

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

Abstract—Capability configuration management is the

allocation, re-allocation and de-allocation of capabilities. A
capability is here defined as an inherent physical property of a
network node which is a basis for implementing networked
services. Capability configuration management requires a
specification of the capability configuration management
process. This paper proposes a framework for capability
configuration process specification (CCPS) production and
execution. CCPS is a set of actions with related parameters and
is used to configure the capability objects of the network nodes
prior to service deployment and instantiation. A CCPS is based
on Web services.

The production of CCPS is based on capability
requirements defined by the networked services to be deployed
and instantiated. The framework has an ontological reasoning
ability. A case study to configure a VLAN connection using
switches is also provided.

I. INTRODUCTION
etworked service systems are considered. Services are
realized by service components, which by their inter-
working provide a service in the role of a service

provider to a service user. Service components are executed
as software components in nodes, which are physical
processing units such as servers, routers, switches, PCs and
mobile phones.

A service system can be defined as the handling of the
abstractions of the service component models of a service
system through the service system life-cycle phases. The
service life-cycle phases can be structures into
• service engineering,
• service configuration management and
• service discovery management.

Service engineering is the definition and implementation

of the service component models. Service configuration
management consists of capability configuration
management, service deployment and service instantiation.
Service discovery management is the process of exposing
the services to the public, finding the services that satisfy
the functional and QoS requirements, and accessing the
services.
 A capability [1] is an inherent property of a network node
and is used as a basis to implement services. Capability
configuration management comprises capability
initialization, capability re-initialization and capability
allocation adaptation. Capability initialization is the
allocation and the arrangement of the capabilities for the
service components to be distributed and instantiated.

Capability re-initialization is the re-distribution and re-
instantiation of the service components and capabilities
when the instantiated service systems are unable to adapt
satisfactorily as well as when capabilities are changed.
Lastly, capability allocation adaptation is the monitoring of
the performance of the executing service system, the re-
allocation and the re-arrangement of the capabilities within
the executing service systems.

Capability configuration management is a vital part of
service configuration management and precedes service
deployment and service instantiation. Service deployment is
the introduction of new services and service components
into the network nodes, while service instantiation is the
creation of instances of the service components and making
them ready for usage. In this paper, capability initialization
comprises
• the production of a capability configuration process

specification (CCPS) as well as
• the configuration of the capability objects of the

processing nodes.

In this paper we propose a capability self configuration

framework based on capability ontology. In the paper we
are focusing on capability initialization. The framework is
defined by
• information model,
• organization model and
• communication model

The information model defines the capability ontology,

the capability requirement as well as CCPS. The capability
ontology provides a formal way to describe and reason the
semantics and axioms of the capability-related information.
The capability ontology model is represented by OWL
(Ontology Web Language) [2]. It expresses general
capabilities of the network nodes and capability
requirements of specific service system. Both are inputs to
the CCPS framework. CCPS is here a set of SOAP (Simple
Object Access Protocol) messages encapsulating the
capability-related information to configure the capability
objects of the network nodes.

The organization model defines the active components
that participate in the capability configuration management;
it has information model objects as input and output.

Lastly, the communication model describes SOAP
messages to communicate between the active components
and the network nodes. The communication model is based
on WS-Management [3] which promotes the vendor-

Ontology-based Capability Self-Configuration
Patcharee Thongtra, Finn Arve Aagesen and Natenapa Sriharee

Department of Telematics

Norwegian University of Science and Technology (NTNU)
N7491 Trondheim, Norway

patt@item.ntnu.no, finnarve@item.ntnu.no, natenapa@item.ntnu.no

N

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

independent network management protocol by using Web
services technology.

The framework described in this paper has three
contributions as follows: First, the framework can
automatically generate CCPS. Second, with the capability
ontology the framework has a potential to reason the
capability-related information in the service system.
Reasoning ability is needed for a self-management service
system. Third, action for the configuration is extensible.
Based on Web services the network node can publish new
services for the configuration without the reengineering of
the framework.

The paper is organized as follows: Section II discusses
related work, Section III explains the information model,
and Section IV presents the organization model and the
active components residing in the model. Section V
describes the communication model. Section VI provides a
case study of capability configuration for a VLAN (Virtual
Local Area Network) connection. A summary and
conclusion are provided in Section VII.

II. RELATED WORK
There have been several studies related to self-

configuration networks, even though most of them have not
considered a unify framework with service self-
configuration management ability. With such ability the
framework should be able to handle network configuration
management, service deployment and service instantiation.
SELFCONF [4] is an architecture for the self-configuration
of networks in response to changed configuration policies.
A DEN-ng specification [5] has been used as the
information model and LDAP protocol as the
communication model. Our work can include DEN-ng as
part of the information model as well. NESTOR [6] has
been demonstrated also in the automation of network
configuration. The NESTOR automates configuration
management by means of policy scripts with access to and
manipulation of respective network nodes.

With the employment of ontology that is similar to our
work, Glasner and Sreedhar [7] proposed to use ontology
and OWL to model and represent the configuration of an
Apache server. Based on their model the information can be
validated. However, the model is not applicable for
networked service systems in general. Moreover, the
configuration management process for IP network nodes
can be modeled by using OWL, SWRL and OWL-S, as
presented in [8].

III. INFORMATION MODEL
Several ontologies have been proposed for use as network

management information models, such as DEN-ng and CIM
[9]. However, those ontologies can represent only the
network nodes and their properties; they lack a
representation of the relationships between them. Thus, it is
difficult to reason the information.
 In this paper we follow the approach of using ontology to
represent the capability-related information, but we also pay
attention to the relationships and their semantics. Our
ontology model, capability ontology model, implements the
capability concept. We select OWL as the representation
language for the capability ontology since it has a rich set of

operators for describing complex constraints.

A. Capability Ontology
A capability of a network node is described by inherent

properties. Those properties represent the capabilities in
terms of functional capability, resources capability and data
capability with the detailed description as follows:
• Functional capability represents pure software or

combined software/hardware components used for
performing particular tasks which they can be
measured in terms of the status.

• Resources capability represents hardware
components with finite capacity. For example,
processing units, storage units as well as
communication units are the hardware components in
which finite capacity can be measured in terms of the
value.

• Data capability represents the data including the
interpretation, validity and life span of which depend
on the context of use.

Additionally these capabilities are defined according to
the capability attributes: negotiability, arrangement,
compatibility and reducibility.

With the capability attributes and their logical
characteristics, such as inherited, transitive and symmetric,
the capability ontology expresses the relationships and
constraints between the network nodes and their properties
well. Figure 1 represents the capability ontology model.

Figure 1: Capability Ontology Model.

Negotiability attribute represents whether it is possible to

negotiate on a capability. The attribute is either negotiable
or non-negotiable. If a capability is negotiable, there is a
range of acceptable characteristics. For example,
transmission channel capacity required by a text messaging
application is negotiable (acceptance rate between 128 –
384 kbps), while access right data is non-negotiable.

The attribute negotiable has an inherited characteristic. If
a network node capability is negotiable, then its inherent
capabilities are negotiable. For example, the capability of a
Web server providing normal HTTP pages is negotiable.
Thus, the server’s transmission channel capacity is
negotiable.

Arrangement attribute represents whether a capability is
limited for a special purpose (e.g., group of consumers) or it
is for general use. The attribute is either exclusive or shared.
For example, transmission channel and Web server process

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

are by nature shared resources, but a password is by nature
exclusive information.

Compatibility attribute represents whether a capability is
definitely unique or it can be substituted by other
capabilities. The attribute is either compatible or
incompatible. For example, JRE (Java Runtime
Environment) v.1.4.2 is compatible with JRE v.1.4.7, but
not the other way round.

The attribute compatible has a transitive characteristic,
while the attribute incompatible has a symmetric
characteristic.

Reducibility attribute represents whether a capability is
reduced proportional to the consumer (e.g. the user or other
capabilities). The attribute is either reducible or irreducible.
For example, bandwidth is decreased by the number of users
multiplied by capacity consumed per user, while a Web
server running process is non-reducible.

The attribute reducible has an inherited characteristic as
well as a transitive characteristic. For example, the
capability of a switch node is reducible; its memory is
reduced by data in routing table.

B. Capability Requirement
The capability description describes the capability of the

network node in general without specific capacity and
status. The capability requirement states that which classes
of the network nodes are needed in the service systems
including the number of each class. It utilizes the capability
description and specifies required capacity and status.

Table 1 represents an example of a VLAN streaming
service system that consists of client switch and server
switch. Both client switch and server switch are subclasses
of a network node. The client switch capability is
negotiable. The server switch is described by these
capabilities: Interface, IOS (Internetwork operating system),
NVRAM (Non-volatile random access memory), etc.
Interface is a functional capability which is measured by its
status. IOS is also a functional capability. IOS is compatible
with the IOS itself. NVRAM is a reducible resource
capability which has finite memory size that can be
measured in terms of megabyte units. In addition, it contains
administrator password that is an exclusive data capability.

Table 1: An example of the capability description for
VLAN streaming service system.
<owl:Class rdf:ID=”VLAN_Streaming_ServSystem”>

<rdfs:subClassOf
 rdf:resource=”#NetworkedSystem”/>
<requires rdf:resource=”#ServerSwitch”/>
<requires rdf:resource=”#ClientSwitch”/>

</owl:Class>
<owl:Class rdf:ID=”ClientSwitch”>

<rdfs:subClassOf rdf:resource=”#NetworkNode”/>
<hasCapability

rdf:resource=”#ClientSwitchCapability”/>
</owl:Class>
<owl:Class rdf:ID=”ClientSwitchCapability”>

<negotiability rdf:resource=”#Negotiable”/>
</owl:Class>

<owl:Class rdf:ID=”ServerSwitch”>

<rdfs:subClassOf rdf:resource=”#NetworkNode”/>
<hasCapability

rdf:resource=”#ServerSwitchCapability”/>
</owl:Class>
<owl:Class rdf:ID=”ServerSwitchCapability”>

<describedBy rdf:resource=”#Interface”>
<describedBy rdf:resource=”#IOS”>
<describedBy rdf:resource=”#NVRAM”>
...

</owl:Class>

<owl:Class rdf:ID=”Interface”>
<rdfs:subClassOf

rdf:resource=”#FunctionalCapability”/>
<hasStatus rdf:resource=”#InterfaceStatus”/>

</owl:Class>
<owl:Class rdf:ID=”IOS”>

<rdfs:subClassOf
rdf:resource=”#FunctionalCapability”/>

<compatibility rdf:resource=”#Compatible”>
<compatibleWith rdf:resource=”#IOS”/>

</owl:Class>
<owl:Class rdf:ID=”NVRAM”>

<rdfs:subClassOf
rdf:resource=”#ResourceCapability”>

<hasFiniteCapacity rdf:resource=”#MemorySize”/>
<hasFiniteCapacityUnit ref:resource=”#MB”/>
<reducibility rdf:resource=”#Reducible”/>

</owl:Class>

<owl:Class rdf:ID=”AdministratorPassword”>

<rdfs:subClassOf
 rdf:resource=”#DataCapability”>
<arrangement rdf:resource=”#Exclusive”/>

</owl:Class>

From the capability description, the capability

requirement can be defined further. Table 2 represents the
capability requirement for VLAN streaming service system
that requires two client switches and a server switch. The
server switch requires at least 512MB NVRAM, installs
IOS_12.1.8a, and implements VTP (Virtual Trunking
Protocol). The requirement defines compatibility between
two versions of acceptable IOS; it defines IOS_12.1.8a and
IOS_12.1.9 to be compatible. Also, it describes an
arrangement between VTP and VLAN information that
VTP_1 is exclusive to VLAN_Savanne_Room (VLAN
name “savanne_room” and no. 5).

Table 2: The capability requirement for VLAN
streaming service system in NTNU room.
<VLAN_Streaming_ServSystem
rdf:ID=”NTNU_Savanne_Room”>

<requires>
 <ClientSwitch rdf:ID=”Client_Switch_1”/>
</requires>
<requires>
 <ClientSwitch rdf:ID=”Client_Switch_2”/>
</requires>
<requires rdf:resource=”#Server_Switch_1”/>

</VLAN_Streaming_ServSystem>
<ServerSwitch rdf:ID=”Server_Switch_1”>

<hasCapability
rdf:resource=”#Server_Switch_Cap_1”/>

</ServerSwitch>
<ServerSwitchCapability
rdf:ID=”Server_Switch_Cap_1”>

<describedBy rdf:resource=”#NVRAM_1”/>
<describedBy rdf:resource=”#IOS_12.1.8a”/>
<describedBy rdf:resource=”#VTP_1”/>

 ...
</ServerSwitchCapability>
<NVRAM rdf:ID=”NVRAM_1”>

<hasFiniteCapacity
rdf:resource=”#MemorySize_1”/>

</NVRAM>
<MemorySize
rdf:ID=”MemorySize_1”>512</MemorySize>
<IOS rdf:ID=”IOS_12.1.8a”>

<compatibleWith rdf:resource=”#IOS_12.1.9”/>
</IOS>
<VTP rdf:ID=”VTP_1”>

<exclusiveTo
rdf:resource=”#VLAN_Savanne_Room”/>

</VTP>
<VLAN_Info rdf:ID=”VLAN_Savanne_Room”>

<name>savanne_room</name>
<number>5</number>

</VLAN_Info>

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

C. Capability Configuration Process Specification
(CCPS)
CCPS is an XML-based specification composed of SOAP

messages. The messages are sent to services implemented
on the network nodes. The services are to get, update,
create, delete and subscribe the capability of the network
nodes. The capabilities are realized by the capabilities
objects.

A message contains the configuration action (get, update,
create, delete and subscribe) and the configuration action
parameters. The configuration action and parameters are
enclosed by the element Action and ActionParams
respectively, while the configuration result is identified by
the element ActionResponse. (Each message is detailed in
Section V.) The configuration action parameter is likely a
capability class (defined by the capability description).
Table 3 illustrates the schema for CCPS.

Table 3: Schema for CCPS.
<xs:schema targetNamespace=
”http://schemas.tapas.item.ntnu.no/Capability”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:ws=”http://schemas.xmlsoap.org/ws/2005/06/m
anagement”
xmlns:env=”http://schemas.xmlsoap.org/soap/envelo
pe”
xmlns:cap=”http://schemas.tapas.item.ntnu.no/Capa
bility”>

<xs:import
namespace=”http://schemas.xmlsoap.org/ws/2005/06/
management” schemaLocation=”wsmanagement.xsd”/>

<xs:import
namespace=”http://schemas.xmlsoap.org/soap/envelo
pe” schemaLocation=”soap.xsd”/>

 <xs:element name=”CCPS” type=”CCPS_Type”/>
 <xs:complexType name=”CCPS_Type”>

 <xs:sequence>
 <xs:element ref=”networkSystemID”/>
 <xs:element ref=”env:Envelop” minoccurs=1/>
 </xs:sequence>

 </xs:complexType>

<xs:element name=”networkSystemID”
type=”String”/>

<xs:complexType name=”Header”>
 ...
 <xs:element ref=”wsa:Action”/>
 <xs:element ref=”ActionParams”/>
</xs:complexType>

<xs:complexType name=”Body”>
 ...
 <xs:element ref=”ActionResponse”/>
</xs:complexType>

<xs:element name=ActionParams

type=”ActionParams_Type”/>

<xs:complexType name=”ActionParams_Type”>
 <xs:sequence minoccurs=1>
 <xs:element ref=”ActionParam”/>
 <xs:element ref=”ActionValue”/>
 </xs:sequence>

 </xs:complexType>
<xs:element name=”ActionParam” type=”String”/>
<xs:element name=”ActionValue” type=”String”/>

<xs:element name=ActionResponse type=”String”/>

</xs:schema>

IV. ORGANIZATION MODEL
The organization model is layered into three levels; User

Interface Layer, Computing Layer and Network Nodes
Layer, as shown in Figure 2. The computing layer consists
of three components; Capability Manager (CM), Query

Manager (QM) and Capability Object Configurator (COC),
one repository; Capability Ontology Repository (CORep)
and Web services registry; Capability Web Services Registry
(CWSReg). CORep stores the capability description, the
capability requirement and the capability instance. CWSReg
is where the network nodes register their Web services for
the capability configuration and notifications.

cooperate

cooperate(2)
getCapability

Capability

Instance

R

R
D

I

I

Figure 2: The organization model.

First, the administrator inputs, queries and updates the

capability requirement via the user interface (1). The
capability description has been provided by the network
domain expert to support the creation of the capability
requirement. After the capability requirement is input, the
components residing in the computing layer start their
processes automatically.
 The CM is responsible for getting the capability instance
from existing network nodes via the getCapability service
(2). A capability instance is a data representation of a
capability of the network node. In addition, the CM
manages the capability instance for example providing an
access to the instances.

The QM generates query commands to select (3) either
the network nodes whose capabilities satisfy the capability
requirement, or the ones having potential to meet the
capability requirement. For example, a query to find a PC
with free disk space more than 1GB. QM uses the
transformation rule to transform the capability requirements
into SPARQL (SPARQL Protocol and RDF Query
Language) [10] query format. (The transformation rule is
given in Appendix.) The result of the query can identify the
network node by its URI (Uniform Resource Identifier).

The COC gets the URIs of the selected network nodes
from the QM. Then the COC finds their setCapability,
createCapability and deleteCapability services (4) to make
their capabilities in absolute compliance with the capability
requirements. The COC makes a CCPS (5.1). Lastly the
COC applies the CCPS (5.2) by sending the messages
residing on the CCPS to the network nodes (6).

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

At the network nodes layer the nodes register their
services to CWSReg. According to WS-Management
specification, the network nodes implement Web services
allowing others to manage their resource instances, which
are considered here as capability objects. However, the
network nodes can also implement custom services or
custom actions besides the ordinary well-defined services.
(For network nodes that have been implemented other
network management architectures, such as SNMP, we use
a software gateway for the information exchange between a
protocol used in such architectures and Web services
protocol.)

V. COMMUNICATION MODEL
In this paper we apply WS-Management framework

which proposes Web services as the protocol for managing
network systems. WS-Management exposes the network
management information model - such as CIM or custom
models - as Web services. Several works [11, 12, 13]
analyzed the advantages and drawbacks of the employment
of Web services technology for the network management
compared to the employment of classical network
management architectures: SNMP or CMIP. However, Web
services is a current technology trend for the networks with
self-management ability as mentioned in [14].

The communication model extends WS-Management. It
details custom actions and SOAP messages for the
communication between the computing layer and the
network nodes. The custom actions are defined in order to
manipulate the capability as follows:
• getCapability action is to request for the capability

instance.
• getCapabilityResponse action is a response to

getCapability to return the capability instance.
• setCapability, createCapability and deleteCapability

action are to respectively set, create and delete the
capability objects.

• setCapabilityResponse, createCapabilityResponse
and deleteCapabilityResponse action are to
respectively return the result of setCapability,
createCapability and deleteCapability.

• subscribeOnCapability action is an action to
subscribe event relating to any changes that occur
with the capability objects. When an event occurs, an
asynchronous message notification is sent to indicate
that event. An event is for example low disk space.

• subscribeOnCapabilityResponse action is to return
the result of a subscription done by
subscribeOnCapability action.

• unsubscribeOnCapability action is to terminate a
subscription unless the subscribed capability is used
further ahead.

• unsubscribeOnCapabilityResponse action is to return
the result of unsubscribeOnCapability action.

We do not need subscribeOnCapability,
unsubscribeOnCapability and their response actions for the
capability allocation. But we also consider them in order to
support the capability re-allocation in the future.

The request actions (getCapability, setCapability,
createCapability, deleteCapability, subscribeOnCapability
and unsubscribeOnCapability) and their parameters are
enclosed in the message template displayed in Table 4,

while the response actions’ message template is shown in
Table 5.

Note that XML namespaces used in the templates follow
WS-Management specification.

Table 4: The request action message template.
<env:Header>
 <wsa:To>management service AP on node</wsa:To>

<wsman:ResourceURI>WSDL identity and port on
node</wsman:ResourceURI>

<wsa:ReplyTo>component URI</wsa:ReplyTo>
<wsa:MessageID>uuid:xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx</wsa:MessageID>
<wsa:Action>action URI</wsa:Action>
<cap:ActionParams>
 <cap:ActionParam>param<cap:ActionParam>
 <cap:ActionValue>value<cap:ActionValue>
</cap:ActionParams>

<env:Header>

Table 5: The response action message template.
<env:Header>
 <wsa:To>
http://schemas.xmlsoap.org/ws/2004/08/addressing/
role/anonymous
 </wsa:To>

<wsa:Action>action URI</wsa:Action>
<env:Header>
<env:Body>
 <cap:ActionResponse>value</cap:ActionResponse>
</env:Body>

In the message templates we use XML elements defined

in WS-Management specification and our proposed schema
as follows:
• wsa:To (in the request action message template)

indicates the transport address of management
service access point (AP) on the network node,

• wsman:ResourceURI denotes WSDL (Web Services
Description Language) identity and port on the
network node,

• wsa:ReplyTo denotes URI of the component in the
computing layer which will get the response,

• wsa:MessageID represents a unique message id for
tracking and correlation between the request and the
response.

• wsa:Action identifies the action URI.
• cap:ActionParams encloses different parameters, that

corresponds to the capability description, depending
on the request action. (See an example from the case
study.)

• wsa:To (in the response action message template)
denotes the requestor.

• cap:ActionResponse defines successful or
unsuccessful status of the request action.

VI. CASE STUDY
The case study is to configure a VLAN connection using

Cisco switches. The configuration is prepared for a
streaming service system.

Switches allow a network to be partitioned into logical
segments through the use of VLAN. Switches which share
Layer 2 VLAN communication need to be connected by a
trunk. IEEE 802.1Q and Virtual Trunking Protocol (VTP)
are two popular protocols for VLAN trunks. VTP has been
developed on Cisco switches to centralize the creation and
deletion of VLANs in a network into a VTP server switch.
The server switch has VTP mode server. It can take care of

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

creating, deleting and updating the status of existing
VLANs to the other switches sharing the same VTP domain.

This example requires three switches: one server switch
and two client switches, to implement a VLAN connection
in the NTNU Savanne Room. Figure 3 depicts switches and
their properties in the room before the configuration.

Figure 3: Existing switches in NTNU Savanne Room.

A. The capability description and the capability
requirement
Figure 4 depicts the capability description of the server

switch that is considered in the example. In additional to the
capabilities already described in Table 1 the server switch
implements VTP protocol and stores VLAN information.
VTP concerns VTP domain and VTP mode. VLAN
information consists of a VLAN name and a VLAN
number. The VLAN information is stored in NVRAM.

The capability requirement of this example is expressed
in Table 2.

Figure 4: Server Switch Capability Description.

B. The query command
The following shows a query command which is

generated to query for the server switch. The query means
we need a ServerSwitch with minimum 512MB NVRAM. It
must install IOS that is compatible with IOS 12.1.8a, and is
reserved for VLAN in the Savanne Room. (See Appendix
for details.)

We only consider the server switch as it is non-
negotiable, while the client switch is negotiable. Moreover
we pay attention to the VLAN information of the server
switch as it will be distributed to other client switches
automatically.

From the Figure 3 the query returns switch_1 as the
ServerSwitch.

Select ?server_instance
Where

?server_instance rdf:type ServerSwitch .
?server_instance hasCapability $server_cap .

?server_cap describedBy ?nvram_instance .
?nvram_instance

hasFiniteCapability ?memory_size .
FILTER (?memory_size >= 512) .

?server_cap describedBy ?vtp_instance .
?vtp_instance
 exclusiveTo VLAN_Savanne_Room .

?server_cap describedBy ?ios_instance .
IOS_12.1.8a compatibleWith ?ios_instance

C. CCPS
The following shows a CCPS of this example. It consists

on two messages. The first message is to set switch_1 as
server, and the second message is to set switch_2 as client.

<CCPS>

<networkSystemID>NTNU_Savanne_Room</
networkSystemID>

<!-- The first message -->
<env:Envelop>
 <env:Header>
 <wsa:To>http://123.15.166.67/wsman</wsa:To>

 <wsman:ResourceURI>
http://schemas.tapas.item.ntnu.no/2008/04/Switch/
 </wsman:ResourceURI>

 <wsa:ReplyTo>
http://schemas.xmlsoap.org/ws/2004/08/addressing/r
ole/anonymous
 </wsa:ReplyTo>

 <wsa:MessageID>uuid:d9726315-bc91-430b-9ed8-
ce5ffb858a87</wsa:MessageID>

 <wsa:Action>
http://actions.tapas.item.ntnu.no/2008/04/Setcapab
ility

 </wsa:Action>
 <cap:ActionParams>
 <cap:ActionParam>
 VTP/mode
 </cap:ActionParam>
 <cap:ActionValue>server</cap:ActionValue>
 </cap:ActionParams>
 </env:Header>
</env:Envelop>

<!-- The second message -->
<env:Envelop>
 <env:Header>
 <wsa:To>http://123.15.166.70/wsman</wsa:To>
 <cap:ActionParams>
 <cap:ActionParam>
 VTP/mode
 </cap:ActionParam>
 <cap:ActionValue>client</cap:ActionValue>
 </cap:ActionParams>
 ...
 </env:Header>
</env:Envelop>

</CCPS>

VII. CONCLUSION
A capability self-configuration framework for networked

service systems has been developed, and a case study to
configure VLAN connection has been demonstrated. In the
framework, there are computing components to get the
capability requirement, to search for the network nodes with
potential capabilities, and to compute and execute a
specification CCPS automatically. The capability
configuration management information needed is modeled
by the capability ontology. The capability attribute is a part
of the proposed ontology that supports the reasoning of the
information. The configuration actions in CCPS based on

A. Gravey, Y. Kermarrec, X. Lagrange (Eds.) Eunice 2008 ©IFIP 2008

Web services consist of the action get, set, create, delete as
well as subscribe on the capabilities.

The framework also provides a potential to support the
modeling of service deployment and service instantiation in
addition to the capability allocation that has been the focus
in this paper. Extension of the capability ontology to support
the modeling of service level agreements (SLA)
specification based on the capability is also considered.

APPENDIX
In this section the transformation rule for the finite

capacity capability and the capability attribute are provided.

A. Rule 1 (for finite capacity capability)
If a node is described by a finite capacity capability

(expressed by <hasFiniteCapacity> element), the following
query is generated to select the node’s instance that has such
capability with minimum defined value.

Select ?node_instance
Where
?node_instance rdf:type node .
?node_instance hasCapability $node_cap .
?node_cap describedBy ?capability_instance .
?capability_instance
 hasFiniteCapability ?finite_capability .
FILTER (?finite_capability >= capacity_value)

For example, from the Table 2 a query is generated to

select a server switch that has memory size >= 512MB as
follows:

Select ?server_instance
Where
?server_instance rdf:type ServerSwitch .
?server_instance hasCapability $server_cap .
?server_cap describedBy ?nvram_instance .
?nvram_instance

hasFiniteCapability ?memory_size .
FILTER (?memory_size >= 512)

B. Rule 2 (for arrangement attribute)
If a node is described by an excusive capability

(expressed by <arrangement rdf:resource=”#Exclusive”/>),
the following query is generated to select its instance, when
there is a requirement that the capability is exclusive to
another capability.

Select ?node_instance
Where
?node_instance rdf:type node .
?node_instance hasCapability $node_cap .
?node_cap describedBy ?capability_instance .
?capability_instance
 exclusiveTo another_capability

For example, from the Table 2 a query is generated to

select a server switch that is exclusive to VLAN defined for
Savanne Room as follows:

Select ?server_instance
Where
?server_instance rdf:type ServerSwitch .
?server_instance hasCapability $server_cap .
?server_cap describedBy ?vtp_instance .
?vtp_instance
 exclusiveTo VLAN_Savanne_Room

C. Rule 3 (for compatibility attribute)
If a node is described by a compatible capability

(expressed by <compatibility
rdf:resource=”#Compatible”/>), the following query is
generated to select its instance.

Select ?node_instance
Where
?node_instance rdf:type node .
?node_instance hasCapability $node_cap .
?node_cap describedBy ?cap_instance .
compatible_cap compatibleWith ?cap_instance

For example, from the Table 2 a query is generated to

select a server switch that installs IOS that is compatible
with IOS 12.1.8a as follows:

Select ?server_instance
Where
?server_instance rdf:type ServerSwitch .
?server_instance hasCapability $server_cap .
?server_cap describedBy ?ios_instance .
IOS_12.1.8a compatibleWith ?ios_instance

REFERENCES
[1] F. A. Aagesen, and P. Supadulchai, “A Capability-based Service

Framework for Adaptable Service Systems,” in Proc. of 2nd Int.
Conf. on Advances in Information Technology (IAIT2007), Thailand,
Nov. 2007.

[2] Web Ontology Language, W3C, 2004. Available:
http://www.w3.org/2004/OWL

[3] Web Services for Management (WS-Management) Specification,
DMTF, Feb. 2008. Available: http://www.dmtf.org/standards/wsman

[4] R. Boutaba, S. Omari, and A. P. S. Virk, “SELFCON: An
Architecture for Self-Configuration of Networks,” in Journal of
Communications and Networks, Vol. 3, No. 4, Dec. 2001.

[5] Directory Enabled Network (DEN) initiative, DMTF. Available:
http://www.dmtf.org/standards/wbem/den

[6] Y. Yemini, A. V. Konstantinou, and D. Florissi, “NESTOR: An
Architecture for Network Self-Management and Organization,” in
IEEE Journal on Selected Areas in Communications, Vol.18, No.5,
pp.758-766, May 2000.

[7] D. Glasner, and V. C. Sreedhar, “Configuration Reasoning and
Ontology For Web,” in IEEE Conf. on Service Computing (SCC
2007), Jul. 2007.

[8] X. Hui, and X. Debao, “A Common Ontology-Based Intelligent
Configuration Management Model for IP Network Devices,” in Proc.
of 1st Int. Conf. on Innovative Computing, Information and Control,
2006 (ICICIC 06), Aug. 2006.

[9] Common Information Model (CIM) Standard, DMTF. Available:
http://www.dmtf.org/standards/cim

[10] SPARQL query language for RDF, W3C, Jan. 2008. Available:
http://www.w3.org/TR/rdf-sparql-query

[11] A. Pras, T. Drevers, R. van de Meent, and D. Quartel, “Comparing the
Performance of SNMP and Web Services-Based Management,” in
eTransactions on Network and Service Management 1(2), Dec. 2004.

[12] G. Pavlou, P. Flegkas, S. Gouveris, and A. Liotta, “On Management
Technologies and the Potential of Web Services,” in IEEE
Communications Magazine 42(7), Jul. 2004.

[13] R. L. Vianna, M. J. B. Almeida, L. M. R. Tarouco, and L. Z.
Granville, “Investigating Web Services Composition Applied to
Network Management”, in Int. Conf. on Web Services, 2006
(ICWS’06), Sep. 2006.

[14] J. Schönwälder, A. Pras, and J. P. Martin-Flatin, “On the Future of
Internet Management Technologies,” in IEEE Communications
Magazine, Vol. 41, Issue 10 (2003), pp.90-97, Oct. 2003.

