
MOBILITY MANAGEMENT IN PLUG AND PLAY NETWORK
ARCHITECTURE

Mazen Malek, Finn Arve Aagesen
Department of Telematics
Norwegian University of Science and Technology
Trondheim, Norway
malek@item.ntnu.no , aagesen@item.ntnu.no

Keywords: Plug and Play, mobility management, theatre model, software agents.

Abstract:
A Mobility Management platform in Plug-and-Play (PaP) network
architecture is presented. Four different approaches for Actor, Terminal,
User and Session Mobility Management are illustrated. We explore a
few issues related to implementation design and propose a set of
components to facilitate the deployment of this platform in the available
PaP applications. The PaP architecture is briefly introduced and
subsequent definitions and terms are dealt with. The architecture itself is
based on a theatre metaphor, in which plays define the functionality of
the system. PaP components are realised by actors playing roles defined
by manuscripts. An actor's capabilities define his possibilities for playing
various roles. The mobility management is introduced to add a capability
to handle any move of any constituent of the system. This could range
from moving code agents, or actors, to moving users of the system.
Throughout the paper we try to give a survey on the various mobility
cases and make an effort to demonstrate an early set of mobility
management algorithms or methods.

1. INTRODUCTION

Grade of network intelligence is defined as the efficient flexibility in the introduction
of new teleservices and the efficient flexibility in the execution of teleservices. IN (Intelligent
Networks) [ITU92], TINA (Telecommunication Information Networking Architecture)
[TINA95], Mobile Agents and Active Networks ([Bies97], [Bies98], [Raza99], [Tenn97]) are
all solutions aimed to improve the network intelligence.

Plug-and-play (PaP) for telecommunications means that the hardware and software
parts have the ability to configure themselves when installed into a network and then to
provide services according to their own capabilities, the service repertoire and the operating
policies of the system. Plug-and-play functionality means utterly increase of network
intelligence. The concept PaP stems from the personal computing area. PaP simply means
that you plug-in and then the system works. In these systems, the plugged in component as
well as the framework has a predefined functionality. We denote this static PaP. A more

2

general kind of PaP is when the plugged-in unit has a set of basic capabilities, but its
functionality is defined as a part of the plug-in procedure and it can be changed dynamically.
We denote this as dynamic PaP. An example is a cellular phone, which obtains the services it
provides depending on its inherent capabilities, which user that logs on, and which network it
is attached to. The focus of this paper is on dynamic PaP, and from now on PaP means
dynamic PaP. For a detailed description of the PaP architecture and the ongoing research
activities around this project please refer to: (http://www.item.ntnu.no/~plugandplay),

For purposes of more flexible computational capabilities, utilisation and adaptation of
wider range of network services and possible introduction of network management tasks, our
PaP model should be enhanced with various mobility management schemes. The very basic
requirement in this regard is the ability to move functionality among nodes or components. In
this paper we refer to this by Actor Mobility. Actor is the core concept of the PaP architecture
and it behaves according to a prescribed role or behaviour. Actor Mobility has little to do with
mobile agent technology [Bies97] though they share the same vision of autonomous
computational entities moving around the network. In our case the actors are just a
representation of the functionality at a given node. When actors move they just transfer their
functionality, or by other words move the execution of the functionality to a different node.
Section 3 provides a clearer view on this concept. Nowadays telecommunication networks
provide the users with ever improving and flexible mobility in both wired and wireless
technologies. Users could move their terminals more and more freely, and yet be able to
access the same range of services. This ability adds a great challenge in terms of managing
terminal mobility. So, as the PaP architecture means for an intelligent system that is
applicable for any environment it should be no exception. Terminal Mobility is handled in
section 4. For the remaining types of mobility, the User and Session mobility, sections 5 and 6
give an overview of the proposed methods. Finally we give summary and conclusions that
include our further interests and future work.

2. A PaP Reference Architecture

In this section we give a brief description of the PaP architecture, how does it define
functionality and what are its basic constituents. The PaP was introduced in [Aage99].
Important definitions are highlighted and the basic procedures are mentioned. Some figures
illustrating the different object models and view points are also included to add clarity.

PaP components: are real-world active hardware and/or software modules. These can be
combined hardware/software modules with one or more external hardware interfaces, or pure
software modules. These must interface with a software platform capable of running PaP
application software.
The functional object model: PaP components are composed from (one or more) interacting
instances of PaP functional objects, where each instance is defined by reference to an object
type. This means that the PaP component functionality is defined by a functional object model
consisting of functional PaP objects. ISO's reference model for Open Distributed Processing
(ODP) [Duts96] defines the enterprise, computational, information, engineering and technical
viewpoints. The viewpoints of primary interest with respect to PaP are the computational and
the engineering viewpoints. The PaP components are basically engineering viewpoint objects.
The relationship between important PaP concepts is shown in Figure 1.
PaP Actor: An actor is a generic object with a generic behaviour. Actors are able to behave
according to a manuscript. The repertoire consists of plays, which are defined by roles and
the role is formalised by a manuscript. These concepts have meaning similar to as those that

3

are used in the theatre context. The manuscript is the functional PaP object type definition. An
instance of a PaP functional object, also here denoted as a role-figure is realised by an actor,
which is executing the manuscript.
PaP Manuscript: defines the entire behaviour of an actor. Role-session is a projection of the
behaviour of the actor with respect to one of its interacting actors. The entire role as well as
the role-sessions are EFSMs (Extended Finite State Machines). An actor also has a defined set
of capabilities, which is the ability or power to do something. The capabilities are the result of
the available hardware functionality connected to the hardware executing the actor software
behaviour, but also the quantitative aspects such as processing capacity [Aage99].
PaP Play: is a defined autonomous functionality. The play defines the context for
relationships between PaP objects as well as their behaviour. One important PaP object
instance necessary to initialise any play is the director role-function. Director behaviour is
also defined by an instance of a play. An actor has three distinct behaviour phases: 1) the
plug-in phase, 2) the play phase and 3) the plug-out phase.

Play

Role-session

Interface

Role

Repertoire

Manuscript

is defined by

1

1

*

**

implements

demonstrates
projects

11

1

Legend:

1

Capabilities
*

*

1
1

1

1

implements

*

describes the
superposition of

1

1

Director

Active entities

Application
role-figure

Actor
1

1

1
*

*

*

has

corresponds to

needs

*

*

Information-
units

manages

DynamicsTerms

*

:The Director constitutes a Director role-figure, which
Role is defined by a Manuscript executed by an Actor

*

manages

is

has

Director
role-figure

1

1

Component

implements
*

1

has

1

1

executes

* 1

Figure 1. PaP concepts

PaP support functionality: The following functions are needed: PlayPlugIn,
PlayChangesPlugIn, PlayPlugOut, ActorPlugIn, ActorPlugOut, ActorBehaviourPlugIn,
ActorPlay, RoleSessionAction, Subscribe, ActorChangeBehaviour, ActorBehaviourPlugOut
and ChangeActorCapabilities. For details see ([Aage99], [Joha99]). The functions:
ActorBehaviourPlugIn, ActorPlay and ActorBehaviourPlugOut comprise the initialisation of
a generic actor pending for a manuscript, performing the manuscript, and finally making the
actor pending for a new manuscript. This functionality with the addition of
ActorChangeBehaviour is denoted as the basic PaP functionality. The actor is initialised by

4

first activating its director. An actor negotiates with a director role-figure in order to obtain
its behaviour. The director role-figure will create an instance of a manuscript with all
necessary parameters bound particularly for the actor. The director role-figure also acts as a
binding object, which helps to establish communication or interactions among actors. After
receiving a manuscript from the director role-figure, an actor will start acting according to the
specification described in the manuscript. From this point on in time, the actor becomes
autonomous and independent of the director role-figure and constitutes an application role-
figure until it terminates or wants to change its behaviour.
PaP System - Implementation Design: As illustrated in figure 1, there are two types of role-
figures, the application role-figure and the director role-figure. A relation between an
application role-figure and a director role-figure must always exist. Relations between
director role-figures will give a possibility to obtain a distributed solution for the director role.
A PaP system with more than one director needs administrative domains to manage the
federation of responsibility between director role-figures. Figure 2 shows the structuring of
the needed functionality into five layers.

Director
(Actor)

PaP communication Infrastructure (PCI)

PaP applications
(Actors)

Non-PaP applications

PaP Extended
Management (PXM)

PaP Actor Support (PAS)

Infrastructure
Layer

Non-PaP applications
interfaced to PaP appl.

PaP specific
applications

PaP Extensions

PaP Dynamic
Basic Support

PaP Static Basic
Support

P
aP

sp
ec

if
ic

L
ay

er
s

A
pp

lic
at

io
ns

PaP Extended
Support (PXS)

PaP Node Execution Support (PNES)

Figure 2. PaP layered model

To describe the software architecture, some implementation-related concepts are
needed. The most obvious hardware and software specific concepts involved are node and
process/thread. A node maps directly to a computer and a process/thread will map one-to-
one to an operating system process or thread. Figure 3 illustrates the software execution
architecture or the engineering model. The Actor-environment-execution-module (AEEM) is
a process/thread that executes a collection of actors with associated PaP Actor Support (PAS).

All layers in Figure 2, except for PaP specific applications and non-PaP applications
are completely independent of the applications themselves. The PaP functionality will have

5

to interface to some infrastructure technology at the bottom layer, and may interface with any
type of non PaP application through the top layer.

A PaP communication infrastructure (PCI) architecture based on standard solutions,
will usually consist of three layers with the operating system functionality (e.g. Unix or
Windows) at the bottom, the network communication functionality (e.g. TCP/IP) in the
middle, and some distributed system solution (e.g. CORBA ORB or Java RMI) at the top. The
PCI top layer may be omitted, but that will require a more complex implementation of the
interfacing module PNES if the PaP functionality require a distributed system solution.

Node 4Node 1

AEEM1 AEEM1

Node 3

AEEM1

Node 2

AEEM1AEEM2

A1 A2

PAS

A3

PAS

PNES

Opsys/network

D1

PAS

PNES

Opsys/network

AEEM2

A5

PAS

D2

PAS

PNES

Opsys/network

D4

PAS

PNES

Opsys/network

Communication network

Legend: A1 - A5: Actor1 - Actor5; A1, D2: Director1, Director2
AEEM1 – AEEM2: Actor-environement-execution-module1, Actor-environment-execution-module2

Figure 3. Example view of PaP software execution architecture

PaP Node Execution Support (PNES) makes it possible to run PaP software on a node,
and for PaP functionality (i.e. executed by actors) on different nodes to interact with each
other. PNES is able to receive requests from other PNESes, interpret these requests and take
proper actions. PNES will also do start-up and initialisation of PASes or PCIs if that is
required. PNES implements the PaP functionality that is termed the PaP Static Basic Support
in the model. Static in this sense means that changes/extensions of the PNES functionality
must be backward compatible with earlier versions because this functionality represents the
“bootstrap” that is necessary to be able to run PaP applications. Only this functionality must
be manually installed at a node before PaP applications can be installed and activated.

PaP Actor Support (PAS) makes it possible to create actors within the context of an
operating system process/thread, to give these actors behaviour, and to communicate
information between these actors and their environments. There will be one PAS instance
within each Actor-environment-execution-module (AEEM) as defined above.

Director is both responsible for the management of the PaP application definitions, i.e.
its part of the repertoire- and manuscript-bases, and for the management of information
concerning actors, i.e. its playing-base. A director is involved in many of the functions related
to the services provided by PAS.

PaP Extended Management (PXM) is additional PaP services not required for the PaP
support functionality, but rather PaP extensions related to PaP operational quality. These
services include functionality related to a robust and survivable PaP system, and a PaP system
to be QoS aware and to provide resource control. PaP Extended Support (PXS) is required
for the utilisation of PaP Extended Management (PXM) from actors.

6

PaP applications is the collection of actors implementing application role-figure.
Actor instances are created using the ActorPlugIn function, they get their behaviour using
ActorBehaviourPlugIn and ActorChangeBehaviour, they start execution using ActorPlay, and
they terminates when using ActorPlugOut.

Non-PaP applications are allowed to interact with actors directly without going via
the control of PAS. Such interactions can be done without the intervention of any parts of the
PaP system. However, such interactions must not result into control actions that are in
conflict with the responsibility of the PaP System. Non-PaP software is also allowed to use
the PaP functionality supported by PAS. This possibility is actually necessary to be able to
install and start the first operational PaP system. In this case the non-PaP application may
interface to the same interface as used by the PaP specific applications. The non-PaP
application, however, will and must perform within a separate process/thread and must be
considered as one specific actor as seen from the PAS system point-of-view.

3. ACTOR MOBILITY

This type of mobility could be achieved by extending actors capabilities with
movement ability, and by keeping track of this movement. In other words, the actor location
specific information should be updated whenever an actor moves. In the PaP terminology we
use Global Actor Identifier (GAI) as an object that maintains actor specific information
regarding which PNES and PAS instances the actor executes in. Definitely, the association
between actors, directors, actor-actor relations and capabilities should be dealt with carefully.

Actors move due to requirements on resource limitation, configuration change,
functionality change, etc. In order to support actor mobility, the system should be able to
deactivate and reactivate moving actors transparently. Therefore moved actors should be able
to continue their behaviour from the point when they started to move. For this we need to
define the concept of actor state and introduce it into plays. This aims at defining different
phases of actor’s behaviour and consequently the movement process will be reduced into an
extended request of ActorPlugIn. As far as the implementation design is concerned, actor
manuscripts should define actor’s behaviour and interactions with other actors using state
objects that transit from state to another. On the other hand, the movement (transition) of
actors should be handled using a proper method. In the following we will introduce three
method case studies that are based on replicating moved actors, using proxy to forward
requests and applying a centralised agent. But before that we need to figure out what are the
possibilities of actor mobility.

When actors need to move from PAS to PAS or from node to node (a node is
equivalent to a PNES instance in the PaP terminology), full update of actor specific
information should be applied at all instances that are related to this actor. Whenever an actor
is activated it is associated to a PNES, PAS and a home director instances. PNES holds the
GAI that is needed to route requests coming to this actor. PAS is the application (process or
thread) in which actor objects are executing. Directors are related to actors through the
definition of actors “home interface”. This definition is crucial for directors to keep track of
actors’ location. Actor movement could be classified into three different scenarios:

1) Actor movement from PAS to PAS - in the same PNES instance
2) Actor movement from PNES to PNES – having the same director
3) Actor movement from PNES to PNES – having different directors

These scenarios are illustrated in figures 4, 5 and 6 respectively.

7

Figure 4. Actor movement of type 1.

Figure 5. Actor movement of type 2.

A3:actor1

A1:actor1

D1:director

A2:actor2

ActorPlugIn(role=actor2)ActorPlugIn(role=actor1)

RoleSessionAction(A2,r)

RoleSessionAction(A1,c)

ActorMove(A1,PAS2)

PNES2

PAS1PAS2

PNES1

ActorPlugIn(role=actor1,state=s1)

A3:actor1

A1:actor1

D1:director

A2:actor2

ActorPlugIn(role=actor2)ActorPlugIn(role=actor1)

ActorMove(A1,PNES2)

PNES2PNES1

ActorPlugIn(role=actor1,state=s1)

RoleSessionAction(A1,c)

RoleSessionAction(A2,r)

8

Figure 6. Actor movement of type 3.

3.1. The movement procedure

Figures 4, 5 and 6 demonstrated how actors could move in a PaP system. In all three
scenarios there is an assumption that an actor is being requested to move by another actor.
This is initiated by an ActorMove request. As we have mentioned earlier that an actor is
moved by recreating it at another node or re-plugging it in, which is the case for A3 that is a
new role of actor1 at different location. Note that the ActorPlugIn request was extended to
include a parameter for Actor State. To carry out any of these scenarios we need to define a
method to handle the various tasks associated with the management of affected PaP
components. Following is a detailed description of the movement procedure.
- The movement request: this could be requested from within the PAS instance where the
actor resides, by the director of the play or by non-PaP applications.
- Check for possibility and applicability: the active entity that receives the move request
will check whether such an action is possible or not.
- The move: after receiving an acknowledgement the PAS of the actor will perform the
movement method.
- The update: which is the last phase of this process, to update the system including
directors, PNES instances, other actors, etc.

The movement method itself will be discussed in the next section. Before proceeding
we need to clarify some definitions as a conclusion of the efforts done so far. The Actor State,
Active Actor and Actor Mobility Management are conceptually defined to be used in any
management proposal.

A3:actor1

A1:actor1

D1:director

A2:actor2

ActorPlugIn(role=actor2)ActorPlugIn(role=actor1)

ActorMove(A1,PNES3)

PNES2PNES1

ActorPlugIn(role=actor1,state=s1)

PNES3

D2:director

RoleSessionAction(A1,c)

RoleSessionAction(A2,r)

9

Actor State: Actor State is a meta-description of actor’s instantaneous behaviour
within a manuscript according to its role in a play. All subsequent information that an actor
uses and all its interactions with other actors describe how actor’s behaviour may change.

Active Actor: This is basically a notion to widen the current actor concept. An active
actor is a plugged in actor that could be moving. If an actor has been replicated during the
movement procedure then all of its replica should be considered as a single active actor.

Actor Mobility Management (AMM): This is meant to be the method according to
which actors be moved. It is a task to be handled by the PaP support system as a whole in a
decentralized or centralized fashion. All involved instances, PASes and PNESes, should
update their information bases when there is an actor movement.

3.2. Actor Mobility Management methods

AMM method 1: The first method to be utilized is based on employing a single copy
of a moved actor at the new location and keeping all information bases as they are. All active
role sessions of that actor should be moved to the new location. Routing of requests will be
done as if there was no movement at all, except for that the old actor will forward all arriving
requests to the new location. This method is restricted for certain types of movement
scenarios, namely 1 and 2 as described in the previous section. The transition period seems to
be short and simple, however further movements of the same actor should be carried out with
care. Thus instead of forwarding move requests to the new location, an ActorPlugOut request
and a new ActorPlugIn request should be initiated. Figure 7 illustrate a case where an actor
moves to a new location, and then moves to another location. In this figure we apply a general
type of request to the actors and denote them by request1 and request2 for simplicity. Also for
the other requests, e.g. ActorPlugIn and ActorMove, we don’t use parameters, as well as we
avoid detailed interactions with directors.

Figure 7. AMM method 1.

AMM Method 2: This is a more general method that allows actors to move freely and
change “home interface” or associated director. Actors as objects will be created at different
locations and will not be kept at their original locations. A full update of the system is
required here, in which the actor identity should remain the same except for its location that

Actor1

ActorMove
Actor1

Location1

ActorPlugIn

request1

request1

Actor1
Location2ActorPlugIn

request2
request2

ActorPlugOutActorMove

10

need to be changed. This method seems to be more flexible from the performance point of
view, but more complex in the practice. Since PaP uses a programming platform to
accomplish trading and addressing such as RMI technology, relevant entity registries should
be updated to cope with new locations of actors. Figure 8 demonstrates how this method
works. Note that request2 is directed to the new location by the request sender.

Figure 8. AMM method 2.

AMM Method 3: This method is based on centralised agent that acts as a mobility
manager within the context of PaP architecture, as in figure 9. The whole PaP functionality
should be modified in a way that it could include a mobility service that actors would
broadcast to or consult before they move or send requests respectively. “LocationUpdate”
procedure should be used prior to movements and “ActorDiscovery” procedure should be
used prior to request routing. This method would be the most flexible and robust to comply
with movements of actors.

Figure 9. AMM method 3.

Actor1

Actor1
Location1

request1

Actor1
Location2

request2

Actor1

Actor1
Location1ActorDiscovery

request1

ActorMove

Actor1
Location2

request2

MManager

LocationUpdate

LocationUpdate

ActorDiscovery

ActorMove

ActorMove

ActorPlugIn

ActorPlugIn

ActorPlugIn

ActorPlugIn

ActorMove

11

4. TERMINAL MOBILITY

In the PaP architectural concept there is no special definition for terminals or nodes,
instead PaP components are defined to be the real world active modules that take part in the
PaP functionality. By other words, PaP components in the overall PaP architecture act as the
realization means of the whole concept in reality. A practical definition of terminal could be a
network node that realizes the interface towards the end user. This performs the user agent, as
we will discover later, and could possibly move with the user.

The mobility of a terminal or a node is defined by the change of its physical address.
This is clearly seen in the engineering view of the PaP system, where at each node there is a
PNES instance running at a distinct network address. To achieve mobility management for
these nodes we need to keep track of their movements. So a central agent should be
responsible for updating the locations of all nodes that participate in a possible PaP
application. The knowledge of this central agent will be imbedded in the PNES objects, and
whenever this agent moves all PNES objects should be updated. This is better demonstrated
by an example. Assume first a URL address as the initial access point where the PaP support
software and application are available. Assume also a terminal, possibly a laptop, which
would like to access this application. The first step is to download the PaP bootstrap and
modify some configuration file stating the webserver from which the application will be
downloaded and a default director interface, which used to be the localhost. Once this initial
phase is ready the PNES could be started from which a play will be loaded and some actors
could be plugged in to perform some role figures and interact with each other. Assume now
the terminal will change location, e.g. connect to the network at different place using DHCP.
Note that the terminal will not be switched off. The terminal will try to resume
communicating according to the behaviour of its actors. On the other hand, the rest of the
communicating nodes or terminals should be able to discover this move before, while and
after it is being performed.

The proposed solution is based on central agent, could be called mobility manager or
MManager, which runs at a known place to all other nodes. MManager will run when the first
PNES be started, and its network location should be part of the configuration file. Secondly,
at each communicating node there should be a special agent performing location update and
location query procedures. This agent could be called MAgent that stands for mobility agent,
as in figure 10. MAgents are responsible for notifying MManager if there is a change in the
node’s address. On the other hand, they should send location query on every communication
event with other nodes. The MManager responds to location updates by updating the node’s
location, and replies with the current location of the requested node upon receiving a location
query. All in all, terminal mobility management is a kind of play that runs in the background
of any PaP system that supports terminal mobility.

To obtain a clearer view of how nodes interact figure 11 shows a possible node-to-
node interaction and their corresponding actors. This figure corresponds to moving node 1 in
figure 10.

12

Figure 10. Engineering view of three PaP nodes with terminal mobility management.

Figure 11. Node interaction before and after node moves

5. USER MOBILITY

This is also known as personal mobility, which is the utilization of services that are
personalized with end users’ preferences and identities independently of physical location and
specific equipment. In this context we need to define the user and the services in a candidate
PaP system. Let’s consider for seek of generality certain service types are provided to certain
users. Services are carried out by service components, which are actors. In order to achieve
user mobility we need to dedicate a special actor to behave as a provider agent [Axel98]. In

Node1

Node1
(new location)

Node2 Node3

Node-discovery

Node-discovery

Location-update

request1

request2

Communication Network

PNES

AEEM1 AEEM2

Node 1

PNES

AEEM1

Node 2

Opsys/network

PNES

MManager

AEEM1 AEEM2

Node 3

AEEM2AEEM3

a2 d1 a1a1 a2a3 MAgentMAgent

PAS PAS PAS PAS PAS PASPAS

Opsys/network Opsys/network

13

our proposal we suggest to assign an agent to each user, which is an actor or a set of actors
carrying out system interface towards the user. This will be called User Agent (UAgent)

When we discuss user mobility we are actually talking about users and their existence
in a certain domain. So services that are utilizable for a user at certain domain are not
necessarily available at another domain. If a user could access all services provided to him by
his home domain through another domain then these domains support user mobility. In the
following we suggest a solution to achieve this.

When a user moves from his home domain into a visitor domain he will first access
the PaP service provided by the visitor domain’s director, or director 2 in figure 12 and 13.
This service should be able to grant some users visitor status (a guest type access to basic
functionality). After some initial interaction with this domain, this user will be offered to
access his home domain. Meanwhile, the user is a user of the visitor domain, so he requires a
UAgent. However, as this user chooses to access the services provided by his home domain
then a Visitor Agent (VAgent) should be assigned to him that is controlled by the home
director, director 1. VAgent has similar definition to UAgent.

Figure 12. A proposal to handle user mobility.

Figure 13. User mobility support: subscription, authentication and configuration.

User A User A

UActor:A

director1 director2

VActor:A

Domain 1 Domain 2

Home domain Visitor domain

UAgent: A Director 2 Director 1 User Profile Base

VAgent: A

Guest
subscription

Basic
functionality

Home access
request

ActorPlugIn
Authentication

User profile

Visitor domain Home domain

14

To realize personal mobility service, personalized environment is constructed
according to the user profile of the end user. According to the service architecture of TINE-C
this is defined as an aggregation of four informational objects: usage context, service profile,
session description and user registration. The user profile object should be moved to the
visited domain in order to construct the user’s environment. In our architecture this issue is
less complex as we associate the VAgent to the home domain, or home director. By this way,
any needed objects, e.g. the user’s profile, could be accessed and downloaded from within the
VAgent without any interaction with the visited domain. The main issue here is, however, at
the beginning of the registration process. We should note that these domains are not business
administration domains, they are instances of executed or performed plays controlled by
directors.

6. SESSION MOBILITY

Session is an interaction collection who’s goal is to satisfy the goal of a service by
performing activities during a specific period of time. Session is also associated with the
allocation of resources that are necessary to execute the aimed service. There are two types of
sessions: User/Access and Service/Communication sessions.

Here we should recall the UAgent from the previous section and give it a broader
definition: a computational object that manages user’s preferences and performs all the
operations and tasks required by the user. We should recall also that PNES object carries
enough information about the node where the user is seeking access.

For the first type of session the user actor concept seems to be capable of providing
this mobility. A user is granted an access to the system by assigning a UAgent. When it
demands the same service from different domain a VAgent is assigned. To support the second
type of session mobility we need to introduce a new role to the PaP architecture, this is the
session manager.

We shall consider two requests to serve as a basis for session mobility: suspend and
resume. A session is always initiated whenever a user is subscribed to the system and
demands one of its services. The session manager is invoked and asked for a session ID. Now
on, this session ID will be addressed at any future operation for session mobility. Since there
is always a special actor associated with users behaviour, UAgent or VAgent, and since these
actors behave according to some state transition scheme, then resuming of any suspended
session is achieved by recapturing the actor’s behaviour at the state where the session was
stopped.

7. SUMMARY AND CONCLUSIONS

In this paper a mobility management platform for PaP network architecture was
introduced. Support for Actor, Terminal, User and Session mobility is the main part of this
platform. Some parts of the proposed platform are being integrated to the available
demonstrator application, the tele-school application, which is based on Java RMI technology.
The Actor mobility Management methods are the first parts to be integrated, as they don’t

15

require a major shift to the basic functionality. The AMM1 method in particular provides
basic and yet powerful actor mobility to the PaP architecture. The idea is basically an actor
proxy scheme for moving actors.

The paper dealt also with terminal mobility that is an introduction of mobile nodes.
Some implementation specific details were elaborated, and various aspects of the modified
architecture were mentioned. New requests and procedures will be needed to cope with this
added capability. However, this addition is totally inline with the overall terminology, as we
outline it as a PaP play (or service) running in the background of a PaP application. At last,
we introduced a support for user and session mobility. This is mainly based on TINA
definitions and its concept of a user and session. We believe our proposal for such mobility
types benefits from the simplicity of mapping actors to directors in our architecture.

While in this article we laid out a platform for the integrated provision of different
mobility types, there are several issues that need further investigation. On the one hand, we
need to break up the overall PaP architecture into subsystems to provide selected types of
mobility, which for some will be in the support and for others in the application layers. On the
other hand, we need to find efficient ways to map our methods and procedures into proper
applications and communicating platforms. We expect the approaches presented here to play
an important role in bringing the plug and play concept to telecommunications in a more
practical manner.

REFERENCES

[Aage99] Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling, Rolv Braek
and Ulrik Johansen, Towards A Plug and Play Architecture for Telecommunications,
Proceedings of IFIP SMARTNET'99, Bangkok, November 1999.
[Bies97] Andrzej Bieszczad and Bernard Pagurek, Towards Plug- and Play Networks with
Mobile Code, Proceedings of ICCC'97, November 1997.
[Bies98] Andrzej Bieszczad and Bernard Pagurek and Tony White, Mobile Agents for
Network Management, IEEE Communications Surveys, volume 1 number 1, 1998.
[Duts96] Joubine Dutszadeh and Elie Najm, Formal Support for ODP and Teleservices,
Proceedings of the IFIP/ICCC conference on Information Network and Data Communication,
June 1996.
[ITU92] ITU-T, Principles of intelligent network architecture, October 1992.
[Joha99] Ulrik Johansen, Finn Arve Aagesen, Bjarne E. Helvik and Hein Meling, Design
Specification of the PaP Support Functionality, Plug-and-Play Technical Report, Department
of Telematics, NTNU, 1999-12-10, ISSN 1500-3868
[Raza99] S. K. Raza and Andrzej Bieszczad, Network Configuration with Plug and Play
Components, The Sixth IFIP/IEEE International Symposium on Integrated Network
Management
[Tenn97] David L. Tennenhouse, Jonathan M. Smith, David Sincoskie, David J. Wetherall
and Gary J. Minden, A Survey of Active Network Research, IEEE Communications
Magazine, Volume 35 no 1, 1997, pages 80-86.
[TINA95] TINA Consortium, TINA-C Deliverable: Overall Concepts and Principles of
TINA V1.0, February 1995.
[Axel98] Axel Kupper, User Agent – An approach for Service and User Management in 3rd

Generation Mobile Networks, International Conference on Telecommunications 1998.

