationMessage

(PLUGOUT)

ApplicationMessage
(PLUGOUT)

ActorPlugOut
(RoleSession)

ActorPlugOut
(RoleSession)
ActorPlugOut
(RoleSession)

ActorPlugOut
(RoleSession)

RequestResult.OK RequestResult.OK

RequestResult.OK

RequestResult.OK

RequestResult.OK

Display(OK)

Figure 5.5: MSC for PlugOut of the MicroTesterServer

 27

5.6.3 Upgrade
The Upgrade MSC, Figure 5.6, shows how the MicroTester issues an
ActorChangeBehaviour. This request is used to replace or update the current
manuscript (i.e. behaviour) of an actor with a new one. In reality, the issuing actor is
terminated, and a new actor is instantiated, leaving role-sessions and addresses
unaltered

MicroTesterWindow MicroTester MicroPNES MicroPNES MicroDirector1

Node B Node A

RoleSessionAction
(WINCOMMAND,

upgrade)

ActorChangeBeahviour
(actorPlugInReq, RS) ActorChangeBeahviour

(actorPlugInReq, RS)

RequestResult.OK

RequestResult.OK

MicroTesterNew

ActorChangeBeahviour
(actorPlugInReq, RS)

ActorChangeBeahviour
(actorPlugInReq, RS)

ActorChangeBeahviour
(actorPlugInReq, RS)

term

create

ActorChange
Beahviour(...)

RequestResult.OK

RequestResult.OK

RequestResult.OK

term

MicroTesterWindow

create

Figure 5.6: MSC for performing an ActorChangeBehaviour

5.6.4 RoleSessionAction
A RoleSessionAction, Figure 5.7, is a request designed to help different actor
instances control and communicate with each other. The PlugOut MSC showed how
this could be used to control another actor, this time is shows how two actors can
communicate through the use of a RoleSessionAction. The client simply sends an
application message to the server, asking for its status. The server, if available, replies
with a simple text message. The delivery of RoleSessionActions can only be
guarantied for to the receiving actor node’s MicroPNES instance, as explained in the
PlugOut MSC.

 28

MicroTesterWindow MicroTester MicroPNES MicroPNES MicroTesterServer

Node B Node A

RoleSessionAction
(WINCOMMAND,
roleSessionAction)

ApplicationMessage
(STATUS)

ApplicationMessage
(STATUS)

ApplicationMessage
(STATUS)

RequestResult.OK

RequestResult.OKRequestResult.OK

Display(OK)

RequestResult.OK

ApplicationMessage
(INFORM, OK)

ApplicationMessage
(INFORM, OK)

ApplicationMessage
(INFORM, OK)

Figure 5.7: MSC for sending a RoleSessionAction to the MicroTesterServer

5.6.5 Register
The ExtendedSupportFunctinality (ESF), Figure 5.8, of MicroTAPAS includes the
ability to register an actor with two instances of MicroPNES, the first local, the other
located at the node of the Director. The purpose of the registering is to provide the
nodes with enough information for them to plug-out an actor if the connection
between the actor and the Director node is somehow lost. This ensures that
applications/actors that require a connection do not consume resources while it is
waiting for the connection to become available again.

MicroTesterWindow MicroTester MicroPNES MicroPNES

Node B Node A

Display(OK)

RequestResult
(OK)

RequestResult
(OK)

RoleSessionAction
(WINCOMMAND,

register) ActorResgister
(RS, actorPlugInReq)

ActorResgister
(RS, actorPlugInReq)

ActorResgister
(RS, actorPlugInReq)

RequestResult
(OK)

Figure 5.8: MSC for the registration of the MicroTester actor

 29

5.6.6 RegisterCancel
The RegisterCancel request, Figure 5.9, is meant to cancel a previously registered
actor. This would normally occur when an actor is explicitly plugged-out (i.e. the user
chooses to terminate the current session or application).

MicroTesterWindow MicroTester MicroPNES MicroPNES

Node B Node A

Display(OK)

RequestResult
(OK)

RequestResult
(OK)

RoleSessionAction
(WINCOMMAND,
registerCancel) ActorResgisterCancel

(RS)

RequestResult
(OK)

ActorResgisterCancel
(RS)

ActorResgisterCancel
(RS)

Figure 5.9: MSC for cancelling of a previous registration of the MicroTester actor

5.7 Suggested improvements
Below are listed a number of improvements that could be implemented in a further
version of the MicroTester application. Some of these suggestions may overlap with
suggested improvements to the MicroTAPAS architecture itself. These are presented
in later in chapter 1.

• Secure communication to prevent eavesdropping.
• Include more advanced features for sending requests of different types, where

the user could edit all the fields in the request.
• Add different levels of transparency, from a level similar to what is

implemented in this version, to a very detailed view of all internal states,
communication, requests and results.

• Implement a statistic view, which would keep track of connections, execution
times, received and sent requests and results.

 30

6 Setup and testing of MicroTAPAS
The testing of the MicroTAPAS architecture was carried out on a minimum set-up,
similar to the one that was proposed in section 4.3. The three nodes are connected
through an ad-hoc WLAN connection. The purpose of the test was to verify that the
implemented support functionality worked in accordance with the specification
presented in section 2.2, MicroTAPAS Support Functions. The development of the
sample application presented in chapter 1 was specifically designed for the purpose of
testing the support functionality, and will be used for the tests performed.

An overview of the node details are provided in Table 6.1. For detailed information
about each node, refer to Appendix C.1. The meaning of a node in the system is
identical to that of a terminal/device a user would use to interact with the support
system. The ‘Type’ and ‘Connection’ headings should be clear to all readers, but the
‘Virtual Machine (VM)’ and ‘Role’ headings might need further explanation. The VM
column show what type of Java VM is installed on each node, as there are several
options for this choice. The Role column explains what ‘role’ is implicitly assigned to
each node; client and director nodes, and web-server. Each node might have more
than one role. This role does not have anything to do with the roles used in the theatre
metaphor used by the MicroTAPAS architecture.

Node Hardware Connection Virtual

Machine (VM)
Role

A Laptop
(IBM)

WLAN Sun JVM Web-server, Director node,
Client node

B PDA WLAN IBM J9 Client node
C Laptop (HP) WLAN Sun JVM Client node
Table 6.1: Node configurations

The terminals may be referenced to simply as ‘the laptop’ or ‘the PDA’, in addition to
the specific node assignments shown above.

6.1 Installation and start-up
The installation and start-up instructions for desktop and laptops, compared to those
for handheld devices, are somewhat different, and the two are therefore handled in
two separate sections below.

The one common requirement which is fundamental to any TAPAS system is the
presence of a web-server on a reachable network node. All the MicroTAPAS binaries
should be put in a directory on the server and that directory should be accessible by
anyone. The complete URL to this directory should then be included in the
configuration file, as described earlier in section 3.5.

6.1.1 Desktop and Laptop computers
The installation and start-up of MicroTAPAS is very similar to that of TAPAS, except
for the absence of any PAS instance. The following three points explain what is
required to set-up and run MicroTAPAS on each node. The TAPAS web-server could,
in theory, be running on any node. In a one-node system, the single node could run its
own web-server, thereby eliminating the need for a network connection in order to
dynamically ‘download’ and execute the support system. This is, however, an
exception and would only be used for local testing, but it illustrates how flexible the
architecture is.

 31

• Each node should have Java2 1.4.1 or later versions installed, along with the

binaries from the MicroTAPASBoot directory.

• The configuration file should be checked for any errors and omissions, and be
placed at the root level of the MicroTAPASBoot directory.

• To start each node, simply execute the provided ‘MicroTAPASstart.bat’ file

included in each MicroTAPASBoot directory, and after a short while, the
MicroPNES debug/interaction window will appear on the screen. One is now
ready to interact with the support system.

Figure 6.1: MicroTAPASBoot directory on a laptop computer

Figure 6.1 shows the contents of the MicroTAPASBoot directory. The MicroTAPAS
directory contains two java .class files that are used during start-up. The whole
bootstrap occupies a modest 5 KB of disk space on the computer.

6.1.2 Handheld computers
The installation of MicroTAPAS onto handheld devices can require some more work
compared to the stationary computers, and can vary from manufacturer to
manufacturer. The steps below explain how to deploy the application onto our test
PDA, the iPAQ H3660 running Microsoft PocketPC2000 (PPC2000), from a
Windows PC.

• Make sure a Java Virtual Machine is installed on the device, and the required
libraries/profiles. A good alternative is to use IBM’s J9 VM.

• Transfer the MicroTAPASboot binaries onto the device, i.e. by using

Microsoft Active Sync.

• Make sure the configuration file is up to date, and place it in the root directory
of the device (note the difference to the desktop/laptop installation).

• Edit and place a link somewhere in the directory structure of the device, i.e. in

the ‘\Windows\Start Menu\Programs’ folder. One such link-file example is
included in the downloaded MicroTAPASBoot directory. See Appendix A.2
for an explanation of the PPC2000 link-file.

 32

• Navigate to the link and execute it by tapping on it. The application will start
up and download the required binaries from the web-server, and the user will
shortly be ready to interact with the system.

Figure 6.2: Screenshots from the iPAQ showing two directories (on left) and a menu

The leftmost screenshot in Figure 6.2 shows the root directory of the handheld device.
The complete path of the configuration file is thus \tapas.cfg. In PPC2000 there is no
notion of different discs, and therefore drive and the disc letters (i.e. ‘A:’ and ‘C:’ on
Windows systems) are left out.

The middle screenshot shows the contents of the MicroTAPASBoot directory on the
handheld. The file in the picture, MicroTAPAS (with the blue icon), is actually a
PPC .lnk file (similar to shortcut files in Windows), and is used for starting programs.
Appendix A.2 shows an example of such a file, and explains how to edit exiting ones,
and where to put them. The contents of the whole boot directory are as follows:
\MicroTAPASBoot\MicroTAPAS\PaPurlLoader.class
\MicroTAPASBoot\MicroTAPAS\startMicroTAPAS.class
\MicroTAPASBoot\MicroTAPAS.lnk

The last picture shows the Start Menu of the iPAQ. This directory consists entirely
of .lnk files and other directories. One can see the TAPAS directory which in turn
contains a copy of the MicroTAPAS.lnk file discussed in the paragraph above. The
complete path to this file would therefore be
\Windows\Start Menu\TAPAS\MicroTAPAS.lnk

6.2 Testing
This section summarizes the tests performed on the system. Each support function is
handled in its own sub-section. The testing has been classified into two different
categories; Basic Support Functionality (BSF) and Extended Support Functionality
(ESF). BSF refers to everything that was implemented in the original version of
TAPAS, and ESF is the functionality that was added with the introduction of
MicroTAPAS. All the commands are executed on the given node towards the Director
node. Where applicable, the various commands have thus first been executed at one of
the client nodes, then on the Director node (towards itself). This was done to measure
communication and platform overhead, if any, and the time column in the far right of
each table states the time it took to execute each command.

 33

Throughout this section, the sample application from chapter 1 was used for testing,
and for more in-depth information about that application, refer to that chapter. For
each test performed there are two tables.

The first table summarizes the test conditions and prerequisites. The first column
show the test number (1 through 12) for simple reference. The second column states
from where (i.e. which application or window) the command was executed, for
example, ‘MicroPNES’ means that the command was executed from the MicroPNES
window. In the third column the executed command is shown. The command might
be a text string, as will be the case for MicroPNES, or a menu choice, which will be
the case for the sample application. The last column indicates what other steps must
have been performed prior to executing this command, i.e. one can not plug out a play
before it is plugged in, and numbers in this column refers to the test numbers in
column one.

The second table lists the result of the test for each node. The result can be either
‘OK’, or ‘FAIL’, or, as not all tests are applicable to all nodes involved, ‘n/a’ (not
available). The third column is a short note about the result or test itself, and finally,
the last column states the time it took to perform the execution of the command. This
information will be analyzed in section 6.3. The details of each operation is described
in sections 5.6.1 through 5.6.6, and is therefore left out of this section.

6.2.1 Basic functionality

6.2.1.1 PlayPlugIn
No: From: Command executed: Req:
1 MicroPNES PlayPlugIn MicroTester v1_0

http://10.0.0.1/tapasroot/
--

At node: Result: Note: Time (sec.):
A OK 2,45
B OK 4,43
C OK 1,25

6.2.1.2 PlayPlugOut
No: From: Command executed: Req:
2 MicroPNES PlayPlugOut MicroTester 1

At node: Result: Note: Time (sec.):
A OK 0,60
B OK 3,53
C OK 0,57

6.2.1.3 ActorPlugIn of MicroTester
No: From: Command executed: Req:
3 MicroPNES ActorPlugIn Actor://<node IP>/MicroPNES/Tester1

MicroTester 1

At node: Result: Note: Time (sec.):
A OK 2,53
B OK 20,04
C OK 4,23

 34

6.2.1.4 ActorPlugIn of MicroTesterServer
No: From: Command executed: Req:
4 MicroTester Choose PlugIn from the Basic menu. 1,3

At node: Result: Note: Time (sec.):
A OK 3,03
B OK 11,62
C OK 1,43

6.2.1.5 ActorPlugOut of MicroTestServer
No: From: Command executed: Req:
5 MicroTester Choose PlugOut from the Basic menu. 1,3,4

At node: Result: Note: Time (sec.):
A OK This command uses an asynchronous message,

thus no result is delivered and no time can be
recorded for the full execution time, just the
time it takes to deliver the message to the
asynchronous message buffer.

0,09

B OK 4,16
C OK 0,43

6.2.1.6 ActorPlugOut of MicroTest
No: From: Command executed: Req:
6 MicroTester Close the application by choosing Exit from the File

menu.
1,3

At node: Result: Note: Time (sec.):
A OK The command is executed from the window that

would display its time and this window will be
closed if the action is successful, therefore the
time used is written to standard out instead.

0,74

B OK 14,02
C OK 2,04

6.2.1.7 ActorChangeBehaviour
No: From: Command executed: Req:
7 MicroTester Choose Upgrade from the Basic menu. 1,3

At node: Result: Note: Time (sec.):
A OK The command is executed from the window that

would display its time, but the start time is
included as a parameter in the request sent,
which is eventually forwarded to the newly
plugged in actor, who den can determine the
time used.

0,96

B OK 19,16
C OK 0,99

6.2.1.8 PlayChangesPlugin
No: From: Command executed: Req:

 35

8 MicroTester PlayChangesPlugIn MicroTester v1_1
http://10.0.0.1/tapasroot/ 1

At node: Result: Note: Time (sec.):
A OK 2,76
B OK 5,17
C OK 3,09

6.2.1.9 RoleSessionAction
No: From: Command executed: Req:
9 MicroTester Choose RoleSessionAction from the Basic menu. 1,3,4

At node: Result: Note: Time (sec.):
A OK This command uses an asynchronous message,

thus no result is delivered and no time can be
recorded for the full execution time, just the
time it takes to deliver the message to the
asynchronous message buffer.

0,11

B OK 9,52
C OK 0,31

6.2.2 Extended functionality

6.2.2.1 ActorRegister
No: From: Command executed: Req:
10 MicroTester Choose ActorRegister from the Extended menu. 1,3

At node: Result: Note: Time (sec.):
A n/a Actors located at the Director node can not

Register/RegisterCancel, as the feature is
provided to handle dynamic connections
between the actor and the Director.

n/a

B OK 7,41
C OK 0,93

6.2.2.2 ActorRegisterCancel
No: From: Command executed: Req:
11 MicroTester Choose ActorRegisterCancel from the Extended menu. 1,3,10

At node: Result: Note: Time (sec.):
A n/a Actors located at the Director node can not

Register/RegisterCancel, as the feature is
provided to handle dynamic connections
between the actor and the Director.

n/a

B OK 5,58
C OK 0,42

6.2.2.3 Dynamic connection (implicit)
No: From: Command executed: Req:

 36

12 Node Disconnect the device from the network card. 1,3,10
MicroTAPAS will detect the loss of connection according to the ping timer constant
specified for that node (default is 10 seconds).

At node: Result: Note: Time (sec.):
A n/a A client running on the Director node can not

loose connection with itself.
n/a

B OK n/a
C OK n/a

All the tests that were carried out did perform as expected. One can see that execution
times, where included, can be substantially higher for the PDA than for the laptop,
and this is should be of no surprise, considering the computational limitations of the
device. The next sections discuss some performance issues.

6.3 Performance
This section contains a brief discussion of the relative performance of MicroTAPAS,
executing on handheld devices, compared with the performance on its stationary
counterparts.

6.3.1 Handheld vs. stationary
In performing the tests on the MicroTAPAS architecture, only one type of handheld
device has been available, and it is difficult to say anything about the general
performance of MicroTAPAS running on these devices. Instead, performance testing
was conducted between the laptop computers and the PDA, aimed at documenting the
differences in execution times seen section 6.2.

The comparison of the performances of the architecture running on a laptop and a
PDA was done fairly straight forward; HeapTest [S5], which is a small test
application developed in Java, was download from the Internet, compiled and run on
both terminals. The program was originally developed in February 2001 for testing
the performance of a Java application running on two different Java Virtual Machines
for Solaris. HeapTest is a multithreaded program and iterates through a number of
loops of work. In each loop, it performs a set of memory allocation and computation
tasks.

HeapTest is started, from the command line, with two input parameters; the number of
threads and the number of cycles. For example, starting the program with

java heaptest.HeapTest 5 2

will start the program with a maximum of five threads and performs a maximum of
two loops for either memory allocation or computation. With the number of cycles set
to two, HeapTest will perform a set of tasks three times; the first time, it performs two
loops of memory allocation, the second time it performs one loop of memory
allocation and one loop of computation, and the third time it performs two loops of
computation. Upon completing the execution, the program prints to screen the time, in
milliseconds, it took to complete each task for the given thread.

The program was run twice on each terminal, and the results are summarized in
Figure 6.3. Refer to Appendix C.2 for a complete listing of the data collected during
the six test-runs.

 37

Average task execution times

0
100000
200000

300000
400000
500000

2 Heap, 0 CPU 1 Heap, 1 CPU 0 Heap, 2 CPU

Task

Ti
m

e
(m

se
c.

)

PDA, 5-2 IBM, 5-2 HP, 5-2
PDA, 2-2 IBM, 2-2 HP, 2-2

Figure 6.3: Summary of performance test-results

It should be noted that the laptops and PDA used two different Java Virtual Machines,
Sun Microsystems Inc’s Java HotSpot(TM) Client VM, version 1.4.1_02-b06 and
IBM’s J9, version 2.0, respectively, and that the results are not directly comparable,
although it gives a clear indication as to the relative performance of each platform. It
is interesting, though not surprising, to note that memory allocation is almost equally
fast on all terminals, but that the PDA is drastically slower when it comes to
computation.

This simple test can explain the findings in section 6.2, that the execution times for
the PDA is higher than that of the laptops.

This test supports, to a limited degree, the claim that it is the limitations of the PDA
itself that caused MicroTAPAS to execute considerably slower on this device than on
a stationary computer. More testing is, however, required to confirm this claim. One
way would be to test the architecture on PDA’s with more resources (i.e. more
memory and a faster processor), and compare those results with the ones shown in
section 6.2 and 7.3.

 38

7 Faced challenges and solutions
Several challenges were encountered while working on this project, and solutions
were engineered, where possible. This section gives a brief overview of these
challenges and solutions, and an explanation of why they were encountered in the first
place, and what might have been done to prevent them from occurring.

Probably the biggest challenge faced was TAPAS itself and, in particular, the
complexity of the system. It took several weeks to get a sufficient understanding of
the system before any real work on the task could be started. Part of this problem
probably stems from the sheer size of TAPAS, involving around 40 different classes
(of which several lacks proper commenting) and several 1000 lines of code. The
available documentation of the system is good at giving a general overview, but it is
felt that it fails to provide comprehensive knowledge of the inner workings. Another
reason for struggling with this part of the project was that it was conducted in another
country, far away from any persons that could easily have explained the more intricate
parts of the system. This form of consultancy is not suitable to conduct over telephone
or email. In the future, to avoid this, it would be very helpful with a more complete
documentation of TAPAS, including class diagrams and message sequence charts etc.

The biggest challenge during actual re-specification and implementation of TAPAS
into MicroTAPAS was the lack of support for RMI in J2ME (to the extent used in
TAPAS). This caused many changes to the original TAPAS, and would in the end
prevent existing TAPAS to cooperate/communicate with the new MicroTAPAS. The
communication model had to be completely re-engineered using sockets, thereby
loosing some of the inherent flexibility and security of TAPAS. In the future, as
PDA’s continue to evolve along with the functionality of J2ME, it might be possible
to conduct communication by RMI once again, until then; sockets are probably the
best alternative.

Using different virtual machines and processor architectures can lead to unwelcome
surprises. It was discovered, after a number of unexplainable lock-ups and
inconsistent system-states, that some of the Java operations used in MicroTAPAS
behaved differently on the stationary and handheld computers. For example, the
java.awt.Frame.dispose() method (used to close an open window) made one of the
laptops freeze, while it worked fine on the PDA. Then the java.awt.Frame.hide()
method was used instead, but made the PDA unstable. The solution was to detect the
processor architecture of each device (i.e. x86 for the laptops and ARM for the PDA),
and select appropriate methods based on that. Further, it was discovered that use of
the System.exit(int) method does not work on the PDA, causing it to freeze. No
alternative has so far been found, but one can simply close the J9 execution window
to exit the Java VM. Use of the java.util.Calendar.setTimeInMillis(long) is also
prohibited on the PDA. These inconsistencies are unfortunate, and can hopefully be
attributed to the fact that the J2ME technology is still in its infancy, and that these
issues will be addressed in subsequent releases.

There was also some confusion that resulted from the fact that much of the technology,
both software and hardware, that had to be used or considered for this project is still in
its infancy, and the rate of significant improvements over previous versions are still
very high. This is a common challenge facing everybody doing research within new
fields of high complexity, and cannot easily be avoided. During the few months this

 39

project were undertaken, there are already new technologies that render some of the
earlier research obsolete, and this had to be replaced with up-to-date information.

 40

8 Suggested improvements and further issues
This section presents a few suggested improvements to future versions of the
MicroTAPAS architecture.

8.1 Dynamic connections
In the future, more functionality should be added to this feature. For example, the
actor itself ought to be able to decide if it should automatically be plugged-in or out,
following the loss or re-establishment of the connection. Nodes themselves should
also be given this choice, overriding the choice of actors.

8.2 The configuration file
Although extensive changes have been made to the configuration file, and how
parameters are transferred to a running node, further extensions and/or amendments
could be introduced.

These are some possible future extensions:

• Addition of different debug options (text output, windows of different sizes
etc.).

• Addition of different ports for communication and ping-requests (must be the
same for all nodes).

• Timing options for ping-requests between nodes (can be different from node to
node).

• Addition of desktop/laptop and handheld node options (should replace/extend
the ‘nodeprofile’ attribute).

8.3 Encryption & checksums
Different levels of encryption of all communication could be introduced to the
MicroTAPAS architecture. The user, or the application, could be given the choice as
to whether messages sent between MicroPNES instances should be encrypted, and to
what degree, i.e. bit-length of keys and encryption algorithms. There are a lot of
possibilities here that should be investigated, and could probably warrant a separate
project in itself.

8.4 Mobility
In [MALM1], the authors suggest how to introduce four types of mobility
management to the TAPAS architecture; actor, terminal, user and session mobility.
Although this paper was not specifically written with the MicroTAPAS architecture in
mind, the architecture would benefit from the implementation of the mechanisms
proposed in the report.

Especially the introduction of session mobility, also described by [LILL] and terminal
mobility, briefly discussed in section 1.3.2, would be advantageous to MicroTAPAS.
The introduction of session mobility should be seen in association with dynamic
connections, where the connection, and possibly, the application, can terminate
without warning, thus loosing any unsaved data. This would be devastating for more
complex applications where, for example, data is collected over time and should be
kept for further analysis, i.e. a network monitoring and statistics application.

 41

8.5 Reliability
Presently, there are no specific features built into the support system to ensure its
reliability. This is one area that clearly should be addressed in the future, as the
system is highly vulnerable to exceptions, failures and down-time of the web-server,
the Director node or the underlying network itself.

8.6 Interoperability with TAPAS
As mentioned in Chapter Error! Reference source not found., a future version if
MicroTAPAS should incorporate a model as how to accomplish interoperability with
TAPAS.

8.7 Applications
There are a number of applications that could be developed to take advantage of the
MicroTAPAS on PDA’s, and here is a short list describing a few possible contenders.

• A SNMP monitoring application. The server maintains a list of nodes and
status’ that can be viewed by any MicroTAPAS client.

• Mobile dynamic measurement of WLAN coverage and signal strength, sent
back to server and made available to all connected clients.

 42

9 Conclusion
The purpose of this project was to re-specify and develop a new version of ITEM’s
TAPAS architecture suitable for deployment to wireless personal digital assistants.
Initially it was assumed that only minor changes to the already existing architecture
would be necessary to accommodate this, and that the relative cheep Palm OS
powered devices would be the target platform of choice. In this report, however, it has
been shown that neither of these assumptions would hold, and that the architecture
had to undergo greater changes, partly due to the lack of RMI support in J2ME. The
intended Palm OS powered target devices were deemed unsuitable, due to lack of
features and processing power, thereby concentrating the development towards more
powerful devices, powered by Microsoft’s Pocket PC and a lightweight version of
Linux.

The report shows the steps taken in the re-specification process, and the introduction
of new features to the architecture. The implementation of the re-specified
architecture is thoroughly explained, ranging from the decisions taken in choosing
J2ME as a development platform, to the detailed explanation of the newly introduced
features. A simple example application was also introduced and developed to show
the features of the new architecture.

The testing of the MicroTAPAS architecture shows that it does work well on the
intended platforms; handheld wireless devices, as well as on ‘regular’ computers.
However, there are still some issues with performance that should be addressed in the
future, as the execution times are considerably higher than for stationary computers. It
was shown that this probably stems from the computational limitation of the PDA’s,
and not from the implementation itself.

It should have been made clear to the reader that there are a number of outstanding
issues and suggestions that should be addressed in subsequent reports. Most notably
among them are the issues relating to performance, security, mobility and reliability,
as these areas continue to receive a lot of attention in any distributed and dynamic
architecture.

 43

List of acronyms
Alphabetical list of common acronyms encountered in the text.
API Application Programming

Interface
AWT Abstract Windowing Toolkit
CDC Connected Device

Configuration
CF Compact Flash
CLDC Connected Limited Device

Configuration
CVM C Virtual Machine
FA Foreign Agent
HA Home Agent
IP Internet Protocol
J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition

JFC Java Foundation Classes
KQML Knowledge Query and

Manipulation Language
KVM Kilobyte Virtual Machine
MMC Multimedia Card
MSC Message Sequence Chart
PDA Personal Digital Assistant
RMI Remote Method Invocation
RPC Remote Procedure Call
SD Secure Digital
TAPAS Plug-and-Play
VM Virtual Machine
WLAN Wireless Local Area

Network

 44

Bibliography
[AAGF1] Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa and Bjarne

E. Helvik, “Capability Specification and Selection in TAPAS”, IFIP
WG6.7 Workshop and Eunice Summer School on Adaptable Networks and
Teleservices, Trondheim, Norway, September 2002, Tapir, ISBN: 82-
993980-5-3.

[AAGF2] Aagesen, F. A., Helvik, B. E., Johansen, U., Meling, H., “Plug and Play for

telecommunication functionality – architecture and demonstration issues”,
http://www.item.ntnu.no/~plugandplay/publications/IConIT-2001.pdf
[Accessed February 2003]

[AAGF3] Aagesen, F. A., “Plug and Play for telecommunication functionality –

architecture and demonstration issues”, presented at IConIT 2001,
Bangkok, Thailand.
http://www.item.ntnu.no/~plugandplay/publications/IConIT.pdf
[Accessed March 2003]

[AAGG] Aagesen, Gustav , “Plug-and-Play Application Management System”, MSc

thesis, Department of Telematics, NTNU, 2001.

[COLU] Colombia University, Department of Computer Science, NetScript,

http://www.cs.columbia.edu/dcc/netscript/. [Accessed March 2003]

[COUG] G. Coulouris, J. Dollimore, T. Kindberg, “Distributed systems, concepts

and design”, third edition, Addison-Wesley, 2001.

[DARP] U.S. Department of Defence, Advanced Technology Office,

http://www.darpa.mil/ato/programs/activenetworks/actnet.htm.
[Accessed March 2003]

[LILL] Lars Erik Liljebäck, “User and Session mobility on a Plug-and-Play

architecture”, MSc thesis, Department of Telematics, NTNU, 2002.

[MALM1] Mazen Malek and Finn Arve Aagesen, “Mobility management in a Plug

and Play Architecture”, IFIP TC6 Seventh International Conference on
Intelligence in Networks, Saariselka, Finland, April 2002. Published by
Kluwer Academic Publishers.

[MELH1] H.Meling, TAPAS, http://www.item.ntnu.no/~plugandplay/ [Accessed

September 2002]

[MELH2] H.Meling,

http://www.item.ntnu.no/~plugandplay/documentation/SystemDoc/Main/M

ain.pdf.[Accessed September 2002]

[MITE] Massachusetts Institute of Technology, Active Networks,

http://www.sds.lcs.mit.edu/activeware/. [Accessed April 2003]

[REID] Reilly, David, “Mobile Agents - Process migration and its implications”,

http://www.davidreilly.com/topics/software_agents/mobile_agents/.
[Accessed March 2003]

 45

[STAU] Stanford University, Department of Computer Science, Knowledge Sharing

Effort, http://www-ksl.stanford.edu/knowledge-sharing/. [Accessed
March 2003]

[SUN1] Sun Microsystems, Java 2 Platform Micro Edition,

http://java.sun.com/j2me/j2me-ds-0201.pdf, page 1-2. [Accessed July
2003]

[SUN2] Sun Microsystems, J2ME Connected Device Configuration (CDC)

http://java.sun.com/j2me/docs/j2me_cdc.pdf [Accessed June 2003]

[TOPK] Topley, K., “J2ME in a nutshell: A desktop quick reference”, O’Reilly,

2002.

[UMBC] University of Maryland, Baltimore County, Lab for Advanced Information

Technology, KQML Web, http://www.cs.umbc.edu/kqml/. [Accessed
March 2003]

[UPEN] University of Pennsylvania, Department of Computer and Information

Science, Bellcore, http://www.cis.upenn.edu/~switchware/. [Accessed
April 2003]

 46

General online references and resources
Software
No. Internet address Description
[S1]

http://www.ibm.com/

Home of the Web Sphere Device Developer
(WSDD) developers. Information on their
products and evaluation download of
development tools.

[S2]
http://www.codewarrior.com
/

Information about the Codewarrior software
suite for developing java applications wireless
devices.

[S3]
http://www.pocketpc.com/

Official site with information and downloads
for the popular PDA operating system,
Microsoft PocketPC.

[S4]
http://www.sourceforge.net
/projects/essmodel

ESS-Model is a simple, reverse engine, UML-
tool for Delphi/Kylix and Java-files. Its an
open-source project.

[S5] http://developer.java.sun.
com/developer/technicalArt
icles/Programming/JVMPerf/

An article about ‘Java Virtual Machine
Performance’ and download of the HeapTest
application.

Hardware
No. Internet address Description
[H1] http://www.hp.no/ Information about the iPAQ series of PDA’s.
[H2]

http://www.myzaurus.com/

Zaurus is Sharp Electronic’s contribution to
the growing market of PDA’s. This official
site is dedicated to their products.

[H3] http://www.fujitsu-
siemens.no/

Information about handheld computers from
Fujitsju-Siemens.

[H4]
http://www.dell.no/

Product information and details for the Dell
Axim A-5 handheld device.

[H5] http://qtek.dk/ The site of the Qtek phone/PDA hybrid.

 47

Appendix A – J2ME and PocketPC

A.1 Overview of J2ME CDC profiles
This is a brief overview of the different profiles that are available for the J2ME CDC
configuration. Currently J2ME CDC supports three different profiles; Foundation
profile, personal basis profile and personal profile [SUN2].

• Foundation profile:
o J2SE technology-based class library
o No GUI support
o CLDC 1.0 compatibility library
o javax.microedition.io

• Personal basis:

o Lightweight component support
o xlet support
o Foundation Profile APIs
o java.awt
o java.beans
o java.rmi
o javax.microedition.xlet

• Personal profile:

o Full Abstract Windowing Toolkit (AWT) support
o Applet support
o Migration path for the PersonalJava application environment
o Personal Basis Profile APIs
o java.applet
o java.awt
o java.awt.datatransfer

In addition to these profiles, a number of additional packages have been proposed and
specified, including the RMI Optional Package and the JDBC Optional Package.

A.2 PocketPC2000 link file
This is an example link-file for the PocketPC, and is very similar to a .bat file in DOS.
Normally all the text would appear in one line, but has been wrapped here. The first
argument of the file; ‘300#’ is meant to declare to the OS how many characters there
are in the line, however, one can have fewer characters than you declare (during
testing, no effect was seen when having more characters than declared). There is a
limit of 255 characters, and by setting the value to 300 no error will occur, and one do
not have to count the number of characters each time one edits a file. The rest of the
arguments are specific for the J9 program. The first of these starts the VM, then
follows a long argument which specifies what Java libraries to include, then the
starting of the actual MicroTAPAS application.

i

300#"\j9\bin\j9.exe" "-
Xbootclasspath:\j9\lib\jclFoundation\classes.zip;\j9\lib\jclFoundation\locale.z
p;\j9\lib\jclPPro\ppro-ui-win.zip;\j9\lib\jclCdc\classes.zip;\dev"
"MicroTAPAS.startMicroTAPAS" "MicroTAPAS.MicroPNES"

I

Appendix B - TAPAS

B.1 TAPAS architecture
The layered design model – Architecture [MELH2, page 15]:

The layered design model – Operating TAPAS system example [MELH2, page 18]:

B.2 TAPAS communication model
This is the old TAPAS communication model [MELH2, page 20].

 II

B.3 TAPAS addressing
In the original version of TAPAS, the Global Actor Identifier (GAI) was built up like
this figure shows, and the difference to MicroTAPAS is only slight, as the PAS
instance identifier has been replaced with a copy of the PNES instance identifier
[MELH2, page 21].

Local role session identifier
Local Actor instance identifier
Local PAS instance identifier
PNES instance identifier
Entity type specificaton

Dir1

Act2

pnes1

pas1

Act1
RS pnes1 Dir1pas1 <number>

Actor pnes1 Act2pas1

PAS pnes1 pas1

PNES pnes1

B.4 Configuration files

The old configuration file
This is an example of how and old version of the configuration file may have looked
like. No empty lines or comments were allowed here.

 III

codebase = http://127.0.0.1/tapasroot/
policy = http://127.0.0.1/tapasroot/policy
homeinterface = Actor://127.0.0.1/MicroPNES/MicroTAPAS.MicroDirector1
debugserver = localhost
nodeprofile = profMicro

The new configuration file
This file is an example of how the configuration file may look like using the updated
functionality of MicroTAPAS, and as can be seen from the file, readability is greatly
improved over the previous format.

Now it is safe to add comments, prefixing each line with a hash '#'.
Empty lines are also ok.

The Internet address of the binary files of the whole system.
The address should be on the form:
http://<ip.addr or url>/<tapas directory>/
codebase = http://10.0.0.1/tapasroot/

Not in use anymore - will be deleted
policy = http://10.0.0.1/tapasroot/policy

The GAI (address) of the Director
homeinterface = Actor://10.0.0.1/MicroPNES/MicroTAPAS.MicroDirector1

The location of the debugserver
debugserver = localhost

What profile this client is running, could be profMicroPDA or
profMicroDSK could also be automatically detected by MicroPNES
nodeprofile = profMicro

Ping-server port: must be the same for all clients
Interval between pings, in milliseconds
Port for incomming requests: must be the same for all clients
Port for outgoing results: must be the same for all clients
Port range for use by incomming results
Is debug info to be printed to screen?
debug = true

 IV

Appendix C – Setup and Testing

C.1 Hardware used
The following table show in detail the hardware used for testing the architecture.
 Node A Node B Node C
Classification LAPTOP PDA LAPTOP
Model IBM Thinkpad

390E
iPAQ H.3660 HP Pavillion

ze5244
Processor Intel Pentium II,

266 MHz
Intel StrongARM,
206 Mhz

Intel Pentium 4 M,
2,53 GHz

Memory
(RAM/ROM)

192 MB/x 64 MB/16 MB 512 MB/x

Operating
System (OS)

Microsoft Windows
XP, Professional
Edition

Microsoft PocketPC
2000

Microsoft Windows
XP, Home Edition

Network SMC ZyAIR B-100, IEEE
802.11b compliance
at 2.4 GHz,
PCMCIA card

LAN-Express IEEE
802.11 PCI Adapter

Virtual Machine
(VM)

Sun Microsystems
Inc’s Java
HotSpot(TM) Client
VM, version
1.4.1_02-b06

IBM’s J9, version
2.0

Sun Microsystems
Inc’s Java
HotSpot(TM) Client
VM, version
1.4.1_02-b06

C.2 Test data from HeapTest

Screen output from program execution
The following data was printed to screen during one of the test runs, and, as can be
seen on the top, it was started with five threads and two cycles. All the times quoted
are in milliseconds. The first column states the number of threads used to execute the
tasks, the other three columns show the different tasks, as explained in section 6.3.1.

C:\dev\MicroTAPAS>java heaptest.HeapTest 5 2
Unable to open log file. Printing to System.out...

Max # threads = 5
Total (heap + CPU) cycles = 2

Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 0 Heap, 2 CPU

1 21981 20409 15161

2 20420 14901 15863

3 31085 17125 10254

4 20480 12858 11396

5 19718 14441 12718

V

Data from performance testing of laptop vs. PDA
This is the data values from the performance testing performed in section 6.3.1. The
top-left heading in each table states which terminal and start parameters were used.
For example, IBM, 5-2 states that it was run on the IBM laptop (node A) with a
maximum of five threads and two cycles. Figure 6.3 was drawn by computing the
average execution time for each task (i.e. the first value for ‘IBM, 5-2’ in the figure
was found by summing the column ‘2 Heap, 0 CPU’ and dividing by the number of
threads; five).

IBM, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 21981 20409 15161
 2 20420 14901 15863
 3 31085 17125 10254
 4 20480 12858 11396
 5 19718 14441 12718

HP, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 4046 2844 1422
 2 3706 2613 1422
 3 3325 2364 1412
 4 3264 2434 1422
 5 3044 2173 1422

PDA, 5-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 64285 258435 419323
 2 80407 239302 403596
 3 87770 238447 403535
 4 93045 237556 404077
 5 93945 238113 404354

IBM, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 19197 13920 9193
 2 17705 11467 9193

HP, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 4096 2894 1432
 2 3605 2574 1412

PDA, 2-2 Threads 2 Heap, 0 CPU 1 Heap, 1 CPU 1 Heap, 1 CPU
 1 62779 246339 406098
 2 81344 241102 406206

 VI

	Abstract
	Figures and tablesFigure 1.1: The TAPAS theatre m
	Introduction
	Introduction to TAPAS
	Previous work on TAPAS
	Similar technologies and comparisons
	Active and controllable networks
	Mobile IP & Cellular IP
	Mobile Agents, Multi agent and Agent based systems
	Summary

	TAPAS for wireless components

	MicroTAPAS architecture concepts
	Requirements and considerations
	MicroTAPAS Support Functions
	MicroTAPAS layered design model

	MicroTAPAS implementation
	Overview of J2ME
	Choosing a configuration
	Limitations

	Communication model
	Addressing and routing values
	Dynamic connections and device mobility
	The configuration file
	Requests and Results
	Final remarks

	Development environment
	Software packages to aid in development
	Target devices and operating systems
	Operating systems
	Processors
	Manufactures
	Summary

	Test environment proposal

	Sample application - MicroTester
	Functional requirements
	Non-functional requirements
	MicroTester overview
	Screenshots
	Class diagram
	Message sequence charts
	PlugIn
	PlugOut
	Upgrade
	RoleSessionAction
	Register
	RegisterCancel

	Suggested improvements

	Setup and testing of MicroTAPAS
	Installation and start-up
	Desktop and Laptop computers
	Handheld computers

	Testing
	Basic functionality
	PlayPlugIn
	PlayPlugOut
	ActorPlugIn of MicroTester
	ActorPlugIn of MicroTesterServer
	ActorPlugOut of MicroTestServer
	ActorPlugOut of MicroTest
	ActorChangeBehaviour
	PlayChangesPlugin
	RoleSessionAction

	Extended functionality
	ActorRegister
	ActorRegisterCancel
	Dynamic connection (implicit)

	Performance
	Handheld vs. stationary

	Faced challenges and solutions
	Suggested improvements and further issues
	Dynamic connections
	The configuration file
	Encryption & checksums
	Mobility
	Reliability
	Interoperability with TAPAS
	Applications

	Conclusion
	List of acronyms
	Bibliography
	General online references and resources
	Appendix A – J2ME and PocketPC
	A.1 Overview of J2ME CDC profiles
	A.2 PocketPC2000 link file

	Appendix B - TAPAS
	B.1 TAPAS architecture
	B.2 TAPAS communication model
	B.3 TAPAS addressing
	B.4 Configuration files
	The old configuration file
	The new configuration file

	Appendix C – Setup and Testing
	C.1 Hardware used
	C.2 Test data from HeapTest
	Screen output from program execution
	Data from performance testing of laptop vs. PDA

