
Mobility Support Framework in Adaptable Service Architecture
Mazen Malek Shiaa

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N-7491 Trondheim, Norway
Mazen.Malek.Shiaa@item.ntnu.no

Abstract. Mobility is regarded as the most important feature needed to
achieve adaptability and flexibility in the executing of service components.
As such, service system could be able to cope with the handling of dynamic
changes in the availability of resources and position of users. On the other
hand, providing user-centric and personal-content driven wide range of ser-
vices, more commonly wireless ones, to end users regardless of their loca-
tion and used equipment, seem to be the most asked for demand by users.
This is the main motivation behind investigating and developing mobility
support in any Adaptable Service Architecture. Mobility, in this context, is a
feature facilitating the free and coordinated movement of, for instance, us-
ers, software components, user terminals, etc. One should always consider
the vibrant configuration and settings of not only end-users applications and
environment, but also the network resources, components and services. The
reason is due to ever changing and increasing demands and requirements in
both functionality, security, reliability and QoS. Mobility support in self-
managing, dynamically configurable network architecture seems to be even
more challenging, however recent development and improvements in net-
work infrastructure show a greater prospect for code-on-demand and adap-
tive network management. TAPAS, and its mobility handling architecture,
presented in this paper, tend to give some answers and take a step towards
achieving such goals.

Keywords. Mobility Management, Plug-and-Play, Network Architecture

1. Introduction
There has always been an awareness of the necessity of providing adaptable network services
capable of serving users, private as well as business customers, with state-of-the-art informa-
tion when and where they are needed with a high degree of flexibility, yet simply operated
and managed. These services, and the underlying platform or middleware they rely on, have
recently been the most important research topic in computer networking. Nowadays, a new
network paradigm seems to be a common objective and goal to achieve of many research and
development groupsthe self-operating, plug-and-play, dynamically configurable network
architecture. TAPAS (Telematics Architecture for Plug-and-Play Systems) is a research pro-
ject which aims at developing an architecture for network-based service systems with A):
flexibility and adaptability, B): robustness and survivability, and C): QoS awareness and re-
source control. The goal is to enhance the flexibility, efficiency and simplicity of system in-
stallation, deployment, operation, management and maintenance by enabling dynamic con-
figuration of network components and network-based service functionality. So far in this pro-
ject, a wide range of topics have been dealt with, and many objectives been achieved. Four

main architectures have been developedthe basic architecture, mobility handling architec-
ture, dynamic configuration architecture, and the adaptive service configuration architec-
ture for detailed information see [1,2,3,4,5,6] and the URL: http://www.item.ntnu.no/
~plugandplay.

Director ApplicationRoleFigure

Domain

Node

Play

Role Manuscript

Capability

User

is_defined_by

manages

manages

ServiceComponent
uses

RoleSession

is_at

Status has

has

ServiceSystem

projects

has

has

is_realized_by

ConfigurationManager

behaves_according_to

manages

manages

Actor

RoleFigure

is_defined_by

works_according_to

describes_super
position_of

executes
constitute

requires

offers

offers

uses

Figure 1. TAPAS basic architecture (Object Model)

TAPAS basic architecture, illustrated in Figure 1, is based on generic Actors (software
components) in the Nodes of the network that can download Manuscripts defining Roles to be
played, each represent different functionality. Nodes may be servers, routers and switches,
and user terminals, such as telephones, laptops, PCs, PDAs, etc. The model is founded on a
theatre metaphor, where Actors perform Roles according to predefined Manuscripts, and a
Director manages their performance (their plug-in and plug-out phases), and also a Director
represents a Domain. ServiceSystem consists of ServiceComponents, which are units related
to some well-defined functionality defined by a Play. A Play consists of several Actors play-
ing different Roles, each possibly having different requirements on Capabilities and Status of
the executing system. A RoleSession is a projection of the behaviour of an actor with respect
to one of its interacting Actors. Capability is an inherent property of a node. The ability of
Actors to play Roles depends on the defined required Capability and the matching offered
Capability in a Node where they intend to execute. ConfigurationManager is responsible for
obtaining a snapshot of all system resources, and taking decisions on where and how Capa-
bilities and Actors may be installed and executed. Capabilities may be resources (e.g., CPU,
hard disk, transmission channels), functions (e.g., printing, encrypting devices), or data (e.g.,
user login, access rights).

Section 2, will provide an overview of related work regarding network adaptable services and
mobility, while Section 0 supplies an overall terminology framework needed to handle mobil-
ity as a comprehensive concept. Section 4 gives a view of service management and related
considerations in the mobility handling architecture. Section 5 demonstrates the necessity of
personal mobility, while section 6 provides a closer look at the software components of the
architecture, and how their mobility. Section 7 studies the more commonly addressed concept
of terminal mobility, later, Section 8 gives a status of the implementation and some experi-

 2

http://www.item.ntnu.no/ ~plugandplay
http://www.item.ntnu.no/ ~plugandplay

ences came up throughout the various phases of testing. Finally, Section 9 draws final re-
marks and conclusion.

2. Related work
There is a wide range of research projects and working groups, both in the academia and in-
dustry, working on Adaptable Network Architectures. TINA (Telecommunication Informa-
tion Networking Architecture) [7] is an effort to put together the best of telecommunications
and information technologies aiming at providing solutions to the challenges of developing
network information services. It is basically a collection of concepts, tools, and requirement
descriptions providing a guideline for such a target. Personal mobility support and other fea-
tures are being developed and added to the architecture gradually, e.g. [8]. Active Networks
are also approaching the same target but from different perspective. They are classified by
two approaches: active packets and active nodes. The first builds on the integration and de-
ployment of services in the user flow, while the second is based on deploying services dy-
namically in nodes. Major research institutes have dealt with this issue with mixed results,
see [9,10,11] to check for motivation, results and status in this field, or [12] for a more gen-
eral and broader survey. Some projects deal with more general issues of flexibility and
adaptability in service architecture solutions, e.g. [13], while others focus on the plug-and-
play feature applicability in network management functions, e.g. [14]. Many of these solu-
tions apply platforms of either programmable network components, such as [10], while others
use mobile agents. A mobile agent is a program, script or package that physically travels
around a network, and performs operations on hosts that have agent capabilities. These
agents, which operate autonomously, have usually very specific tasks, such as fetching prices
of merchandise from on-line stores, or to collect weather information. Apart from interacting
with all sorts of operating systems, databases or information systems, agents can also interact
with other agents, meeting in agent-gathering places to exchange information. There is a
number of different mobile agent architectures, see [15,16]. Although agent technologies
have received a lot of attention in recent years, [17] argues that “mobile agency has failed to
become a sweeping force of change, and now faces competition in the form of message pass-
ing and remote procedure call (RPC) technologies”. The very autonomous nature of mobile
agents sets them wide apart from TAPAS’ request/response interactions, or code-on-demand,
although the resulting action might be comparatively equal. Since a TAPAS node can almost
be seen upon as a stationary agent, actor mobility is viewed as pair of plug-out and plug-in
procedures, in order to move actor instances along their functionality through different nodes
where they execute.
Mobile Telecommunication Systems derive and necessitate more elaborated schemes for Per-
sonal Mobility. While different systems, such as GSM [8] and in the near future UMTS, pro-
vide mobility for users and their terminals in and through enterprise-based domains, service
architectures and application platform with high mobility support centred at user and its per-
sonal content still lack. The seamless and flexible integration of such application platforms
with existing mobile systems is yet a major challenge. A possible solution is the applicability
of the Mobile IP concept [19], which is based on two agent processes to take over the routing,
the home agent (HA) and the foreign agent (FA). When the mobile host, or user device,
leaves its home domain, the HA is informed of this, and the FA of the visited domain relays
back to the HA that the host is available in that domain. In our approach of Personal Mobil-
ity, the same spirit is maintained, but approached from the service and its provision point of
view. User, its session, and subscribed services move along the user and follow its access
point, as long as it is possible and allowed in the visited domain. In the future, and in cases of
multiple enterprise domains, the approach may be amended to work along the lines of how
cellular phones roam networks.

 3

Personal
content

Person

T

User
Representation

User
Interface

Terminal
Interface User Session

ArchitectureTerminalUser

Figure 2. TAPAS Mobility Concept

3. Terminology Framework for Mobility

3.1 Terminology Framework – The Concept
In this section the so-called Terminology Framework for Mobility will be established

comprising all the essential definitions needed in providing mobility understanding. TAPAS,
in this regard, embraces different mobility features or categories: Personal (consists of User
and User Session mobility), Actor and Terminal mobility [3]. Figure 2 presents a conceptual
description of the various terms or entities used to relate these different types of mobility.
User (Person), according to this concept is represented by its personal contents and can be
related to a Terminal (T) and be tracked and accessed via a representation of the user (User
Representation) within the architecture. This double interface approach (User Interface and
Terminal Interface) provides a flexible mechanism to represent users and terminals inde-
pendently of each other. A user may be represented by a name, while a terminal by a network
address. A user may interact with the system, or services, within a defined User Session. The
movement of user sessions also involves the movement of actors.

3.2 Terminology Framework – The Definitions
Figure 3 shows an extension of the TAPAS basic architecture illustrated in Figure 1, with

emphasis on mobility. Below, the newly introduced objects, and other terms specific to the
TAPAS terminology will be defined, focusing on the mobility as a concept.

User is the end-user of services, which is also called subscriber. In TAPAS there is no
distinction between a user of a service, who is carrying out and performing the instanta-
neous interactions with the service instance, and the subscriber of the service, who owns
the subscription contract.

•

•
•

•

•

Person is a user with personal content.
Personal content is the set of user-related data, information and resources that are not
part of the service architecture, but might be used or involved in a service interaction.
Node is a physical network entity capable of taking part in TAPAS-based services, by
running TAPAS support and TAPAS service component(s). This may be directly mapped
to PCs, handhelds, mobile phone, or any other device with computing capacity and oper-
ating memory capable of running external applications. A node is uniquely specified by
its location. Terminal is one type of node that is associated with end users as their means
of accessing services.
Location (Access point) is the physical address information. This can be network address,
geographical location, etc. A location is used to uniquely address nodes running TAPAS
service components.

 4

Director ApplicationRoleFigure

Domain Node

Play

Role

Manuscript

MobilityAgentMobilityManager

CapabilityUserProfileBase UserSessionBase

LoginAgentVisitorAgentUserAgent

Terminal

handles

is_defined_by

executes

manages

manages

manages behaves_according_to

controls controls

manages

ServiceComponent uses

User
is_at

handles

is_realized_by

Actor

constitute

requires

offers

offers

uses

Figure 3. TAPAS Mobility Platform (Object Model)

User Session represents the information used by all actor instances involved in the provi-
sion of a service for certain user, for certain duration. A user session usually involves the
following activities: establishment of the session including the login phase, managing the
state of each user’s activity, and co-ordination of the network resources used. All user in-
teractions with the system are part of a specific session, however a user may have several
simultaneous sessions.

•

•

•

•

•

•

•

•

•

•

•

User Session Base is the informational or knowledge base responsible for maintaining
User Session information.
Domain represents a population of actors and/or nodes managed by one director. Domain
concept in TAPAS is used to manage and administrate the federation of responsibility be-
tween different director objects. In TAPAS two types of domains are distinguished:
Home domain and Visitor domain.
Actor is the generic object of TAPAS with a generic behavior, which can behave accord-
ing to a manuscript specifying certain functionality.
Actor Child Session represents a session initiated and maintained by an actor, which re-
sults in instantiating new actors with their respective data, role-sessions, settings, etc.
Role-Session is a projection of the behaviour of an actor with respect to one of its inter-
acting actors. It represents a relationship between two actors.
User Profile includes the user information relevant to the provision of services (such as
user location, subscribed services, permissions, constraints, etc.). It also includes the set
of optional preferences and setting attributes of services associated with the user.
User Profile Base is the informational or knowledge base responsible for maintaining
User Profile information.
Actor Mobility stands for the movement of instantiated functionality at a node that is exe-
cuted by an actor. This implies a change and update to the actor location-specific infor-
mation.
Role-Session Mobility stands for the re-instantiation of role-sessions of moved actors by
re-creating them at the new location where the moved actor is re-instantiated.
Terminal Mobility is the movement of terminals and change of their location while main-
taining access to services and applications.

 5

User

Visitor

Domain1

MobilityAgent

MobilityAgent
Play Repository

Capability Requirements
Configuration Plans

director1

Mobility Manager

{to directors
of other

domains}

UserAgent

VisitorAgent

G
U
I

U
I

Server1

Client1

Actor with
child session

Client3

Client2

Server3

Server2

User Profile
Base

Playing
Base

User Session
Base

Configuration
Manager

LoginAgent

LoginAgent

Legend
TAPAS
domain

Node

Terminal

Data/knowledge
repository

Data, Message,
knowledge

Users

Administrative
actors

Actor
Instances

Node4

WebServer

Node1

Node2Node3

TerminalA

TerminalB

Figure 4. TAPAS Mobility Architecture (Engineering Model)

Personal Mobility is the utilization of services that are personalized with end user’s pref-
erences and identities independently of both physical location and specific equipment.

•

•

•
•

•

•

•

•

User Session Mobility is the re-instantiation or resumption of Applications, Actors and
Role sessions enabling a user to carry on with suspended user sessions.
User Mobility is the seamless access of subscribed services at different access points.
Login Agent is the component of the architecture that supports the entering of a user to
the service(s) environment under managed permissions, constraints and optional prefer-
ences, which are described in the user profile.
User Agent is the component of the architecture that is responsible for managing user in-
teractions with its home domain. Home domain is a domain where there exists a user pro-
file for the user.
Visitor Agent is the component of the architecture that is responsible for managing user
interactions with its visitor domain. Visitor domain is a domain where there doesn’t exist
a user profile for the user.
Mobility Agent is the component of the architecture that is responsible for managing ter-
minal’s location-related information. It performs location updates when a terminal
changes its location.
Mobility Manager is responsible for managing actors and terminals connectivity and mo-
bility.

3.3 Terminology Framework – The Engineering model
In order to obtain a clearer view of how these various terms and concepts are related, an en-
gineering viewpoint should be established. Figure 4 presents an engineering model of
TAPAS mobility platform illustrated in an example domain, which associates architecture
components and objects with the defined terms and roles. It shows a single domain managed
by a director, and includes four nodes, two user terminals, and a web server. Instances of ser-
vices are executing distributely on terminals and nodes by different actor instances, i.e. cli-
ents, servers, and actors with child sessions.

 6

(Play/
Manuscripts)

Subscription
Security
Performance

UserAgent
VisitorAgent

LoginAgent

Actors without
assigned rolesServerClient

Mobility
Manager

Configuration
Manager

director

User Profile
Base

Playing
Base

User Session
Base

1

2

3

4

7

8

9

6

5

10

MobilityAgent

Domain Management

New Service

Service
Management

User Entry

Service Instantiation
Service Instance

Figure 5. Management Considerations of Service Provision

4. Mobility Support and Service Management
Any network architecture that provides services to end-users should establish a clear view of
how these services be subscribed to by users, utilised by operators, and developed by service
developers. The topic of service management has been handled and experienced by various
enterprise business models, that’s why it is out of the scope of this paper. However, providing
mobility support or mobility feature to a service architecture affects the way services may be
managed or maintained, and to what extent their applicability may evolve. Based on the main
concept of TINA service architecture, mobility support changes into the service management
of TAPAS is illustrated in Figure 5. Basically, the picture is divided into six main parts or
components; User entry (executes at the user’s terminal), Domain management (includes all
supervisory components, such as director, configuration manager, and knowledge bases),
Service instantiation (where instantiated functionality resides), Service instance (the part of
the service handling user’s interactions and instructions), Service management (which corre-
sponds to the service provider domain), and New service (the introduction of new play and its
corresponding functionality). The various phases shown as numbered arrows may be sum-
merised in the following: (1) User login or entry to the system is accomplished by LoginA-
gent component, (2) Service requests by the user are managed through its UserAgent or Visi-
torAgent, (3) Administration by the user, e.g. changing settings and preferences, is achieved
through UserAgent or VisitorAgent, and saved in UserProfile, (4) UserSession management
is controlled by UserAgent or VisitorAgent, (5) Service management by the user may be
managed through the service actors executing certain role-figures, e.g. clients, (6) User inter-
actions with the service instance are performed through the service actors, (7) Administration
by the service provider results in changes in the user entry components, (8) Updating user
subscription information should take place in the UserProfile, (9) Interactions between user
entry and service instance components, e.g. when the user changes some settings and prefer-
ences, and at last (10) Providing new service implies a change in both user entry, service
management and domain management components. These phases give a guideline to achieve
a mobility support inline with a general service management platform, allowing for the inte-
gration with any enterprise model.

 7

5. Personal Mobility
Personal mobility as defined earlier comprises two types of mobility: User and User Ses-

sion mobility. Mobility in this context is a support provided to applications and services, so
that it is possible to develop an end-user oriented applications with both user and session mo-
bility enhancements. In these applications users can get access to a personalized environment
and could fetch their personal content. So, as users login to the application they can easily
interact and perform tasks that could be at any time suspended and resumed later. If applica-
ble, user login to home domain from a visitor domain should also be permitted. Generally
speaking, personal mobility is based on the following assumptions: 1) User is referred to by
Name and User Profile, which is active through a User Interface (at a Terminal through Ter-
minal Interface), 2) User-to-terminal relation is defined at login phase, 3) Director maintains
User Profiles in UserProfileBase, which contains information on user settings, preferences
and personal data, 4) UserAgent or VisitorAgent controls the user interactions with the sys-
tem, and maintain User Session for each login phase, and 5) Director and Configuration Man-
ager decide how and where different service components (application role-figures) be
instantiated depending on play/configuration requirements and terminal/node available capa-
bilities. However, UserAgent should keep track of all actor instances that belong to a User
Session. Director maintains UserSession related information in UserSessionBase. The follow-
ing subsections demonstrate user session and user mobility using general working examples.

5.1 User Session Mobility
User session mobility is aimed at providing users with greater flexibility in terms of suspend-
ing and resuming their execution of services. Figure 6 illustrates how user session is managed
by UserAgent, and consequently maintained by the director’s UserSessionBase. This figure is
also a general example of a probable service execution scenario in TAPAS. At first, user
UserA login to the system at TerminalA through its Graphical User Interface (GUI) and exe-
cuting LoginAgent. As a consequence of this login phase, the user granted a home domain
type of access to its subscribed services Service1 and Service2 defined by Play1 and Play2,
respectively. UserAgent is instantiated and UserA Session is maintained. The connectors be-
tween the actors Client1 and Client2 in TerminalA and the actors Server1 and Server2 in
Node4, indicate that they are inter-related by role-sessions. Server1, Client1 and Client2 are
instantiated application role-figures Role11, Role12, and Role22 from Play1, while ActorA,
A1, A2 and A3 instantiated role-figures RoleA1, RoleA11, RoleA12 and RoleA13 from Play2,
all respectively. The dotted connectors between UserAgent and Server1, Client1, Client2 and
ActorA indicate that they belong to this user session. Note that Server2 is not maintained by
this session. An example is provided for UserSession description. Typical example of such
applications is a multiple room chat application as Service1 (Sever2 is being owned by an-
other user), and Internet browser application as Service2. User session is updated regularly
via the update_session request, while suspended via suspend_session request. UserAgent
sends these requests to director1 containing information on every instantiated actor data, e.g.
user name, role-sessions, type of application and information about actor child sessions. Ac-
tually, UserAgent initiates a suspend session procedure upon a request from the user. Conse-
quently, it requests every instantiated actor for its settings and child session information. Sec-
ondly, when a user wants to resume a suspended session assuming UserA has moved to an-
other location, for instance TerminalA’ director will inform the newly instantiated
UserAgent about any suspended sessions by sending a resume_session request. UserAgent
will then try to re-instantiate all actors, and their corresponding sessions, as indicated in that
request. The type and configuration of applications, availability of service definitions, and
changed set of available capabilities will determine the way and extent of resumed session.

 8

UserA

director1

UserAgent

G
U
I

UserA,
Play1, Server1{Role11},
Client1{Role12,Server1}.
Client2{Role22,Server2},
Play2, ActorA{RoleA1,

ChildSessionA{A1,A2,A3}}

UserA

Node3

UserAgent G
U
I

Domain1

Server1
Client1

Client2

Server2

User Profile
Base

User Session
Base

LoginAgent

Server1

Client1

Client2

LoginAgent

Actor with
child session

ActorA with
child session

UserA Session:

UserA, PasswordA, LocationA,
Settings{Attribute1,Attribute2},
Service1Profile{Permissions,

Constraints,Preferences}.
Service2Profile{Permissions,

Constraints,Preferences}

UserA Profile

resume
session

suspend
session

update
session

TerminalA

Node1

Node4

TerminalA’

Figure 6. UserSession Mobility in TAPAS

5.2 User Mobility
User Mobility is aimed at providing users with greater flexibility in terms of roaming

among different domains while maintaining seamless access to their subscribed services.
Figure 7 illustrates how user mobility is achievable in TAPAS. The numbered steps deter-
mine a logical order of actions to understand the operation of this feature. Assume first, (1)
UserA accessing his home domain, Domain1. As described previously, (2) UserAgent will
contact the director of the domain, director1, to get all user profile and relevant personal con-
tent information from UserProfileBase. The requests request_profile and update_profile ask
for and change user’s profile, respectively. This step might involve the resumption of sus-
pended sessions as indicated in the previous section. In (3), the user will move and try to ac-
cess the same set of services from a visitor domain, Domain2. Upon login phase, (4) this user
is assigned a VisitorAgent, as there is no user profile for this user, and hence he granted only
visitor status services and applications. When the user tries to access his home domain sub-
scription (services and personal content), (5) VisitorAgent indicate this to the director, Direc-
tor2. After a director-to-director negotiation and a sort of authentication process in (6), there
arises a possibility to grant this user a home domain type of access in (7). As indicated by this
logic, the login phase determines the access type a specific user is given, and therefore
whether a UserAgent or VisitorAgent is instantiated. Further organization and regulation of
services, access rights, permissions, allowed operations and activities may all be configured
as a domain-based relation and vary among different business models

 9

Domain2Domain1

UserAgent VisitorAgent

director2director1

UserA UserA

Visitor DomainHome Domain

1 7

6
5

4

3

2

User Session
Base

User Profile
Base

User Session
Base

User Profile
Base

request
profile

update
profile

Figure 7. User Mobility in TAPAS

5.3 Knowledge bases (UserSessionBase and UserProfileBase)
For automated, modular, and extendable solution for such knowledge bases, an XML-based
databases and requests are proposed. Figure 8 and Figure 9 give an overview of the two
knowledge bases: UserSessionBase and UserProfileBase, respectively. In the implementation
platform they are stored as two XML files, and could be easily extended. Based on previous
subsections, an example is worked out for a probable service execution scenario in domain1.

<USER_SESSION_BASE NAME="USBdomain1">
 <DOMAIN>domain1</DOMAIN>
 <USER_SESSION NAME="UserSession_A1">
 <PROPERTY NAME="User">
 <ID>UserA</ID>
 <LOCATION>TerminalA</LOCATION>
 </PROPERTY>
 <PROPERTY NAME="Play1">
 <TYPE>Chat</TYPE>
 <VERSION>v1_1</VERSION>
 <ACTOR_INSTANCE NAME=”Server1” >
 <ROLE>Role11</ROLE>
 <ACTOR_INSTANCE>
 <ACTOR_INSTANCE NAME=”Client1”>
 <ROLE>Role12</ROLE>
 <ROLE_SESSION>
 <COOPERATOR>Server1</COOPERATOR>
 </ROLE_SESSION>
 </ACTOR_INSTANCE>
 <ACTOR_INSTANCE NAME=”Client2”>
 <ROLE>Role22</ROLE>
 <ROLE_SESSION>
 <COOPERATOR>Server2</COOPERATOR>
 </ROLE_SESSION>
 </ACTOR_INSTANCE>
 </PROPERTY>
 <PROPERTY NAME="Play2">
 <TYPE>Debug</TYPE>

 <VERSION>v1_2</VERSION>
 <ACTOR_INSTANCE>
 <NAME>ActorA</NAME>
 <ROLE>RoleA1</ROLE>
 <CHILD_SESSION>
 <ACTOR_INSTANCE NAME=”A1”>
 <ROLE>RoleA11</ROLE>
 <ROLE_SESSION>
 <COOPERATOR>ActorA</COOPERATOR>
 </ROLE_SESSION>
 </ACTOR_INSTANCE>
 <ACTOR_INSTANCE NAME=”A2”>
 <ROLE>RoleA12</ROLE>
 <ROLE_SESSION>
 <COOPERATOR>ActorA</COOPERATOR>
 </ROLE_SESSION>
 </ACTOR_INSTANCE>
 <ACTOR_INSTANCE NAME=”A3”>
 <ROLE>RoleA13</ROLE>
 <ROLE_SESSION>
 <COOPERATOR>ActorA</COOPERATOR>
 </ROLE_SESSION>
 </ACTOR_INSTANCE>
 </CHILD_SESSION>
 </ACTOR_INSTANCE>
 </PROPERTY>
 </USER_SESSION>
</ USER_SESSION_BASE>

* An example of XML serialization of the UserSession Base,
where UserA has a session named ‘1’ that takes part in two plays.

** UserA runs the following actors: Server1, Client1, Client2, ActorA,
A1, A2, and A3

Figure 8. General XML serialization of UserSessionBase.

Generally, these databases are self-explained and may be viewed as a step-by-step approach
to (re)construction of user sessions and specification of user profile information. All the re-
quests involved in the user session and user mobility procedures (update_session, sus-
pend_session, resume_session, update_profile, and request_profile), may be extracted from
these databases by matching the corresponding tags or fields in the XML file.

 10

<USER_PROFILE_BASE NAME="UPBdomain1">
 <DOMAIN>domain1</DOMAIN>
 <USER NAME="UserA">
 <PROPERTY NAME="Password">
 <VALUE>****</VALUE>
 <VALID>010104</VALID>
 </PROPERTY>
 <PROPERTY NAME="Location">
 <VALUE>local</VALUE>
 </PROPERTY>
 <PROPERTY NAME="Settings">
 <ATTRIBUTE NAME=”BGColor”>
 <VALUE>White</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE NAME=”WSize”>
 <VALUE>Large</VALUE>
 </ATTRIBUTE>
 </PROPERTY>
 <PROPERTY NAME="Service1">
 <PERMISSIONS>
 <VALUE>Owner</VALUE>

 </PERMISSIONS>
 <CONSTRAINTS>
 <VALUE>LocalAccess</VALUE>
 </CONSTRAINTS>
 <PREFERENCES>
 <VALUE>Empty</VALUE>
 </ PREFERENCES >
 </PROPERTY>
 <PROPERTY NAME="Service2">
 <PERMISSIONS>
 <VALUE>Temp</VALUE>
 </PERMISSIONS>
 <CONSTRAINTS>
 <VALUE>LocalAccess</VALUE>
 </CONSTRAINTS>
 <PREFERENCES>
 <VALUE>Empty</VALUE>
 </ PREFERENCES >
 </PROPERTY>
 </USER>
</ USER_PROFILE_BASE>

*** An example of XML serialization of the UserProfile Base,
which includes the UserProfile for a single user, UserA.

*** UserA has a subscription to Service1 (specified by Play1), and
Service2 (specified by Play2).

Figure 9. General XML serialization of UserProfileBase

6. Actor Mobility
Actor mobility stands for the movement of instantiated functionality at a node along its prop-
erties, such as behaviour, capabilities, role-sessions, etc., in a transparent manner for all other
actors. Actors need to move due to several reasons, e.g. changed capability requirements, de-
terioration in resource availability, dynamic change in configuration, change in functionality,
or implications of terminal mobility. Moved actors need to be able to carry on their function-
ality after being re-instantiated at a different location.
Before handling this type of mobility, and reasoning about the move procedure itself, an actor
model should be constructed. Therefore, an actor, as described by TAPAS basic architecture
is defined by the following parts: 1) set of interfaces or role-sessions, 2) behaviour definition
that has state, 3) set of capabilities, 4) queue of incoming requests, and 5) set of methods ac-
cessible by other actors at specific interfaces. Mobility in this context will be achieved by re-
instantiation of actors with these parts. However, there might be different strategies of how to
perform it, for instance the queue of already queued requests may be carried out, moved, or
simply dismissed upon a move procedure. Principally, move procedure is defined by, or
equivalent to, a sequence of ActorPlugOut, ActorPlugIn, CapabilityChange, CreateInterface,
and BehaviourChange procedures, which are part of the basic architecture, and used to de-
stroy an actor, instantiate it, update its capabilities, set a role-session with another actor, and
change the manuscript it executes, respectively. ActorMove request, which triggers an actor
move, supplies the new location where the actor should be plugged in, while its interface, be-
haviour, capability, queue, and method definition should be preserved from its previous in-
stance. To allow for different interpretations by run environments, programming languages,
and operating aspects, certain conditions must be specified that will control this procedure. A
basic set of conditions may be: A) Capability and Interface parts may be reconstructed
through applying supplementary CapabilityChange and CreateInterface procedures, B) Be-
haviour part must be the same, and state information may be transferred using Behaviour-
Change, and C) queue and method parts will be dismissed.

 11

domain1 domain2

Server1

GenericRole
(domain1)

GenericRole
(domain2)

RoleFigure,
Behavior,

State

Capabilities,
Status

RoleFigure,
Behavior,

State

Capabilities,
Status

Domain-specific
information and
requirements

MobilityManager1
MobilityManager2

Domain-specific
information and
requirements

director2director1

Requests from
other Actors

LocationUpdate,
ActorDiscovery

Actor Move

RS1

RS2

RS1

RS2

ActorInstance with
child session

(Node/Process) new ActorInstance with
recovered child session

(Node/Process)

Figure 10. Actor Mobility in TAPAS

Figure 10 presents a general scenario for actor mobility that involves two different domains,
based on conditions A, B and C. A general actor instance, with possible child session consist-
ing of several actor instances, is moved across two domains, domain1 and domain2. The ac-
tor has two role sessions, RS1and RS2, with Server1 and another actor instance, referred to as
GenericRole to indicate its limited availability in domain1 as a special purpose actor, e.g.
providing directory and domain name server. As explained earlier, an actor model consists of
several parts; behaviour, role-sessions, capabilities, etc. When moving actors these parts must
be recovered, however certain ones might not be recoverable, as for instance certain capabili-
ties may not be available at the new location, or specific role-sessions are no longer relevant.
In Figure 10, RS2 at the new location has been recovered to point to another GenericRole ac-
tor instance, the one available in domain2. Also, the moved actor child session couldn’t be
fully recovered; certain actor instances have been assigned different functionality and/or ca-
pabilities illustrated by different colours. When an actor moves from one location to another,
which is characterized by node address and process id, MobilitManager is responsible for
managing the accessibility to this actor. The actor is required to inform the MobilityManager
about this movement by initiating a LocationUpdate procedure. Meanwhile, requests from
other nodes addressed to this actor should be preceded by an ActorDiscovery procedure,
which is executed through the corresponding MobilityManager in a domain. The actor
movement within a domain is complying with a set of domain specific settings and require-
ments. Upon entering another domain, an actor may be accessed through a director-to-
director authentication process, as it has been passed to the responsibility of another Mobili-
tyManager.
Figure 11 illustrates a possible message sequence of an actor changing and updating its loca-
tion, while some node performs an ActorDiscovery procedure looking up for this actor. Upon
receiving the move request, ActorMove, a series of actions need to be performed to re-
instantiate the actor instance at the new location. First, an ActorPlugIn procedure is carried
out, then recovering of capabilities, role-sessions, behaviour should follow via Capabili-
tyChange, CreateInterface, and BehaviourChange procedures, respectively. State in the Be-
haviourChange request refers to the state of the actor at which the move procedure have been
activated. Second, MobilityManager is updated via LocationUpdate procedure.

 12

Actor1L1 MobilityManager

Actor1L2
ActorPlugIn(L2,Behaviour)

CapabilityChange (cap)

CreateInterface(RS1,RS2)

BehaviourChange(RoleFigure,State)
Actor performs

PlugOut LocationUpdate(Actor1L2,L2)

ActorMove(L2)

Actor1 receives
a move request
to location L2

Other actors
perform Actor

Discovery prior
to sending
requests

ActorDiscovery(Actor1)

ReturnResult(L2) }

Figure 11. Message sequence of a general actor move: “assume Actor1 (Behaviour,
cap,{RS1,RS2}) at L1 moves to L2”

7. Terminal Mobility
In TAPAS, terminals realize the interface towards the end user, whilst nodes are viewed fixed
as seen from their location point of view, though they might be given changeable or dynamic
network addresses. The mobility as a feature is mainly provided for terminals, as end users
want to access their subscribed services while on the move at different locations. This has
been clearly seen in the engineering model of TAPAS, where at each node the support runs at
a distinct network address or location, and terminals execute a MobilityAgent responsible for
tracking their location. To achieve mobility management for these moving terminals we need
to keep track of their movements. So a manager should be responsible for updating the loca-
tions of all nodes that participate in a possible TAPAS service. This central and supervisory
agent will be referred to as MobilityManager, and runs at an address known to all other
nodes, for instance its network location may be part of a configuration file. MobilityAgent
will issue LocationUpdate procedure, upon changing terminals location, and NodeDiscovery
procedures, once a communication is required with other terminals or nodes. Figure 12 dem-
onstrates a general case of terminal mobility. A terminal moves from one domain to another,
from doamin1 to domain2, while its MobilityAgent ensures that MobilitManager is updated
on this movement. However, when it reaches the limit of one domain, or the so-called out-of-
coverage, it considered as inaccessible. Meanwhile, requests from other nodes addressed to
this terminal should be preceded by a NodeDiscovery procedure, which is executed through
the corresponding MobilityManager in a domain. Upon entering another domain, and similar
to the scenario studied in User Mobility, a terminal may be allowed to access certain services
based on a director-to-director authentication process. MobilityManagers operate according
to a set of domain specific set of settings and requirements, which govern the privileges and
access rights specific user or terminal may have.

 13

domain1 domain2

Capabilities,
Status,

Executing
Actors

Capabilities,
Status,

Executing
Actors

Domain-specific
information and
requirements

Mobility Manager

Domain-specific
information and
requirements

director2director1

Requests from
other Nodes

Terminal Move Terminal Move

LocationUpdate,
NodeDiscovery

MobilityAgent MobilityAgent

Mobility Manager

Terminal
(Location)

Terminal
(Location) Node

Out of
coverage

Figure 12. Terminal Mobility in TAPAS

Figure 13 illustrates a possible message sequence of a terminal updating its location, while
some node performs a NodeDiscovery procedure looking up for this terminal.

MobilityAgent_N1 MobilityManager

Node
Node N1

moves from
Location
L1 to L2

LocationUpdate(N1,L2)

Other Nodes
perform Node

Discovery prior
to sending
requests

NodeDiscovery(N1)

ReturnResult(L2) }

Figure 13. Message sequence of a general Terminal move

8. Implementation issues and Experiences

The TAPAS architecture requires a support system for software development, deployment,
execution and management. Parts of this support functionality have been implemented using
JAVA RMI and Web technologies as a means for service definition, update and discovery.
Some of the mobility features have been implemented, while others undergo redefinition and
partial implementation. User and user session mobility have been implemented and demon-
strated in both fixed and wireless environments [4,6]. To test the applicability of the mobility
functionality support two applications have been developed: Chat and File Transfer applica-
tions. These applications comprise two plays each with a set of actor definitions and graphi-
cal user interface. Several test cases have been constructed and tested.
Terminal mobility has been so far limited to the introduction of two kinds of objects: Mobili-
tyManager and MobilityAgent, in order to track and control terminals and their location
change. The TAPAS platform support has been extended to give support for limited capabil-
ity, small user devices, such as PDAs using J2ME and based on sockets as a communication
model. Dynamic connection of wireless terminals, along side static connections of nodes, is
achieved using specific network routines, for instance checking the status of a network socket
or pinging a host. Wireless terminals are characterized by their movement and varying quality
of connectivity, which occasionally may take them into out-of-coverage areas. Therefore any
loss of connection must be tracked, and if possible recovered, and consequences must be
taken into consideration. Such consequences might be marking unconnected actors and delet-

 14

ing their role-sessions. Also, for practical reasons, separate configuration information on the
operating wireless environment and user behaviour must be maintained to allow for efficient
setting of such routines. For instance, in a highly dynamic and wireless environment it is ad-
vantageous to check connection status more frequently than in more static and less mobile
conditions. There is already a solution for a domain of PDAs with tiny downloadable applica-
tions operating by means of wireless LAN connections. Basically the mobility schemes for
Actor and Terminal, studied in the previous sections, seem to be well fitted and properly in-
tegrated. However, more vibrant situations and different environment settings need to be
tested for better exploitation of resources.
The present actor realisation does only give a simplified Actor mobility, which is a simplified
pair of plug-out and plug-in procedures. Although this seems to be adequate for wide range of
services, new and more powerful actor model is needed to experience the full power of Actor
Mobility. A new Actor model is being developed and formalised to cope with such need. Ad-
ditionally, there are certain issues need to be studied to improve the overall Actor mobility.
For example, the so-called Actor Proxy may be developed to simplify the actor discovery
procedures, so that an actor sends all requests to this proxy to try the last known addressed
actors before initiating that procedure upon failure of delivery. On the other hand, Actor Rep-
licas may be instantiated for certain type of actors, e.g. all actors running on wireless termi-
nals. These replicas will try to recover the behaviour of actors, which loose connectivity.

9. Conclusion

In this paper the TAPAS Mobility Handling Architecture has been thoroughly presented.
First, Mobility as a comprehensive concept was dealt with, and categorized into: Personal,
Actor, and Terminal mobility types. Terminology Framework has been established to give a
precise definition for all elements of the targeted architecture. This was a crucial phase of ad-
dressing the mobility issue, as it tends to be quite general and wide-ranging topic. The paper,
as promised at the beginning, succeeded in providing several answers regarding the issue of
mobility handling and its support in Adaptable Service Architecture, in particular, but not
necessarily limited to, the TAPAS terminology. The mentioned types of mobility were care-
fully studied and looked at, and easy-to-interpret examples were worked out to give a general
understanding for the proposed solutions. As a final remark, mobility support is a best-effort
type of support, may be provided with varying degree of fulfilment to certain entities of the
network architecture. As have been demonstrated in all types of mobility, UserSession may
or may net be fully recovered, User and its Personal content may or may not be supported at
another domain, Actor and all of its parts may or may not be entirely re-instantiated, and fi-
nally, Terminal may be denied of services because it is considered inaccessible. The paper
also established a basic comparison between these handling mechanisms and other applied
techniques in certain research areas.

References
1. Aagesen, F. A., Helvik, B.E., Wuvongse, V., Meling, H., Bræk, R. and Johansen, U., “Towards a

Plug and Play Architecture for Telecommunications”, Proc. 5th IFIP Conf. Intelligence in Net-
works (SmartNet’99), Bangkok, Thailand, Kluwer Academic Publisher, November 1999

2. Aagesen, F. A., Helvik, B. E., Anutariya, C., and Shiaa M. M., “On Adaptable Networking” The
2003 International Conference on Information and Communication Technologies (ICT 2003),
April 8-10, 2003

3. Shiaa M.M and Aagesen. F.A. “Mobility management in a Plug and Play Architecture”, Proc.
IFIP 7th Int’l Conf. Intelligence in Networks (SmartNet’2002), Saariselka, Finland, April 2002.
Kluwer Academic Publishers

 15

4. Shiaa M.M and Aagesen. F.A. “Architectural Considerations for Personal Mobility in the Wire-
less Internet”, Proc. IFIP TC/6 Personal Wireless Communications (PWC’2002), Singapore, Oc-
tober 2002. Kluwer Academic Publishers

5. Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E., “Support Specification and Selec-
tion in TAPAS”, Proc. IFIP WG6.7 Workshop on Adaptable Networks and Teleservices, Septem-
ber 2002, Trondheim, Norway

6. Shiaa M.M. and Liljeback L.E., “User and Session Mobility in a Plug-and-Play Network Archi-
tecture”, Proc. IFIP WG6.7 Workshop on Adaptable Networks and Teleservices

7. Berndt H., Darmois E., Dupuy F., Inoue Y., Lapierre M., Minerva R., Minetti R., Mossotto C.,
Mulder H., Natarajan N., Sevcik M., and Yates M., “The TINA Book”, Prentice Hall Europe
1999.

8. Tzifa, Louta, Liossis, Kaltabani, Polydorou, Demestichas, and Anagnostou, “Open Service Archi-
tecture with Personal Mobility Support and Accounting and Charging Capabilities”, European
Multimedia, Embedded Systems and Electronic Commerce Conference EMMSEC99, Stockholm,
Sweden, 21-23 June 1999.

9. Massachusetts Institute of Technology, Active Networks,
http://www.sds.lcs.mit.edu/activeware/ [Accessed May 2003]

10. Colombia University, Department of Computer Science, NetScript,
http://www.cs.columbia.edu/dcc/netscript/ [Accessed May 2003]

11. U.S. Department of Defence, Advanced Technology Office,
http://www.darpa.mil/ato/programs/activenetworks/actnet.htm [Accessed March 2003].

12. Tennenhouse D.L., Smith J.M., Sincoskie D., Wetherall D.J and Minden G.J., “A Survey of Ac-
tive Network Research”, IEEE Communications, Vol. 35, No 1, 1997.

13. The IBM autonomic computing project
http://www.research.ibm.com/autonomic/ [Accessed May 2003]

14. Bieszczad A., Pagurek B. and White T., “Mobile Agents for Network Management”, IEEE Com-
munications Surveys, Vol. 1, No. 1, 1998.

15. University of Maryland, Baltimore County, Lab for Advanced Information Technology, KQML
Web, http://www.cs.umbc.edu/kqml/ [Accessed May 2003]

16. Stanford University, Department of Computer Science, Knowledge Sharing Effort, http://www-
ksl.stanford.edu/knowledge-sharing/ [Accessed May 2003]

17. Reilly, David, “Mobile Agents - Process migration and its implications”,
http://www.davidreilly.com/topics/software_agents/mobile_agents/ [Accessed May 2003]

18. Mouly M. and Pautet M., “The GSM System for Mobile Communications”, Mouly & Pautet, 49,
rue Louise Bruneau, F-91120 PALAISEAU – FRANCW, 1992.

19. G. Coulouris, J. Dollimore, T. Kindberg, “Distributed systems, concepts and design”, third edi-
tion, Addison-Wesley, 2001

 16

http://www.sds.lcs.mit.edu/activeware/
http://www.cs.columbia.edu/dcc/netscript/
http://www.darpa.mil/ato/programs/activenetworks/actnet.htm
http://www.research.ibm.com/autonomic/
http://www.cs.umbc.edu/kqml/
http://www-ksl.stanford.edu/knowledge-sharing/
http://www-ksl.stanford.edu/knowledge-sharing/
http://www.davidreilly.com/topics/software_agents/mobile_agents/

	Introduction
	Related work
	Terminology Framework for Mobility
	Terminology Framework – The Concept
	Terminology Framework – The Definitions
	Terminology Framework – The Engineering model

	Mobility Support and Service Management
	Personal Mobility
	User Session Mobility
	User Mobility
	Knowledge bases (UserSessionBase and UserProfileBase)

	Actor Mobility
	Terminal Mobility
	Implementation issues and Experiences
	Conclusion
	References

