
Capability Ontology in Adaptable Service System Framework

Patcharee Thongtra

Department of Telematics
Norwegian University of Science and Technology

N-7491 Trondheim, Norway
patt@item.ntnu.no

Finn Arve Aagesen

Department of Telematics
Norwegian University of Science and Technology

N-7491 Trondheim, Norway
finnarve@item.ntnu.no

Abstract—This paper presents a Capability Ontology (CapOnt)

and a rule-based reasoning mechanism, which support service

management within adaptable service systems. The ontology

concepts comprise capability types, capability parameters and

service management functions related to capabilities.

Capability parameter values can be defined by constraints on

other capability parameters. The service management

functions included in the ontology are Capability

Administration, Capability Configuration, Capability

Allocation and Capability Performance Diagnosis. The service

management functions are defined by rules consisting of

constraints and management actions. The ontology concepts

are represented in OWL (Web Ontology Language) and

OWL/XDD (XML Declarative Description Language) – a rule-

oriented knowledge representation. An intelligent conference

room example with simulation results, that demonstrates the

CapOnt and the rule-based reasoning, is also presented.

Keywords-Capability; Network and service management;

Adaptable system; Ontology

I. INTRODUCTION

In this paper, networked services are considered. A
service system consists of inter-working service components.
An adaptable service system is here defined as a service
system that can adapt dynamically to changes to service
users, nodes, capabilities, system performance and service
functionality. A capability is an inherent property of a node
to implement service [1]. Capabilities can be classified
according to capability types and capability parameters. A
network interface with finite bandwidth is an example of a
capability type. A service component needs capabilities to be
allocated before deployment and instantiation. The
capabilities can be re-allocated in situations when the system
performance is not satisfactory. Formal concepts are,
therefore, needed as a basis for the administration,
configuration, allocation, monitoring, and performance
diagnosis of capabilities.

The software mechanisms used for implementing the
functionality of adaptable service systems must be flexible
and powerful. Service components based on the classical
Extended Finite State Machine (EFSM) approach can be
flexibly executed by using generic software components that
can download and execute different EFSM-based
specifications. In addition, combining rule-based reasoning
with the EFSM-based approach adds the ability to cope with
various situations more flexible. The rule-based reasoning is

considered as support functionality for the EFSM-based
service components; it suggests actions to the service
components.

Considering the capability concepts, there are some
standard information models comprising defined capabilities,
e.g. SNMP’s Structure of Management Information
(SMI) [2] and Common Information Model (CIM) [3].
However, they are limited in terms of using rule-based
concepts. In this paper, we propose an ontological approach
to model and represent the capability concepts including
rule-based concepts.

An ontology is a formal and explicit specification of a
shared conceptualization [4]. An ontology, in general,
consists of types, properties, instances, relations and rules.
The rule can place constraints on sets of types, properties and
relations allowed between them. Capability Ontology
(CapOnt) has capability types, parameters, instances,
relations and service management functions. The parameters
are the properties and inference relations of the capability
types. The parameter values can be defined by constraints on
other parameters. The service management functions, which
are capability-related actions to fulfill the service
management functionalities, are also included in this
ontology. This is because the actions are shared concepts
among distributed service components which implement the
service management functionalities. The service
management functions are defined by rules consisting of
constraints and the actions.

In principle, all network management objects, operations
on these objects, and network and service management
functionality can be defined in ontologies. In this paper, our
ontology defines capability types, parameters and service
management functions.

The main contributions of this paper are:

• A service functionality architecture for adaptable
service systems.

• A Capability Ontology (CapOnt) that includes rule-
based parameters and service management functions.

• A rule-based reasoning procedure. The reasoning
procedure is implemented by Native xml Equivalent
Transformation reasoning engine (NxET) [5].

The rest of the paper is organized as follows. Section II

reviews related works. Section III presents the service
functionality architecture. Section IV presents the Capability
Ontology (CapOnt) concepts and representation. Section V

2010 Fifth International Multi-conference on Computing in the Global Information Technology

978-0-7695-4181-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCGI.2010.14

280

2010 Fifth International Multi-conference on Computing in the Global Information Technology

978-0-7695-4181-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCGI.2010.14

279

explains the reasoning procedure. In section VI, an example
of intelligent conference room is given. Finally, section VII
presents summary and conclusions.

II. RELATED WORK

A. Standardized Information Models

The IETF proposed Structure of Management
Information (SMI) [2] to be used in the SNMP
framework [6], followed by Next Generation Structure of
Management Information (SMIng) [7]. SMIng provides
mechanisms to formally specify constraints between values
of multiple parameters, though its implementation was not
accomplished. In the other models: Guidelines for the
Definition of Managed Objects (GDMO) [8] and Common
Information Model (CIM) [3], the object-oriented modeling
approach is applied. GDMO has been widely used in
telecommunications networks. CIM provides the definitions
for systems, networks, users and services. It was proposed
with the intention to use in the Web-based management
architecture. However, we can not easily define rule-based
managed objects, which their values are restricted by other
managed objects, by these information models alone. SNMP
RMON MIB allows that to some extent for statistics
gathering, but it is complicated. López de Vergara et al. [9]
used OCL as an extension model to write rules in the CIM
metaschema.

B. The Application of Ontology

There are various directions for the application of
ontology. In [10]- [12], the ontology-based mapping
techniques are used to integrate existing information models.
In [13]- [15], the formal definitions of concepts including
rules by the ontology-based approaches were presented.
Guerrero et al. [13] used OWL [16] and SWRL to define
constraints on the parameter values of the SNMP- and the
CIM managed objects. They also modeled behaviour rules
composed of the actions and constraints. The actions are
general functions, that are performed by the manager in the
traditional manager-agent framework when the constraints
are met. In [14], the behaviour rules were defined with a
focus on the network configuration management. Diaz et
al. [15] mapped the original configuration of wireless routers
into the CIM schema, and later translated these into OWL.
They further added constraints on the relations allowed
between the managed objects, with which to detect router
configuration errors. The approach used in this paper is
similar to [13], [14]. But the Capability Ontology has an
application domain different from the others. The capability
concepts are defined towards the service management
functionalities for adaptable service systems.

III. SERVICE FUNCTIONALITY ARCHITECTURE

Service functionality architecture as illustrated in Fig. 1
defines the structure and content of service functionalities
independent of implementation. The architecture is intended
to provide three classes of the adaptability: rearrangement
flexibility, failure robustness, and QoS awareness and
resource control. Rearrangement flexibility means that the

service system structure and functionality are not fixed.
Nodes, users, services, service components, capabilities, can
be added, moved, removed according to needs. Mobility of
users, sessions, nodes, terminals is further seamlessly
handled. Failure robustness means that the architecture is
dependable and distributed, and that the system can
reconfigure itself in the presence of failures. QoS awareness
and resource control means that there is functionality for
negotiation about QoS and optimum resource allocation,
monitoring of resource utilization, and actions for
reallocation of resources. Fundamental QoS concepts
considered are capability, capability performance, service
performance and service level agreements (SLAs).

The functionalities of the service functionality
architecture are classified as primary service functionalities
and service management functionalities. The primary service
functionalities provide services to the service users. The
service management functionalities consist of functionality
components and repositories to manage services as well as
nodes and their capabilities. The functionality components
and repositories will be explained later in this section.

The service management functionalities and the primary
service functionalities can be implemented by Extended
Finite State Machine (EFSM)-based and Reasoning Machine
(RM)-based service components [17]. In this paper, the RM-
based service component is used as the traditional procedure
that provides the rule-based reasoning to the EFSM-based
service component.

Figure 1. Service Functionality Architecture.

• Capability Ontology Repository (CapOntRep) stores
the capability concepts.

• Service Specification Repository (SpcRep) stores the
service component behavior specifications, the
capability requirements, and the SLAs. The
capability requirements define the required
capability types and parameters for the various
service components.

• Inherent Capability and Service Repository (InhRep)
stores data about available nodes, the inherent
capabilities and instantiated services. The inherent
capabilities are the existing instances of capability
types and parameters for the various nodes.

281280

• Capability and Service Administration (CA) handles
the registration of nodes, the inherent capabilities
and instantiated services. CA also provides a current
view of available nodes, the inherent capabilities and
instantiated services.

• Capability and Service Monitoring (CM) monitors
node, their capabilities and instantiated services. CM
gets the monitoring requests from the administrator
as well as CA, and updates the monitored data to
CA.

• Mobility Management (MB) handles various
mobility types such as personal mobility, terminal
mobility and service component mobility.

• Service Configuration (SC) has the sub-components
as illustrated in the figure. Capability Configuration
(CC) finds and selects capable nodes that satisfy the
capability requirements. The capable node has
capabilities as same as or as compatible as ones
specified in the requirements. Capability Allocation
(AL) allocates capabilities to service components in
various service classes. The task is performed in
accordance with the requirements of system
performance, here defined as the sum of service
performance and capability performance, in the
SLAs. Deployment and Instantiation (DI) comprises
deployment which is the introduction of new service
components in nodes, and instantiation which starts
execution of deployed service components. Fault
Diagnosis (FD) detects the failure of the instantiated
services. System Performance Diagnosis (PD)
detects mismatch between the required system
performance and the inherent system performance.
Service Adaptation (SA) plans the adaptation during
the service system execution in case of 1) mismatch
between the required system performance and the
inherent system performance, 2) faults and 3) other
reasons for service component movements. The
adaptation results in AL only, or the combination of
CC and AL.

In this paper, the capability is focused on. Accordingly,
CA and PD are simplified to Capability Administration and
Capability Performance Diagnosis. AL considers only the
required capability performance.

IV. CAPABILITY ONTOLOGY

A. Concepts

The concepts of the Capability Ontology (CapOnt) are
illustrated in Fig. 2. Capability type defines entities with
common characteristics. A capability type can be functions,
physical resources and data. The function examples are
operating system, application software and protocol. The
physical resource examples are CPU and memory. User
accounts and passwords are the data examples.

Figure 2. General Concepts of Capability Ontology.

Capability parameter describes the characteristics of a
capability. Functionality parameters define features of the
functionality and performance parameters describe features
of the performance. Inference parameters define relations to
other capability types, in which these relations are logically
concluded from other parameters. The functionality and the
performance parameters can be rule-based, while the
inference parameters are rule-based.

Performance parameters are further classified into
capacity-, state- and QoS parameters. Capacity parameter
examples are transmission channel capacity, CPU processing
speed and disc size. State parameters define the situation of
the capability at a specific time. State parameter examples
are the number of available streaming connections and
number of packets discarded in a specific buffer. QoS
parameter defines the degree of satisfaction of the service
users. QoS parameters can be traffic and dependability
statistics based on observed stochastic variables. Important
traffic variable examples are throughput and utilization.
Important dependability variable examples are availability
and recovery time.

The parameter Utilization and Compatibility are
important rule-based parameters used in the example in
Section VI. Utilization is a QoS parameter that gives the
average usage of a capacity over a defined time interval.
Compatibility is an inference parameter that specifies a
relation from a capability to other compatible capabilities, in
which these capabilities can be used as its substitutes.

The service management functions are defined by rules
as mentioned already in Section I. The service management
functions are classified into Capability Administration,
Capability Configuration, Capability Allocation and
Capability Performance Diagnosis, which corresponds to the
functionality components presented in Section III.

The CapOnt consists of general concepts of capabilities.
For a complete capability specification of a specific system,
a System-specific Capability Ontology (SysCapOnt) must be
defined. The SysCapOnt inherits the CapOnt. The service
management functionalities presented in Section III will
need instances of the capability types and the capability
parameters part of the SysCapOnt for CA, CC, AL and PD.

282281

B. Representation

OWL [16] and OWL/XDD [18] are used to represent the
capability concepts. OWL is a standard Web ontology
language, which provides a rich set of constructors. The
capability types, the non-rule-based parameters, their
relations and instances are expressed by owl:Class,
owl:Class, owl:ObjectProperty and OWL instances
respectively. The values of non-rule-based parameters are
specified by owl:DatatypeProperty that is called hasValue.

However, OWL is limited when it comes to describe the
rule-based capability concepts. OWL/XDD, a rule-oriented
knowledge representation, is then required to express such
concepts. OWL/XDD extends ordinary XML-based elements
by incorporation of variables for an enhancement of
expressive power and representation of implicit information
into so called XML expressions. The ordinary XML-based
elements – XML expressions without variables – are called
ground XML expressions. The variables are classified into
five types as explained in Table I. A variable is prefixed by
‘$T:’ where T denotes its type.

TABLE I. THE VARIABLE TYPES

Variable

type

Pre

fix
Instantiated to

N-variable $N: An element tag name or an attribute name

S-variable $S: An element value or an attribute value

P-variable $P:
A sequence of zero or more attribute-value

pairs

E-variable $E: A sequence of zero or more XML expressions

I-variable $I: Part of XML expressions

A rule-based parameter and a service management

function are represented as an XML clause of the form:

 Η → Β1, .. , Βm, {C1, .. , Cn} (1)

where m, n 0, H and Bi are XML expressions, and each of
Ci is a pre-defined XML condition on the XML clause. H is
called the head of the clause, while the set of Bi and Ci is the
body of the clause. When the body is empty, such a clause is
referred to as an XML unit clause and the symbol ‘→’ will be
omitted. Hence an XML-based element or document can be
mapped directly onto a ground XML unit clause.

V. REASONING PROCEDURE

The reasoning procedure begins with an XML expression
based query Q. Then, an XML clause, called query clause, is
formulated from the XML expression as follows:

 Q → Q (2)

The XML expression Q represents the constructor of the
expected answer which can be derived if all conditions in the
body of the clause hold. However, if one or more XML
expression bodies still contain the variables, these variables

must be matched and resolved from other unit clauses and
non-unit clauses.

A body from the query clause will be matched with the
head of other clauses. At the beginning, there is only one
body Q. Consider a clause R1 in the form:

 R1: Η → Β1, Β2, C1 (3)

If the XML structure of the body Q and the head H of the
clause R1 match without violating the condition C1, the body
Q will be transformed into B1 and B2. All variables in the
head Q and the new bodies B1 and B2 of the query clause will
be instantiated. The query clause will be in the form:

 Q
∗ → Β1

∗, Β2
∗
 (4)

where X* means the one or more variables in the XML
expression X has been instantiated and removed.

The transformation ends when either 1) the query clause
has been transformed into a unit clause or 2) there is no
clause Rx that can transform the current bodies of the query
clause. If the constructor Q is transformed successfully into
Qf that contains no variable, the reasoning procedure ends
and the desired answered is obtained.

VI. CASE STUDY

This section describes an intelligent academic conference
room example. A conference service system provides video
transfer services, and users can download and watch present
presentations of accepted papers, present tutorials, and old
videos of the presentations and tutorials from previous years.
The entire video files will be transferred to the user devices
before they can start. In this scenario, the services are
classified by the video types: the present presentation, the
present tutorial, and the old video. The old video has low
priority. The users access the services from their wireless
communication devices. However, when the number of
users increases, the bandwidth usage becomes too high.
When this occurs, the services should be degraded
gracefully. This means only high priority services will be
available, but they are operating regularly.

The conference service system has adaptability features
that deploy and instantiate video transfer service components
in capable nodes. Also, it disables the old video transfer
services when the wireless bandwidth utilization is greater
than a maximum limit, and enables them when the
bandwidth utilization is less than a minimum limit.

283282

Figure 3. The conference service system.

The conference service system consists of EFSM-based
service components and an RM-based service component in
nodes as illustrated in Fig. 3. The EFSM-based service
components are Service Manager, Monitoring Manager,
Transfer_P Manager, Transfer_T Manager and Transfer_O
Manager. A System-specific Capability Ontology
(SysCapOnt) will be presented in Section VI.A. With
reference to the service functionality architecture in Section
III, the Service Manager implements part of Capability
Administration, Capability Configuration, Deployment and
Instantiation, Capability Performance Diagnosis, Capability
Allocation and Service Adaptation. The Monitoring Manager
implements part of Capability and Service Monitoring, and
the RM-based service component is the reasoning procedure
used by the Service Manager. The Transfer_P Manager,
Transfer_T Manager and Transfer_O Manager offer the
transfer services for the following video types respectively:
the present presentation, the present tutorial, and the old
video.

The Service Manager and Monitoring Manager are
instantiated by the administrator. These managers play an
important role to attain the adaptability features as mentioned
above. The Service Manager has sub functions as follows:

a) Discover available nodes within the conference
room.

b) Call the reasoning procedure and get an action:
request the Monitoring Manager to monitor a set of
capability types and parameters: {$S:CapabilityType,

{$S:CapabilityParameter}}, from the nodes every interval.

c) Call the reasoning procedure and get an action:
select capable nodes: {$S:Node}, that satisfy the capability
requirements of the Transfer_P Manager, Transfer_T
Manager and Transfer_O Manager.

d) Deploy and instantiate the Transfer_P Manager,
Transfer_T Manager and Transfer_O Manager in the
capable nodes.

e) Get the monitored capability instances:
{$S:CapabilityTypeInstance, {$S:CapabilityParameterIn-

stance, $S:value}}, from the Monitoring Manager.

f) Reallocate the bandwidth every interval by:

• First, call the reasoning procedure and get an action:
{$S:RellocateAction} to disable or enable the low
priority services.

• Second, share the bandwidth equally for every
available service.

In b), c) and f), the Service Manager calls the reasoning
procedure with an input XML expression based query Q.
Using the CapOnt, SysCapOnt, inherent capabilities and
require capabilities, the reasoning procedure transforms the
query clause (2) to obtain the actions and the instantiations of
the variables. Then, these actions and instantiations of the
variables are returned to the Service Manager.

The Monitoring Manager gets the monitoring request,
queries the parameters’ values from the nodes, and updates
these values to the Service Manager.

A. System-specific Capabilty Ontology (SysCapOnt)

According to the standardized information models
discussed in Section II, SNMP MIB and CIM schema have
already a rich set of defined capability types and parameters.
We choose the SNMP MIB as the basis for the definition of
the capability types and the non-rule-based parameters in the
SysCapOnt because of the extensive implementation of
SNMP agents in different types of devices.

Note that this given ontology as illustrated in Fig. 4 is
only for demonstration purpose. The capability types focused
are network interface and operating system. These capability
types and their parameters are found in Host Resource MIB
[19] and MIB II [20].

Figure 4. Some Concepts of a System-spefic Capability Ontology.

A network interface is defined by the object type ifEntry.
It consists of several parameters, such as ifInOctets,
ifOutOctets and ifSpeed. ifInOctets is the total number of
octets received on the interface, whereas ifOutOctets refers
to the total number of octets transmitted from the interface.
ifSpeed is the maximum bandwidth of the interface. The

284283

parameter ifEntryUtilization, a subclass of the Utilization,
defines the bandwidth utilization of the interface. An
operating system is defined by the object type
hrSWRunEntry, and its type and version are described by the
object type sysDescr. The parameter hrSWRunEntry-
Compatibility, a subclass of the Compatibility, specifies the
compatibility between operating systems.

The service management functions are defined by Rule-A
– Rule-E. These rules, the hrSWRunEntryCompatibility and
the ifEntryUtilization are represented in the graphical XML
clauses as below. The notations used are:

hrSWRunEntryCompatibility xml clause:

It can be read as: Windows Server 2003 SP2 is

compatible with Windows Server 2008.

ifEntryUtilization xml clause:

It can be read as: the bandwidth utilization $S:util-value

during an interval, between $S:t-start and $S:t-end, depends
on other parameters as this expression,

$S:util-value = (((8 * (($S:in-value2,$S:in-value1) +
($S:out-value2,$S:out-value1))) / ($S:t-end,$S:t-

start)) / $$:speed-value) * 100 (5)

where ($S:in-value2,$S:in-value1), ($S:out-value2, $S:out
-value1) are the numbers of bytes received and transmitted
via the network interface during an interval, whereas
$S:speed-value is the maximum bandwidth.

Rule-A xml clause:

It can be read as: request for the monitoring of
{$S:CapabilityType, {$S:CapabilityParameter}} every
interval (∆), if $S:CapabilityParameter is not the rule-based
parameters: the Utilization- and the Inference parameter.

Rule-B xml clause:

It can be read as: select a node $:Node as a capable node

for the requirement $S:Requirement if it has capability types,
parameters and values as same as required.

Rule-C xml clause:

It can be read as: select a node $:Node as a capable node

for the requirement $S:Requirement if it has capability types
as compatible as required.

Rule-D xml clause:

It can be read as: reallocate the bandwidth by disabling

the low priority services, if the bandwidth utilization is
greater than a maximum limit (MAX).

285284

Rule-E xml clause:

It can be read as: reallocate the bandwidth by enabling

the low priority services, if the bandwidth utilization is less
than a minimum limit (MIN).

B. Simulation Results

We simulated our scenario by assuming that the nodes
have the SNMP agents executing. The maximum wireless
bandwidth is 54Mbps. The number of users is 100. Every
user generates 2-5 service requests to transfer the videos
randomly. All video files are the same size; 300Mb, and are
transferred with the same maximum rate; 1Mbps. The
interval (∆) to monitor capabilities as well as to reallocate the
bandwidth is 30 sec.

Our simulation is set for two cases (I, II). Both cases set
low priority for the old videos as already mentioned. In case
I, the system executes without the Rule-D and the Rule-E.
The requests will wait if there is no bandwidth left. When
there is released bandwidth, it is shared and given to all
requests; processing requests and waiting requests, of the
high priority videos before the low priority videos. In case II,
the system executes with the Rule-D and the Rule-E. The old
video transfer services will be disabled and enabled
according to the bandwidth utilization. The maximum limit
(MAX) and the minimum limit (MIN) are set as 80% and
60%. The average transfer times (Avr.T) in both cases are
presented in Table II.

TABLE II. THE VARIABLE TYPES

Avr.T of The

Present

Presentations

Avr.T of The

Present

Tutorials

Avr.T of The

Old Videos

Case I 6.82 min 6.26 min 9.73 min

Case II 5.76 min 5.39 min 14.95 min

In Case II, the system degrades the services more

efficiently than in Case I. The system can offer an adequate
transfer of the high priority videos. The average transfer
times are 5.76 min and 5.39 min, which are faster than in
Case I ≈15.5% and ≈13.9% respectively. These %values

indeed vary according to the arrival distribution, ∆, MAX
and MIN. However, the average transfer time of the low
priority videos in Case II (14.95 min) is greater than in Case
I (9.73 min). This is because in Case II the reasoning
procedure executes the rules and suggests the action to pause
their transfers when the bandwidth utilization > 80%. The
bandwidth that has been used is released, and is given for
transferring the high priority videos. But in Case I the
bandwidth is released only when the transfers finish.

VII. CONCLUSIONS

Capability Ontology (CapOnt) comprising the concept
capability types, capability parameters and service
management functions is proposed. The rule-based
parameters values, e.g. the Utilization and the Compatibility,
are generated dynamically by the presented reasoning
mechanism. The capability types and the non-rule-based
capability parameters can be defined based on the existing
standardized information models. An intelligent conference
room example, where the Capability Ontology combined
with the reasoning mechanism has proved useful, is
presented. A System-specific Capability Ontology
(SysCapOnt) for a conference service system is also given.
The conference service system comprises the adaptation in
case the bandwidth utilization is greater than or lower than
the limits. Using the proposed rule-based service
management functions, the system (re)-allocates the
bandwidth to the high priority service classes more
efficiently.

REFERENCES

[1] F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M. Shiaa,
“Configuration Management for an Adaptable Service System,” In
Proc of IFIP Int. conf. on Metropolitan Area Networks, Architecture,
Protocols, Control and Management, Vietnam, April, 2005.

[2] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of
Management Information Version 2,” RFC 2578, 1999. Available at:
http://www.ietf.org/rfc/rfc2578.txt [Last accessed June 2010].

[3] DMTF, “Common Information Model (CIM) Standards,” Available
at: http://www.dmtf.org/standards/cim/ [Last accessed June 2010].

[4] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge Engineering:
princicples and methods,” in Data & Knowledge Engineering, vol.
25, pp. 161-197, 1998.

[5] P. Supadulchai, “NxET Reasoning Engine,” Plug-and-play Technical
Report, Department of Telematics, NTNU, ISSN 1500-3868.

[6] W. Stallings, SNMP, SNMPv2, SNMPv3, RMON 1 and 2. The 3rd
edition, Addison-Wesley, 1999.

[7] C. Elliott, D. Harrington, J. Jason, J. Schoenwaelder, F. Strauss, and
W. Weiss, “SMIng Objectives,” RFC 3216, 2001.

[8] ITU-T Recommendation X.722, Information technology - Open
Systems Interconnection, “Structure of management information:
Guidelines for the definition of managed objects,” January 1992.

[9] J. E. López de Vergara, V. A. Villagrá, and J. Berrocal, “On the
Formalization of the Common Information Model Metaschema,” In
Proc of the 16th IFIP/IEEE Int. Workshop on Distributed Systems:
Operations and Management (DSOM’05). LNCS, vol. 3775, pp. 1-11,
2005.

[10] J. E. López de Vergara, V. A. Villagrá, and J. Berrocal, “Applying the
web ontology language to management information definitions,” In
IEEE Commun. Mag., vol. 42, no. 7, pp. 68–74, Jul. 2004.

[11] J. Keeney, D. Lewis, D. O’Sullivan, A. Roelens, A. Boran, and R.
Richardson, “Runtime semantic interoperability for gathering
ontology-based network context,” In Proc of IEEE/IFIP Network
Operations and Management Symposium (NOMS’06), pp. 56-66,
Canada, 2006.

[12] A. K. Y. Wong, P. Ray, N. Parameswaran, and J. Strassner,
“Ontology mapping for the interoperability problem in network
management,” In IEEE Journal Sel. Areas Commun. 23(10), pp.
2058-2068, 2005.

[13] A. Guerrero, V. A. Villagrá and J. E. López de Vergara, “Ontology-
Based Integration of Management Behaviour and Information
Definitions Using SWRL and OWL,” In Proc of the 16th IFIP/IEEE

286285

Int. Workshop on Distributed Systems: Operations and Management
(DSOM’05). LNCS, vol. 3775, pp. 12-23, 2005.

[14] H. Xu and D. Xiao, “A Common Ontology-Based Intelligent
Configuration Management Model for IP Network Devices,” In Proc
of the 1st Int. Conf. on Innovative Computing, Information and
Control (ICICIC'06), China, 2006.

[15] I. Diaz, C. Popi, O. Festor, J. Tourino, and R. Doallo, “Ontological
Configuration Management for Wireless Mesh Routers,” In Proc of
the 9th IEEE Int. Workshop on IP Operations and Management
(IPOM’09). LNCS, Vol. 5843, pp. 116-129, 2009.

[16] W3C, “OWL Web Ontology Language Overview,” 2004 Available
at: http://www.w3.org/TR/owl-features/ [Last accessed June 2010].

[17] P. Supadulchai and F. A. Aagesen, “Policy-based Adaptable Service
Systems Architecture,” In Proc of the 21st IEEE Int. Conf. on

Advanced Information Networking and Applications (AINA’07),
Canada, 2007.

[18] V. Wuwonse and M. Yoshikawa, “Towards a language for metadata
schemas for interoperability,” In Proc of the 4th Int. Conf. on Dublin
Core and Metadata Applications, China, 2004.

[19] S. Waldbusser and P. Grillo, “Host Resource MIB,” RFC 2790, 2000,
Available at: http://www.ietf.org/rfc/rfc2790.txt [Last accessed June
2010].

[20] K. McCloghrie and M. Rose, “MIB II,” RFC 1213, 1991, Available
at: http://www.ietf.org/rfc/rfc1213.txt [Last accessed June 2010].

287286

