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Abstract

 

: The dependency of society and business on telecommunication services is
commonly recognized, but is this conception taken into account in our effort
towards smarter and more autonomous networks? The objective of the paper is
to discuss some dependability issues in the context of these networks and to
pinpoint some challenges. As an introduction, a brief review of dependability
concepts is given. Next the following issues are discussed: a) strategies for pro-
viding a survivable transport network; b) fault-tolerant network nodes vs. fault-
tolerant functionality on a distributed platform; c) software faults and their con-
sequences like error propagation and network wide failure modes.

 

1 INTRODUCTION

 

Many foresee a future where we will have a ÒdigitalÓ existence in cyber-
space that will be an integrated part of our private, social and professional
life. Even if this future scenario does not become true, it is beyond doubt that
our social and economic welfare is and will become increasingly more
dependent on information and communication technology. However, when
we pursue new technologies toward smarter networks, do we have in mind
that we are going to thrust our welfare to the technology we are developing?
Do we take into account that equipment may fail, that information may be
deliberately or accidentally corrupted, that the environment may knock-out
parts of the network, and that logical ßaws in speciÞcation, design and imple-
mentation may cause instability and breakdown of an entire network?
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History has shown that when failures may lead to disasters, the society
tends to become conservative with respect to introducing new technology
when a proven technology exists. In this situation, the technology deploy-
ment trend tends to be more towards marginal improvements than to intro-
duce radically new solutions. The rather circumspect introduction of IN
during the past decade may serve as an example. It should also be kept in
mind that the additional cost of making a network dependable is similar to the
cost of providing its basic functionality. To become a useful technology,
smart networks must meet the above outlined conservatism and high cost,
and be smart enough to deal with physical and logical faults in an economic
and robust manner. 

The objective of this paper is to introduce and discuss some issues con-
cerning the dependability related to the coming networks. These challenges
has been somewhat overlooked in the network research society. The dependa-
bility of the circuit switched communication infrastructure is taken for
granted and up to recently, none has trusted their welfare on the Internet.
Security issues, arising from intentionally man-made faults/intrusions, is rec-
ognized and put on the research agenda. Remember, however, that ÔnatureÕ
causing unintentional physical and logical faults may be more inventive than
man. This paper concentrates on these faults of the transport and control parts
as the network as illustrated in Figure 1. In Section 3, the various options for
making the transport part of the network tolerant to link and node failures are
presented and trade-off with respect to speed and efÞcient use of spare capac-
ity are discussed. How to provide fault tolerant service, control and manage-
ment functionality are discussed in Section 4. Section 5 presents some
observations of the effect of logical faults in network and points out this as a
potential cause for major network outages. First, however, the basic dependa-
bility concepts are brießy revisited in the next section.
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Figure 1.

 

Simple two layer network model.
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2 DEPENDABILITY

 

Dependability may be deÞned as 

 

the trustworthiness of a system such that
reliance can justiÞably be placed on the service it delivers

 

 [6]. A service
delivered by a system is its behaviour, as it is perceived by its users. A user is
another system (human or technical) which interacts with the former. For a
more comprehensive introduction to dependability concepts, it is referred
to [24]
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. 

 

2.1 Concepts

 

From an engineering point of view, we are left with the following ques-
tions: ÒWhat causes a system to be less than 100% trustworthy?Ó, ÒHow
should this, less than 100%, trustworthiness be quantiÞed?Ó and ÒHow should
a required trustworthiness be achieved and assessed?Ó To handle these ques-
tions three classes of notions are introduced as illustrated in Figure 2:
¥

 

Impairments

 

 to dependability: faults, errors and failures, as well as their 
causes, consequences and characteristics. Impairments will be discussed 
in Section 2.2.

¥

 

Means

 

 to achieve reliability by fault avoidance and fault tolerance, see 
Section 2.3, and the means to validate and reach conÞdence in the result, 
like testing evaluation by modelling and mathematical analysis or simula-
tion. 

 

1. Other deÞnitions exist. See for instance [16].
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Figure 2.

 

The dependability tree, linking various aspects of dependability [24].
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¥

 

Attributes

 

 of a system which describe the properties of a system with 
respect dependability, and whose quantiÞcation determine its dependabil-
ity. The attributes may be regarded as the following abilities of a system:

 

Availability:

 

 to provide a set of services at a given instant of time or at any 
instant within a given time interval.

 

Reliability:

 

 to provide uninterrupted service.

 

Safety:

 

to provide service without the occurrence of catastrophic 
failures.

 

Security

 

: to prevent unauthorized access to and/or handling of infor-
mation.

It is seen that the a quantiÞcation of the dependability attributes are signiÞ-
cant QoS parameters of a system«s service together with performance/trafÞc
related parameters as for instance response time and delay.

 

2.2 Fault, errors and failures

 Fault, error and failure are words which in daily language are used inter-
changeably and mean that something does not work, is incorrect, etc. How-
ever, in dependability engineering they denote separate phases from cause to
consequence as illustrated in Figure 3. Starting with the consequence:
¥

 

Failure:

 

 delivery of incorrect service or the transition from correct service 
delivery to incorrect. A failure is a manifestation of an error that we 
observe on the outside of a system.

¥

 

Error:

 

 a system state that is liable to lead to failure, i.e. the manifestation 
of a fault within a system.

¥

 

Fault:

 

 the cause of an error. Note that faults may have a multitude of 
physical and human causes and be of various kinds as illustrated to the 
right in Figure 4.

This cause to consequence chain may be applied recursively with respect
to both the development, deployment and operation, and the system structure.
For instance: a misconception in a software developers head (fault) may lead
to a wrong design (error) that results in the production of incorrect code (fail-

100100110

100101110
SYSTEM

USER

Fault Error
Failure

Figure 3.Relationship between faults, errors and failures.
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ure). This incorrect code represent a (dormant) fault in the system which
when activated produces an error, which again may cause a failure of the sys-
tem. 

Often, only permanent hardware faults that are considered when the
dependability of a system is regarded. This leads to a gross overestimation of
the dependability, since these faults are the least frequent cause of failures.
Human made logical (e.g. software) and operational faults as well as transient
faults are far more frequent. See for instance [2, 10, 21]. 

 

2.3 Fault-tolerance

 

There are two basic approaches to obtain dependable systems, fault avoid-
ance and fault tolerance. The basic principles are illustrated in Figure 4. In
the fault avoidance approach, we seek to avoid the faults, e.g. by extensive
quality assurance of the software, benign operating conditions for the hard-
ware, etc. In the fault tolerant approach, the system is given a structure and
mechanisms, which prevent errors in the system to manifest themselves as
failures. A number of mature and well known techniques exist, e.g. FEC (for-
ward error correcting codes) or CRC (cyclic redundancy check) combined
with retransmission of errored packets to tolerate transient transmission
faults. Other techniques is rerouting of trafÞc when network links and nodes
fail, as introduced in Section 3 and replication of computing functionality as
dealt with in Section 4. Introductions to fault tolerant design may for instance
be found in [3, 17, 18, 26 Chap. 14, 28, 37].

Causes

Human

Specific.

Physical

External

Internal

Design
Implement.

Operation
Interaction

Faults

Permanent

Transient

Intermittent

Design

Interaction

Errors Failures

Fault avoidance Fault tolerance

Figure 4.The design barriers of fault avoidance and tolerance to improve dependability.
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Below, the options for fault-tol-
erance in smart network will be dis-
cussed. Neither fault avoidance nor
fault tolerance comes cheap, and it
is not straight forward to obtain a
dependable network. Hence, smart
networks should be inherently
robust, i.e. fault tolerance of net-
work services should be simple to
achieve and do not require more
additional development effort and
deployed equipment than strictly necessary. Preferably smart networks
should also minimize the deployment and operation efforts as pursued in the
plug-and-play architecture [1].

 3 SURVIVABLE TRANSPORT 

Various fault-tolerance strategies are employed to achieve dependable
transport networks. There are three important issues in the choice of strategy:
¥ The redundant network elements and capacity needed, i.e. the additional 

equipment cost required to implement the scheme;
¥ The duration from the failure of a network element and until the transport 

service is restored;
¥ Centralized or decentralized control. Control by a dedicated management 

functionality or as an integrated part of the trafÞc handling.
In this section, three basic strategies, which differ with respect to the

above listed issues are presented. Section 3.4 gives a brief discussion of these
in the layered architecture and fault handling in transport networks.

 

3.1 Protection

 

Protection is the simplest form of fault tolerance of
the transport service between to nodes of a network,
where a dedicated spare path is established. There may
be intermediate nodes as indicated in the Þgure, but
these do not perform any switching or rerouting of the
protected trafÞc. The principle is, as illustrated in the
Þgure, that the trafÞc between two nodes follows two (or more) dedicated
paths. To have independent failing, the paths must be physically disjoint. In

Errors

Catastrophic
Fail safe

Benign

failures

failures

Figure 5.The fail-safe principle.

Disjoint physical paths
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some cases this is sought achieved by minimum physical distance (e.g., 1.5
meters) of the cables combined with other means for physical separation. It is
three types of protection switching:
a) 

 

1+1 protection:

 

 The bit stream is sent synchro-
nously on both paths toward the destination. The 
destination selects the bit stream it considers as 
the one with the higher integrity, i.e., fewer bit 
errors. It is ensured that path failures are 
detected by coding techniques, loss of signal, 
loss of synchronization, etc. The advantage of 1+1 protection is, as with 
all masking redundancy techniques, an immediate (in the order of a few 
ms) handling of path failures. A path failure should be unnoticed by the 
users of the transport service.

b) 

 

1:1Ó

 

 and 

 

Ò1:N protection:

 

 are stand by protection 
strategies, where a dedicated spare (or back-up) 
path is available for one and  active paths respec-
tively. Failure detection techniques are as for the 
masking redundancy, but the receiving node must 
inform the sending node which redirects the data 
stream. This incurs a temporary loss of service (in 
the order of 10 - 100 ms), but is usually tolerated by the end-user (appli-
cations).
In conclusion the restoration is simple, fast and proven, but requires more

transmission capacity (but less costly control) than the (smarter) alternatives
outlined below. 

 

3.2 ReconÞguration

 

The reconÞguration strategy is based upon a centralized management of
the network. A network management system, see Figure 6, supervises and
controls all network resources. It seeks to keep a map of all network
resources, their utilization and status. Based on this information, it sets up
transmission paths between nodes in the network. When a network failure
occurs, the network management system reconÞgures the routing through the
network. 

This strategy has the potential to use the transmission capacity in the net-
work very efÞciently due to its ability to perform a global optimization.
ReconÞguration may, however, be slow, in the order of minutes, due to the
time needed for data collection, deciding upon a new conÞguration, and prop-
agating the new conÞguration back to the switches. The strategy is vulnera-

Simultaneous synch. transfer

 

Dedicated back-up path

N
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ble, since it is both centralized and depends on information transfer in a
network with failure(s) not yet handled. To overcome these drawbacks, parts
of the management functionality are sought distributed, see for instance [7].

 

3.3 Self-healing

 

Self-healing is used as common nominator for a range of strategies which
have in common that they have distributed control and requires no dedicated
pre-reserved transmission capacity. The next subsections present three basic
techniques. The two Þrst are, as protection and reconÞguration, associated
with transmission paths in the network, while rerouting in Section 3.3.3 is
associated with the individual connections/streams.

 

3.3.1 Back-up paths

 

When a path (the active) is established through the network one or more
back-up (stand-by) paths are established simultaneously. This/these back-up
path(s) may be completely or partially disjoint from the active. A back up
path does not carry any trafÞc unless a node or link along the active fails.
Transmission resources along a back-up path may be assigned on-demand
when an active path failure occurs. In this case, trafÞc may be lost if sufÞcient
capacity are unavailable.
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Figure 6.

 

ReconÞguration of a network by centralized fault-handling.
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Hence, if the network shall meet dependability/QoS requirements, semi-
dedicated resources must be reserved. See Figure 7 for an example. The link
[i, k] carries the active path between nodes i and k and has reserved stand-by
capacity for either the active path {i, n} or the active the path {i, m, s}. Since
these paths have no common network element except the originating node i,
failures of these two active paths are assumed independent.

A path failure is detected in the end-nodes, for instance by missing OAM
cells in an ATM connection. When resources on stand-by paths are available,
the service may be restored in the order of 10 - 100 ms. A challenge is to allo-
cate and adapt the back-up paths so the spare capacity in the network is opti-
mally used under a given trafÞc load.

 

3.3.2 Flooding

 

Flooding is a fully distributed network management technique to restore
communication after an element failure. The technique has got its name since
it ßoods the network with request in the search for available capacity to
replace that of a failed link. No resource reservation is made ahead of the
reconÞguration, but the network must be dimensioned so that spare capacity
is available. There are four variants of the method, dependent on whether:
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Figure 7.

 

Example of allocation of back-up paths with semi-dedicated resources.
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¥ A new path restored by diverting 
the affected paths around the 
failed network elements failed, 
i.e., 

 

span restoration

 

, or whether a 
new path is established between 
the source and destination node, 
i.e., 

 

end-to-end restoration

 

. See 
the illustration to the right for 
examples.

¥ The search for a new (unidirectional) path starts form one node and termi-
nates in the other, i.e., 

 

single search

 

, or starts in both nodes and terminates 
when the searches Òmeet in the middleÓ, i.e., 

 

double search.

 

Flooding, especially end-to-end restoration, poses a number of algorith-
mic problems on how to reserve and release capacity to avoid deadlocks and
to make an efÞcient use of the available resources in the network. The service
restoration time is at least several seconds, and no dependability/QoS guaran-
tees may be given, since no reservations are made.  

3.3.3 Rerouting

 

This self-healing strategy is executed on the connection level. The trafÞc
through the network Þnds new routes between source and destination end
systems when a network element fails, i.e. by directing the packets (in con-
nectionless communication) along new routes, or re-establishing the end-to-
end connections along a new route. See Figure 8 for an illustration. Note that

in this strategy, individual packets/connections are rerouted or re-established.
This is different from the self healing strategies presented above, as well as
protection and reconÞguration, which is aimed at restoring the end-to-end
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Figure 8.Example of self-healing in a network by rerouting connections or ßows
after a network element failure.
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paths of the network after an element failure. Each path may carry a number
of individual end-user connections and/or messages between end-users. This
path rerouting/re-establishment may be considered as a bulk restoration of
the transport capacity by the network itself without involving the end-sys-
tems, and where it is an objective that the fault handling should be as Òinvisi-
bleÓ to the end-user (applications) as possible. Applying rerouting, this near
transparency of network faults to the end-user (systems) will be lost, 

 

no
dependability/QoS guarantees can be made

 

 and:
- the end-user application will stop, which may be critical for some applica-

tions, e.g., tele-medicine,
- longer time is needed before a service may be re-established after a fail-

ure, e.g., a new connection must be made or a period with large packet 
losses and/or delays will arise in connectionless networks,

- the network may be temporarily overloaded with connection requests or 
repeated packets after a failure, and 

- semipermanent connections established by the management system, e.g., 
leased lines, require special attention.

The are also a number of advantages by utilizing this strategy:
+ less functionality is needed in the network since ordinary trafÞc handling 

functions are used for network element failures,
+ the routing algorithm used for rerouting after a network element failure, 

may be the same algorithm used to adapt to normal ßuctuations of the 
trafÞc load, like daily variations and overloads,

+ the restoration is distributed (unless a centralized routing function is intro-
duced) and hence, no centralized function forms a dependability bottle-
neck,

+ the path restorations are end-to-end and the information ßows that shall be 
restored have a Þner granularity, which yields a better resource utilization.

 

3.4 Multilevel fault handling

 

Table 1summarizes some of the basic implementation issues related to the
redundancy strategies discussed hereto in Section 3. Transport networks has
typically a layered design, at least a physical layer, a transmission (link) layer
and a switching layer. These layers may contain sublayers, e.g. the ATM vir-
tual path and connection layers. In which of these layers should we introduce
the fault tolerance? What fault-tolerance strategy should be used? Since the
layers are designed independently of each other, how should we avoid intro-
ducing excessive spare capacity and avoiding that several layers compete to
handle the same failure?
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An exaggerated illustration of the problem is given in Figure 9. For
instance, the cross-connect switching carried out by the SDH transport sys-
tem, may alternatively be carried out by the ATM VP layer. If we are inter-
ested in IP transport, why do we not get rid of all the underlying layers and
use IP-over-light? The answers to these questions are complicated by the fact
that:
¥ in contradiction to what is illustrated in Figure 9, networks are not homo-

geneously and strictly layered end-to-end. For instance, an IP network 
may span several underlying networks;

¥ the lower layers may carry several independent transport services;
¥ all transport services (as well as end-users) do not have the same depend-

ability requirements and hence the same need for fault-tolerance in the 
network.
For discussions on design of multilayer networks and on which layer that

it is most proÞtable to introduce redundancy, see for [19, 20, 29 and 40].
Some rules of thumb may be given:
a) The higher up in the network the larger is the ßexibility and the number of 

stand-by resources needed is likely to be less;
b) The higher up in the network, the larger is the delay from the failure event 

and until the service is restored;
c) Low layer redundancy handling tends to introduce the least complexity 

since the mechanisms may be simpler and the redundancy handling may 
be common to a number of higher layer network services.

d) Fault tolerance on a layer can only handle fault at its level and on the lev-
els below. Hence, some fault tolerance is required at the highest level.
A closing question: with the observations of the current internet in

mind [33, 22], is the currently so popular IP-over-light scenario able to short-
cut today«s multilevel fault handling and provide a fast enough reconÞgura-
tion and a stable rerouting in a large network where failures are the rule more
than the exception?

 

Table 1. 

 

Summary of resource handling issues for the various network redundancy strategies.

 

Resources Control

 

Dedicated
Preplanned 
Reserved

On demand Central
Distrib. 
control

Distrib. 
mangemnt.

Protection

 

✔ ✔

 

ReconÞguration

 

✔

 

✔

 

✔

 

Self healing

 

✔ ✔ ✔ ✔
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Connectionless service (IP)

Switched ATM connection 

Switched ATM paths 

Transmission paths (SDH cross-connect)

Physical Layer (Fiber)

Figure 9.Layered network scenario with fault handling in multiple layers.

Adaptive routing. 

Dynamic routing. Links 
between VC switches are 
VP paths.Dynamic adap-
tive routing may by used 
for a better utilization of 
paths in case of failure 
but will not increase de-
pendability significantly 
due to dependencies.

Stand-by paths. The 
network has links which 
are SDH virtual container 
paths. Hence, the direct 
links to site E go via the 
SDH CC switch at site D. 
Stand by paths may be 
between all VP switches, 
but will not be indepndnt.

Reconfiguration. The 
cross-connect switches 
at sites A, B, D and F are 
used to reconfigure the 
net in case of cable cuts. 
Note that a cable 
between sites D and E 
will isolate the VP switch 
at site E.

Protection switching. 
Diverse paths are used 
between sites C and D. 
Transmission between 
these sites has 1+1 
protection. The remaining 
intersite links have 1:N 
protection of the indivi-
dual fibers in the cable

A B

C

D

E F

Router
VC

VC switch
VP
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4 FAULT TOLERANT NETWORK FUNCTIONS

 

In the previous section, the techniques for making the transport services
of a network fault tolerant was discussed. This section presents two basic
fault-tolerance strategies that enable network functions to be performed,
uninterrupted if required, in spite of computing and data storing element fail-
ures. Network functions in this context encompass call/connection/stream
control, network and service management, and service handling as illustrated
in Figure 1. The faults sought tolerated are primarily physical faults, even
though some of these techniques also have been experienced to tolerate a
subset of logical faults reasonably well [10]. 

The two strategies regarded for achieving fault tolerance in the computing
and data storage functionality are:
¥ To use fault-tolerant network nodes, i.e. to make the computing and data-

base platforms supporting the functionality of the network nodes fault-tol-
erant. For instance to make an intelligent network SCP fault tolerant by 
using a duplicated synchronous computer to execute the functions.

¥ To introduce fault tolerance at the network level, i.e. to have co-operating 
replicas of software objects/processes providing network functions in sev-
eral nodes and thereby enable tolerance of node failures.Network level 
fault-tolerance is based on dependable distributed computing technolo-
gies. 

The aim of the section is two view these as competing options for achieving
dependability in smart networks. Hence, (too) little attention is paid to the
Òin-betweenÓ systems, e.g. [34, 30], which uses a specially designed transport
network to ensure consistencies between replica.

 

4.1 Fault-tolerant network nodes

 

This strategy is illustrated in Figure 10, where each node in the network,
and the services it delivers, are made fault tolerant by having redundant com-
puting and/or storage capacity in the node. The replicas of the processes exe-
cuted or stored are located within the same node. The architecture of the
nodes may vary as illustrated. Fault-tolerance may for instance be achieved
by micro-synchronous duplication, see node 

 

s

 

 of Figure 10, as in for instance
the AXE [32]. Alternatively a distributed and mainly load shared architecture,
see node 

 

d

 

 of Figure 10, as in Alcatel System 12 [4], may be applied. See for
instance [3] for a discussion on the design and analysis of such systems.

As indicated by the type and age of the above references, the fault tolerant
network node is the classic approach for public communication systems. This
is a proven technology, and the design goal, originally set for the ESS 1 [8],
of an expected down time of three minutes per year was achieved between
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one and two decades ago. In addition, this approach has several advantages.
In most systems, it hides the fault-tolerance mechanisms for the application
designer. The synchronization between replica incurs little or no delay, and
the strict real time QoS requirements of communication systems is met. How-
ever, these systems are dedicated (legacy) systems and are more expensive
than off-the-shelf computer and database systems. Located at a single site
these systems are vulnerable to environment failures like Þre.

Nevertheless, this is a viable approach to providing dependable network
functions in a smart network, cf. for instance [15]. With respect to providing
network functionality, the problems related to the handling of (physical)
faults may be substantially reduced/hidden, but at a certain cost and with
reduced applicability to smaller nodes.

 

4.2 Replication across the network

 

This strategy is illustrated in Figure 11. The computing and storing hard-
ware of the nodes in the network are 

 

not

 

 fault tolerant. The services delivered
by the network, however, may be fault tolerant by having replicas of the vari-
ous service providing software objects/modules in several network nodes.
The replication may be handled by appropriate middelware [27]. As in the
strategy of Section 4.1, this requires redundant computing and storage capac-
ity in the network. However, off-the-shelf equipment may be used and the
redundancy installed for the various object/modules may be tailored to the
dependability requirements of the services they provide and the required con-
sistency between replicas. For instance, in Figure 11, there is three synchro-
nous replicas of object/module A. These replicas have consistent states and
by voting, an arbitrary failure of one of the replicas, as well as the node host-
ing it, may be tolerated. The two synchronous replicas of D and F allow a
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Figure 10.Illustration of network with fault tolerant nodes with various architectures.
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crash failure without interrupting the service. The active object/modules B
and E have stand-by replicas that may take over if the active replica/node
fails. The stand-by replica may have a consistent or partially consistent state
with the primary, e.g. by checkpointing, or be in a default state. In the last
case illustrated, C has three load-shared replicas without consistent states.

It is a common objective that replicas shall be location and fault transpar-
ent, i.e. users of the services shall not need to know where the replicas are
located and whether some of the replicas has failed. Achieving a ßexible rep-
lication scheme and consistent replicas across an unreliable network is no
simple task. To deal with these problems, there has for more than a decade
been put considerable research effort into the management of groups of
objects/processes and the communication between them. This is referred to as
group communication. See [35] for a collection of papers on this issue. Vari-
ous tool-kits have been developed to facilitate fault-tolerant distributed
processing, e.g. Isis and Hourus/Electra [5, 36]. Mechanisms for fault-toler-
ance are also likely to be included in CORBA [31, 38, 39, 41]. Hence, ensur-
ing the dependability of network control, management and service
provisioning should be within reach by fault tolerance techniques developed
for distributed systems.

So where is the challenge in the smart network context? The fault-toler-
ance and replication strategies applied must be tailored to the requirements
and adapted to the particularities of telecommunications. For instance:
¥ Network operations and end-user QoS requirements put rather strict real 

time requirements on many tasks. The replica synchronization is based on 
protocols ensuring causal order [23], which may be time consuming, 
especially on non-broadcast media like WANs. 
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¥ Many tasks carried out in a network, e.g. reservation of a communication 
resource, have short processing times compared to synchronization times 
between replicas, hence an approach must be chosen so an immense over-
head can be avoided.

¥ Only a subset of the tasks performed by the network result in state 
changes that need to be persistent in case of failure. Some of the Internet«s 
success as a transport network may be attributed to its statelessness. In 
connection oriented networks, connections in the set-up phase has always 
been considered expendable when failures occur. For other tasks, persist-
ence of the state in case of failure is of outmost importance, e.g. updates 
of the home location register in mobile networks. 

5 LOGICAL FAULTS1

The fault tolerance strategies discussed in the previous chapters are aimed
at physical faults. Logical faults are however the cause of a substantial part of
the failures. Failures due to logical faults may affect every aspect of the serv-
ice and network operation, from aborting a single service transaction to a
complete network outage. The increasing logical complexity and intervowe-
ness of smart networks makes them more prone and vulnerable to logical
faults.

In spite of extensive use of fault avoidance and validation techniques, cf.
Figure 2, logical faults, e.g. software faults, are embedded into a system dur-
ing its speciÞcation, design, implementation and conÞguration. These faults
stay dormant in the system until a combination of input/use of the system and
internal state activates them and causes an error. For a mature system, the
expected dormancy period can be several years. In the subsequent operation
of the system the error may cause a failure as illustrated in Figure 12. In
dependable systems, the various modules/components are sought made
robust to errors by audit routines, exception handling etc. 

In this presentation, it will not be discussed how logical faults could be
avoided and tolerated. The focus is instead put on how logical fault inßuences
the dependability of networks, namely the persistence of errors and error
propagation.

1. The term logical fault, and not the more common term software fault, is used deliberately 
since this type of failures encompass much more than software bugs, e.g. design and speci-
Þcation faults in the overall network operation.
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5.1 Error persistence

A common and rarely disputed assumption in the design and evaluation of
dependable systems is that failures occur according to a Poisson process, i.e.
failures occur independent of when the previous failures occurred and with a
constant occurrence probability per time unit. However, studies of failure
logs show that this is not the case, especially for logical caused failures, see
for instance [25, 11]. This is demonstrated in Figure 13, which shows the
autocorrelation1, , of logically caused failures of a distributed communi-
cation control system. 

The Þgure shows the dependency between the number failures in one
interval and the number of failures in the jÕ th subsequent (or previous) inter-
val. (The larger the deviation of  is from zero, the greater the depend-
ency.) If the failure process was a Poisson process, the autocorrelation would
in 95% of the cases be within the two dotted lines of Figure 13. It is seen that

1.  Let  be the number of failures in the constant length interval . The autocorrelation is 

then deÞned as 
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the failure process has a ÒmemoryÓ of more than a week. Error propagation,
as will be discussed in the next section, and changes in operational conditions
will also contribute to this correlation. Note also the daily variations seen in
Figure 13. The number of failures is more dependent on the number of fail-
ures at the same time during the previous day than the number of failures dur-
ing the previous eight hour interval. Errors may persist in the system for a
considerable period and cause a burst of failures, see also Figure 14.

5.2 Error propagation

Figure 13 indicated that errors tend to persist in a system and cause multi-
ple failures. Figure 14 shows a sample from the software related failure pat-
tern of a large distributed communication control system. It is seen that
during the Þrst four days we have a normal operational mode with few fail-
ures. During the 11Õth through the 13Õth day severe bursts of failures occur,
affecting several processors. These Þgures show that the failure pattern is not
Poissonian, i.e. failures do not occur independently of each other. 
¥ Failures tend to occur in severe bursts, i.e. if one failure is experienced, 

the next is likely to occur rather soon. Restarts or similar actions after a 
failure do not always restore the system to an error free internal state, or 
the internal state may be inconsistent with the rest of the system or the 
environment.

¥ Many processors are involved in a failure burst. If one processor fail, 
there is an increasing probability of failure of the cooperating processors. 
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An error located in one part of a software subsystem may propagate 
(spread) to other parts. 

For an explanation of the latter phenomenon, regard the sketch of
Figure 15. Control/management/service providing subsystems span several
physically separate nodes of the network. Each of these subsystems is consti-
tuted by a number of more or less tightly coupled software modules residing
in the various network nodes. These modules cooperate to carry out the serv-
ices of the system. Incorrect state information may be transferred from one
module to another. For instance by transfer of incorrect or inconsistent data,
or by a module acting on false information and thereby introducing errors in
its own internal state. Hence, subsequent failures of seemingly independent
physical units may occur. This phenomenon is denoted error propagation [12,
13]; see the illustration in Figure 16. The error propagation between modules
depends on:
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¥ the intensity of the interactions and 
¥ how much information they exchange/have in common.

A variant of error propagation occurs when the same logical fault is
present in identical copies of software modules present in various nodes in
the network. These faults may be activated by a condition spreading through
the system under speciÞc circumstances, cf. the Þrst well known example [9].
The most prominent logical fault of this kind is the Y2K bug. Analysis of
operational data from distributed communication control systems by cluster
analysis, shows that the systems may have different operational modes as a
result of the error propagation. For instance, ÒgoodÓ modes where only few
sporadic failures occur and ÒbadÓ modes where many units fail repeatedly
within a short time interval [14]. A mode-changing behaviour of the system
may be identiÞed. The ÒbadÓ modes cripple the service offered severely and
may cause instability of the entire network. Furthermore, it is illustrated how
the mode-changing behaviour of the system may be described by a state
model.

Smart networks are, due to their large logical complexity and intervowe-
ness, exposed to persistent and propagating errors. Hence, to be dependable
and have a stable operation, these must have an inherent design which
¥ enables errors to be removed when a recovery action is taken as a result of 

a failure;
¥ prevents error propagation between the various parts of the network.

6 CONCLUDING REMARKS

Dependability is an important aspect of networks in the future. The avail-
ability and reliability requirements will continue to increase as our social and
economic dependence on teleservices as well as the cost of failure continues
to grow. Dependability constitutes a signiÞcant part of the QoS and is an
important factor in the competition among service providers, network opera-
tors and equipment manufacturers. High dependability is costly to provide
both with respect to development (fault-tolerance, fault management, and
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Figure 16.Error propagation a generalized Moore/Mealy model.
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quality assurance), deployed equipment, and operation and maintenance. At
least a doubling of Òthe basic costÓ is required if system shall reach a typical
communication network component availability in the order of .

New smart network technologies must be proven as dependable as Òtradi-
tionalÓ network technologies before they become deployed in commercial
networks. Hence, the following basic design question arises; shall proven
ÒdumbÓ low level (in terms of a layered design) fault handling techniques,
like protection switching and duplicated synchronous processors be used, or
should new smarter technologies, which are more ßexible, and which give
potentially cheaper solutions be pursued? Anyhow, the ÒdumbÓ techniques
are only able to cope with physical faults. The major challenge is the logical
(software) faults. The consistent design, design methodology and extensive
quality assurance, currently used to restrict the number of logical faults and
ensure the dependability, seem feasible only within monolithic proprietary
systems as we know them to-day. In the future open, heterogeneous networks
with multiple hardware and software vendors, service providers and network
operators, robust and adaptive network and service components becomes a
necessity. Components able to tolerate logical and physical failures of their
environment and co-operating components, adapt and contribute to the provi-
sion of continued service is a major challenge in the advancement of smart
networks. 
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