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Abstract—This paper presents a Capability Ontology (CapOnt) 

and a rule-based reasoning mechanism, which support service 

management within adaptable service systems. The ontology 

concepts comprise capability types, capability parameters and 

service management functions related to capabilities. 

Capability parameter values can be defined by constraints on 

other capability parameters. The service management 

functions included in the ontology are Capability 

Administration, Capability Configuration, Capability 

Allocation and Capability Performance Diagnosis. The service 

management functions are defined by rules consisting of 

constraints and management actions. The ontology concepts 

are represented in OWL (Web Ontology Language) and 

OWL/XDD (XML Declarative Description Language) – a rule-

oriented knowledge representation. An intelligent conference 

room example with simulation results, that demonstrates the 

CapOnt and the rule-based reasoning, is also presented. 

Keywords-Capability; Network and service management; 

Adaptable system; Ontology 

I.  INTRODUCTION 

In this paper, networked services are considered. A 
service system consists of inter-working service components. 
An adaptable service system is here defined as a service 
system that can adapt dynamically to changes to service 
users, nodes, capabilities, system performance and service 
functionality. A capability is an inherent property of a node 
to implement service  [1]. Capabilities can be classified 
according to capability types and capability parameters. A 
network interface with finite bandwidth is an example of a 
capability type. A service component needs capabilities to be 
allocated before deployment and instantiation. The 
capabilities can be re-allocated in situations when the system 
performance is not satisfactory. Formal concepts are, 
therefore, needed as a basis for the administration, 
configuration, allocation, monitoring, and performance 
diagnosis of capabilities. 

The software mechanisms used for implementing the 
functionality of adaptable service systems must be flexible 
and powerful. Service components based on the classical 
Extended Finite State Machine (EFSM) approach can be 
flexibly executed by using generic software components that 
can download and execute different EFSM-based 
specifications. In addition, combining rule-based reasoning 
with the EFSM-based approach adds the ability to cope with 
various situations more flexible. The rule-based reasoning is 

considered as support functionality for the EFSM-based 
service components; it suggests actions to the service 
components. 

Considering the capability concepts, there are some 
standard information models comprising defined capabilities, 
e.g. SNMP’s Structure of Management Information 
(SMI)  [2] and Common Information Model (CIM)  [3]. 
However, they are limited in terms of using rule-based 
concepts. In this paper, we propose an ontological approach 
to model and represent the capability concepts including 
rule-based concepts.  

An ontology is a formal and explicit specification of a 
shared conceptualization  [4]. An ontology, in general, 
consists of types, properties, instances, relations and rules. 
The rule can place constraints on sets of types, properties and 
relations allowed between them. Capability Ontology 
(CapOnt) has capability types, parameters, instances, 
relations and service management functions. The parameters 
are the properties and inference relations of the capability 
types. The parameter values can be defined by constraints on 
other parameters. The service management functions, which 
are capability-related actions to fulfill the service 
management functionalities, are also included in this 
ontology. This is because the actions are shared concepts 
among distributed service components which implement the 
service management functionalities. The service 
management functions are defined by rules consisting of 
constraints and the actions. 

In principle, all network management objects, operations 
on these objects, and network and service management 
functionality can be defined in ontologies. In this paper, our 
ontology defines capability types, parameters and service 
management functions.  

The main contributions of this paper are: 

• A service functionality architecture for adaptable 
service systems. 

• A Capability Ontology (CapOnt) that includes rule-
based parameters and service management functions. 

• A rule-based reasoning procedure. The reasoning 
procedure is implemented by Native xml Equivalent 
Transformation reasoning engine (NxET) [5]. 

 
The rest of the paper is organized as follows. Section II 

reviews related works. Section III presents the service 
functionality architecture. Section IV presents the Capability 
Ontology (CapOnt) concepts and representation. Section V 
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explains the reasoning procedure. In section VI, an example 
of intelligent conference room is given. Finally, section VII 
presents summary and conclusions. 

II. RELATED WORK 

A. Standardized Information Models 

The IETF proposed Structure of Management 
Information (SMI) [2] to be used in the SNMP 
framework  [6], followed by Next Generation Structure of 
Management Information (SMIng)  [7]. SMIng provides 
mechanisms to formally specify constraints between values 
of multiple parameters, though its implementation was not 
accomplished. In the other models: Guidelines for the 
Definition of Managed Objects (GDMO)  [8] and Common 
Information Model (CIM)  [3], the object-oriented modeling 
approach is applied. GDMO has been widely used in 
telecommunications networks. CIM provides the definitions 
for systems, networks, users and services. It was proposed 
with the intention to use in the Web-based management 
architecture. However, we can not easily define rule-based 
managed objects, which their values are restricted by other 
managed objects, by these information models alone. SNMP 
RMON MIB allows that to some extent for statistics 
gathering, but it is complicated. López de Vergara et al.  [9] 
used OCL as an extension model to write rules in the CIM 
metaschema. 

B. The Application of Ontology 

There are various directions for the application of 
ontology. In  [10]- [12], the ontology-based mapping 
techniques are used to integrate existing information models. 
In  [13]- [15], the formal definitions of concepts including 
rules by the ontology-based approaches were presented. 
Guerrero et al.  [13] used OWL  [16] and SWRL to define 
constraints on the parameter values of the SNMP- and the 
CIM managed objects. They also modeled behaviour rules 
composed of the actions and constraints. The actions are 
general functions, that are performed by the manager in the 
traditional manager-agent framework when the constraints 
are met. In  [14], the behaviour rules were defined with a 
focus on the network configuration management. Diaz et 
al.  [15] mapped the original configuration of wireless routers 
into the CIM schema, and later translated these into OWL. 
They further added constraints on the relations allowed 
between the managed objects, with which to detect router 
configuration errors. The approach used in this paper is 
similar to  [13], [14]. But the Capability Ontology has an 
application domain different from the others. The capability 
concepts are defined towards the service management 
functionalities for adaptable service systems. 

III. SERVICE FUNCTIONALITY ARCHITECTURE 

Service functionality architecture as illustrated in Fig. 1 
defines the structure and content of service functionalities 
independent of implementation. The architecture is intended 
to provide three classes of the adaptability: rearrangement 
flexibility, failure robustness, and QoS awareness and 
resource control. Rearrangement flexibility means that the 

service system structure and functionality are not fixed. 
Nodes, users, services, service components, capabilities, can 
be added, moved, removed according to needs. Mobility of 
users, sessions, nodes, terminals is further seamlessly 
handled. Failure robustness means that the architecture is 
dependable and distributed, and that the system can 
reconfigure itself in the presence of failures. QoS awareness 
and resource control means that there is functionality for 
negotiation about QoS and optimum resource allocation, 
monitoring of resource utilization, and actions for 
reallocation of resources. Fundamental QoS concepts 
considered are capability, capability performance, service 
performance and service level agreements (SLAs). 

The functionalities of the service functionality 
architecture are classified as primary service functionalities 
and service management functionalities. The primary service 
functionalities provide services to the service users. The 
service management functionalities consist of functionality 
components and repositories to manage services as well as 
nodes and their capabilities. The functionality components 
and repositories will be explained later in this section. 

The service management functionalities and the primary 
service functionalities can be implemented by Extended 
Finite State Machine (EFSM)-based and Reasoning Machine 
(RM)-based service components [17]. In this paper, the RM-
based service component is used as the traditional procedure 
that provides the rule-based reasoning to the EFSM-based 
service component. 

 

 
Figure 1.  Service Functionality Architecture. 

• Capability Ontology Repository (CapOntRep) stores 
the capability concepts. 

• Service Specification Repository (SpcRep) stores the 
service component behavior specifications, the 
capability requirements, and the SLAs. The 
capability requirements define the required 
capability types and parameters for the various 
service components. 

• Inherent Capability and Service Repository (InhRep) 
stores data about available nodes, the inherent 
capabilities and instantiated services. The inherent 
capabilities are the existing instances of capability 
types and parameters for the various nodes. 
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• Capability and Service Administration (CA) handles 
the registration of nodes, the inherent capabilities 
and instantiated services. CA also provides a current 
view of available nodes, the inherent capabilities and 
instantiated services. 

• Capability and Service Monitoring (CM) monitors 
node, their capabilities and instantiated services. CM 
gets the monitoring requests from the administrator 
as well as CA, and updates the monitored data to 
CA. 

• Mobility Management (MB) handles various 
mobility types such as personal mobility, terminal 
mobility and service component mobility. 

• Service Configuration (SC) has the sub-components 
as illustrated in the figure. Capability Configuration 
(CC) finds and selects capable nodes that satisfy the 
capability requirements. The capable node has 
capabilities as same as or as compatible as ones 
specified in the requirements. Capability Allocation 
(AL) allocates capabilities to service components in 
various service classes. The task is performed in 
accordance with the requirements of system 
performance, here defined as the sum of service 
performance and capability performance, in the 
SLAs. Deployment and Instantiation (DI) comprises 
deployment which is the introduction of new service 
components in nodes, and instantiation which starts 
execution of deployed service components. Fault 
Diagnosis (FD) detects the failure of the instantiated 
services. System Performance Diagnosis (PD) 
detects mismatch between the required system 
performance and the inherent system performance. 
Service Adaptation (SA) plans the adaptation during 
the service system execution in case of 1) mismatch 
between the required system performance and the 
inherent system performance, 2) faults and 3) other 
reasons for service component movements. The 
adaptation results in AL only, or the combination of 
CC and AL. 

In this paper, the capability is focused on. Accordingly, 
CA and PD are simplified to Capability Administration and 
Capability Performance Diagnosis. AL considers only the 
required capability performance. 

IV. CAPABILITY ONTOLOGY 

A. Concepts 

The concepts of the Capability Ontology (CapOnt) are 
illustrated in Fig. 2. Capability type defines entities with 
common characteristics. A capability type can be functions, 
physical resources and data. The function examples are 
operating system, application software and protocol. The 
physical resource examples are CPU and memory. User 
accounts and passwords are the data examples. 

 

 
Figure 2.  General Concepts of Capability Ontology. 

Capability parameter describes the characteristics of a 
capability. Functionality parameters define features of the 
functionality and performance parameters describe features 
of the performance. Inference parameters define relations to 
other capability types, in which these relations are logically 
concluded from other parameters. The functionality and the 
performance parameters can be rule-based, while the 
inference parameters are rule-based. 

Performance parameters are further classified into 
capacity-, state- and QoS parameters. Capacity parameter 
examples are transmission channel capacity, CPU processing 
speed and disc size. State parameters define the situation of 
the capability at a specific time. State parameter examples 
are the number of available streaming connections and 
number of packets discarded in a specific buffer. QoS 
parameter defines the degree of satisfaction of the service 
users. QoS parameters can be traffic and dependability 
statistics based on observed stochastic variables. Important 
traffic variable examples are throughput and utilization. 
Important dependability variable examples are availability 
and recovery time.  

The parameter Utilization and Compatibility are 
important rule-based parameters used in the example in 
Section VI. Utilization is a QoS parameter that gives the 
average usage of a capacity over a defined time interval. 
Compatibility is an inference parameter that specifies a 
relation from a capability to other compatible capabilities, in 
which these capabilities can be used as its substitutes. 

The service management functions are defined by rules 
as mentioned already in Section I. The service management 
functions are classified into Capability Administration, 
Capability Configuration, Capability Allocation and 
Capability Performance Diagnosis, which corresponds to the 
functionality components presented in Section III. 

The CapOnt consists of general concepts of capabilities. 
For a complete capability specification of a specific system, 
a System-specific Capability Ontology (SysCapOnt) must be 
defined. The SysCapOnt inherits the CapOnt. The service 
management functionalities presented in Section III will 
need instances of the capability types and the capability 
parameters part of the SysCapOnt for CA, CC, AL and PD. 
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B. Representation 

OWL  [16] and OWL/XDD  [18] are used to represent the 
capability concepts. OWL is a standard Web ontology 
language, which provides a rich set of constructors. The 
capability types, the non-rule-based parameters, their 
relations and instances are expressed by owl:Class, 
owl:Class, owl:ObjectProperty and OWL instances 
respectively.  The values of non-rule-based parameters are 
specified by owl:DatatypeProperty that is called hasValue.  

However, OWL is limited when it comes to describe the 
rule-based capability concepts. OWL/XDD, a rule-oriented 
knowledge representation, is then required to express such 
concepts. OWL/XDD extends ordinary XML-based elements 
by incorporation of variables for an enhancement of 
expressive power and representation of implicit information 
into so called XML expressions. The ordinary XML-based 
elements – XML expressions without variables – are called 
ground XML expressions. The variables are classified into 
five types as explained in Table I. A variable is prefixed by 
‘$T:’ where T denotes its type. 

TABLE I.  THE VARIABLE TYPES 

Variable 

type 

Pre 

fix 
Instantiated to 

N-variable $N: An element tag name or an attribute name 

S-variable $S: An element value or an attribute value 

P-variable $P: 
A sequence of zero or more attribute-value 

pairs 

E-variable $E: A sequence of zero or more XML expressions 

I-variable $I: Part of XML expressions 

 
A rule-based parameter and a service management 

function are represented as an XML clause of the form: 

                      Η   →   Β1, .. , Βm, {C1, .. ,  Cn}                    (1) 

where m, n  0, H and Bi are XML expressions, and each of 
Ci is a pre-defined XML condition on the XML clause. H is 
called the head of the clause, while the set of Bi and Ci is the 
body of the clause. When the body is empty, such a clause is 
referred to as an XML unit clause and the symbol ‘→’ will be 
omitted. Hence an XML-based element or document can be 
mapped directly onto a ground XML unit clause. 

V. REASONING PROCEDURE 

The reasoning procedure begins with an XML expression 
based query Q. Then, an XML clause, called query clause, is 
formulated from the XML expression as follows: 

                                       Q   →   Q                                     (2) 

The XML expression Q represents the constructor of the 
expected answer which can be derived if all conditions in the 
body of the clause hold. However, if one or more XML 
expression bodies still contain the variables, these variables 

must be matched and resolved from other unit clauses and 
non-unit clauses. 

A body from the query clause will be matched with the 
head of other clauses. At the beginning, there is only one 
body Q. Consider a clause R1 in the form: 

                         R1:    Η   →   Β1, Β2, C1                             (3) 

If the XML structure of the body Q and the head H of the 
clause R1 match without violating the condition C1, the body 
Q will be transformed into B1 and B2. All variables in the 
head Q and the new bodies B1 and B2 of the query clause will 
be instantiated. The query clause will be in the form: 

                                Q 
∗   →   Β1 

∗, Β2 
∗
                              (4) 

where X* means the one or more variables in the XML 
expression X  has been instantiated and removed. 

The transformation ends when either 1) the query clause 
has been transformed into a unit clause or 2) there is no 
clause Rx that can transform the current bodies of the query 
clause. If the constructor Q is transformed successfully into 
Qf that contains no variable, the reasoning procedure ends 
and the desired answered is obtained. 

VI. CASE STUDY 

This section describes an intelligent academic conference 
room example. A conference service system provides video 
transfer services, and users can download and watch present 
presentations of accepted papers, present tutorials, and old 
videos of the presentations and tutorials from previous years. 
The entire video files will be transferred to the user devices 
before they can start. In this scenario, the services are 
classified by the video types: the present presentation, the 
present tutorial, and the old video. The old video has low 
priority. The users access the services from their wireless 
communication devices. However, when the number of  
users increases, the bandwidth usage becomes too high. 
When this occurs, the services should be degraded 
gracefully. This means only high priority services will be 
available, but they are operating regularly. 

The conference service system has adaptability features 
that deploy and instantiate video transfer service components 
in capable nodes. Also, it disables the old video transfer 
services when the wireless bandwidth utilization is greater 
than a maximum limit, and enables them when the 
bandwidth utilization is less than a minimum limit. 
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Figure 3.  The conference service system. 

The conference service system consists of EFSM-based 
service components and an RM-based service component in 
nodes as illustrated in Fig. 3. The EFSM-based service 
components are Service Manager, Monitoring Manager, 
Transfer_P Manager, Transfer_T Manager and Transfer_O 
Manager. A System-specific Capability Ontology 
(SysCapOnt) will be presented in Section VI.A. With 
reference to the service functionality architecture in Section 
III, the Service Manager implements part of Capability 
Administration, Capability Configuration, Deployment and 
Instantiation, Capability Performance Diagnosis, Capability 
Allocation and Service Adaptation. The Monitoring Manager 
implements part of Capability and Service Monitoring, and 
the RM-based service component is the reasoning procedure 
used by the Service Manager. The Transfer_P Manager, 
Transfer_T Manager and Transfer_O Manager offer the 
transfer services for the following video types respectively: 
the present presentation, the present tutorial, and the old 
video. 

The Service Manager and Monitoring Manager are 
instantiated by the administrator. These managers play an 
important role to attain the adaptability features as mentioned 
above. The Service Manager has sub functions as follows: 

a) Discover available nodes within the conference 
room. 

b) Call the reasoning procedure and get an action: 
request the Monitoring Manager to monitor a set of 
capability types and parameters: {$S:CapabilityType, 

{$S:CapabilityParameter}}, from the nodes every interval. 

c) Call the reasoning procedure and get an action: 
select capable nodes: {$S:Node}, that satisfy the capability 
requirements of the Transfer_P Manager, Transfer_T 
Manager and Transfer_O Manager. 

d) Deploy and instantiate the Transfer_P Manager, 
Transfer_T Manager and Transfer_O Manager in the 
capable nodes. 

e) Get the monitored capability instances: 
{$S:CapabilityTypeInstance, {$S:CapabilityParameterIn-

stance,  $S:value}}, from the Monitoring Manager. 

f) Reallocate the bandwidth every interval by: 

• First, call the reasoning procedure and get an action: 
{$S:RellocateAction} to disable or enable the low 
priority services. 

• Second, share the bandwidth equally for every 
available service. 

In b), c) and f), the Service Manager calls the reasoning 
procedure with an input XML expression based query Q. 
Using the CapOnt, SysCapOnt, inherent capabilities and 
require capabilities, the reasoning procedure transforms the 
query clause (2) to obtain the actions and the instantiations of 
the variables. Then, these actions and instantiations of the 
variables are returned to the Service Manager. 

The Monitoring Manager gets the monitoring request, 
queries the parameters’ values from the nodes, and updates 
these values to the Service Manager. 

A. System-specific Capabilty Ontology (SysCapOnt) 

According to the standardized information models 
discussed in Section II, SNMP MIB and CIM schema have 
already a rich set of defined capability types and parameters. 
We choose the SNMP MIB as the basis for the definition of 
the capability types and the non-rule-based parameters in the 
SysCapOnt because of the extensive implementation of 
SNMP agents in different types of devices.  

Note that this given ontology as illustrated in Fig. 4 is 
only for demonstration purpose. The capability types focused 
are network interface and operating system. These capability 
types and their parameters are found in Host Resource MIB 
[19] and MIB II [20].  

 

 
Figure 4.  Some Concepts of a System-spefic Capability Ontology. 

A network interface is defined by the object type ifEntry. 
It consists of several parameters, such as ifInOctets, 
ifOutOctets and ifSpeed. ifInOctets is the total number of 
octets received on the interface, whereas ifOutOctets refers 
to the total number of octets transmitted from the interface. 
ifSpeed is the maximum bandwidth of the interface. The 
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parameter ifEntryUtilization, a subclass of the Utilization, 
defines the bandwidth utilization of the interface. An 
operating system is defined by the object type 
hrSWRunEntry, and its type and version are described by the 
object type sysDescr. The parameter hrSWRunEntry- 
Compatibility, a subclass of the Compatibility, specifies the 
compatibility between operating systems. 

The service management functions are defined by Rule-A 
– Rule-E. These rules, the hrSWRunEntryCompatibility and 
the ifEntryUtilization are represented in the graphical XML 
clauses as below. The notations used are: 

 
 

hrSWRunEntryCompatibility xml clause: 

 
 
It can be read as: Windows Server 2003 SP2 is 

compatible with Windows Server 2008. 
 
ifEntryUtilization xml clause:  

 
 
It can be read as: the bandwidth utilization $S:util-value 

during an interval, between $S:t-start and $S:t-end, depends 
on other parameters as this expression, 
 

$S:util-value = (((8 * ( ($S:in-value2,$S:in-value1) +  
($S:out-value2,$S:out-value1))) / ($S:t-end,$S:t- 

start)) / $$:speed-value) * 100                                        (5)   
 
where ($S:in-value2,$S:in-value1), ($S:out-value2, $S:out 
-value1) are the numbers of bytes received and transmitted 
via the network interface during an interval, whereas 
$S:speed-value is the maximum bandwidth. 
 
 

Rule-A xml clause: 

 
 

It can be read as: request for the monitoring of 
{$S:CapabilityType, {$S:CapabilityParameter}} every 
interval (∆), if $S:CapabilityParameter is not the rule-based 
parameters: the Utilization- and the Inference parameter. 
 

Rule-B xml clause: 

 
 
It can be read as: select a node $:Node as a capable node 

for the requirement $S:Requirement if it has capability types, 
parameters and values as same as required. 
 

Rule-C xml clause: 

 
 
It can be read as: select a node $:Node as a capable node 

for the requirement $S:Requirement if it has capability types 
as compatible as required. 
 

Rule-D xml clause: 

 
 
It can be read as: reallocate the bandwidth by disabling 

the low priority services, if the bandwidth utilization is 
greater than a maximum limit (MAX). 
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Rule-E xml clause: 

 
 
It can be read as: reallocate the bandwidth by enabling 

the low priority services, if the bandwidth utilization is less 
than a minimum limit (MIN). 

B. Simulation Results 

We simulated our scenario by assuming that the nodes 
have the SNMP agents executing. The maximum wireless 
bandwidth is 54Mbps. The number of users is 100. Every 
user generates 2-5 service requests to transfer the videos 
randomly. All video files are the same size; 300Mb, and are 
transferred with the same maximum rate; 1Mbps. The 
interval (∆) to monitor capabilities as well as to reallocate the 
bandwidth is 30 sec.  

Our simulation is set for two cases (I, II). Both cases set 
low priority for the old videos as already mentioned. In case 
I, the system executes without the Rule-D and the Rule-E. 
The requests will wait if there is no bandwidth left. When 
there is released bandwidth, it is shared and given to all 
requests; processing requests and waiting requests, of the 
high priority videos before the low priority videos. In case II, 
the system executes with the Rule-D and the Rule-E. The old 
video transfer services will be disabled and enabled 
according to the bandwidth utilization. The maximum limit 
(MAX) and the minimum limit (MIN) are set as 80% and 
60%. The average transfer times (Avr.T) in both cases are 
presented in Table II. 

TABLE II.  THE VARIABLE TYPES 

 

Avr.T of The   

Present 

Presentations 

Avr.T of The 

Present 

Tutorials 

Avr.T of The 

Old Videos 

 

Case I  6.82 min 6.26 min 9.73 min 

Case II 5.76 min 5.39 min 14.95 min 

 
In Case II, the system degrades the services more 

efficiently than in Case I. The system can offer an adequate 
transfer of the high priority videos. The average transfer 
times are 5.76 min and 5.39 min, which are faster than in 
Case I ≈15.5% and ≈13.9% respectively. These %values 

indeed vary according to the arrival distribution, ∆, MAX 
and MIN. However, the average transfer time of the low 
priority videos in Case II (14.95 min) is greater than in Case 
I (9.73 min). This is because in Case II the reasoning 
procedure executes the rules and suggests the action to pause 
their transfers when the bandwidth utilization > 80%. The 
bandwidth that has been used is released, and is given for 
transferring the high priority videos. But in Case I the 
bandwidth is released only when the transfers finish. 

VII. CONCLUSIONS 

Capability Ontology (CapOnt) comprising the concept 
capability types, capability parameters and service 
management functions is proposed. The rule-based 
parameters values, e.g. the Utilization and the Compatibility, 
are generated dynamically by the presented reasoning 
mechanism. The capability types and the non-rule-based 
capability parameters can be defined based on the existing 
standardized information models. An intelligent conference 
room example, where the Capability Ontology combined 
with the reasoning mechanism has proved useful, is 
presented. A System-specific Capability Ontology 
(SysCapOnt) for a conference service system is also given. 
The conference service system comprises the adaptation in 
case the bandwidth utilization is greater than or lower than 
the limits. Using the proposed rule-based service 
management functions, the system (re)-allocates the 
bandwidth to the high priority service classes more 
efficiently.  
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