Preface

This report describes the results of a project performed autumn 2003 by Inger Anne Tøndel. The project is a part of the MSc studies at the Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Telematics.

Before I started working on this project, I did not have much knowledge of TAPAS and of semantic web languages in general. The guidance given by Mazen Malek Schiaa has therefore been of great importance for the project work. He has provided me with information, answered my many questions, and given me advises on how to go on. For this I am very thankful.

I would also like to thank my husband for his patience listening to my different problems and his support.

Trondheim, 2003-11-28.

Inger Anne Tøndel

Abstract

Telecommunication systems are getting increasingly complex. This results in a greater possibility for the whole process of development, installation, maintenance and evolution of such services becoming inefficient. One possible solution to this is creating systems able to configure themselves in varying environments and to take action when errors occur. To be able to make good configuration decisions one needs information, both on the resources available, and on the requirements of applications and their preferred handling of errors.

In the TAPAS project, of which this work is a part, applications are described by actors playing roles. When describing an application one therefore needs to describe the role’s behaviours, the role’s requirements to the environment, how roles may be combined into plays, and how errors may be handled. This information, combined with descriptions of resources available, may work as a basis for making decisions on where to run applications, and similar. The result of such configuration decisions will then be described in plans delivered to components responsible for realising the configuration.

The work presented in this report is concentrated on two tasks: To create representations of the information needed to provide dynamic configuration, and to discuss solutions on how to keep resource information updated. Some work has already been done in these fields: Data models have been created, and a framework for dynamic configuration has been proposed, containing a component responsible for monitoring of resources. In this report, extensions to this work are proposed.

The data models currently made have been based on the languages CIM, RDF and XDD. These languages have also been used this work. The biggest extensions made are related to role behaviour descriptions, i.e. manuscripts, and rules related to plays as a whole, i.e. play configuration rules. Manuscripts are proposed extended with support for error handling and decision making. In addition support is added that gives more descriptive power when describing a role’s internal data, internal actions and sending of messages. Descriptions of plays are extended including support for relating rules to environment and scale. The descriptions that involve sets of actors are also extended with better support for specifying the actual number of actors that may be involved, and how these should be selected.

To be able to make good configuration decisions one needs updated information on the resources available, this includes information on what capabilities that may be provided, and status information telling the current situation. To get access to such information, this work proposes to have an agent installed at each node. This agent must be able to collect capability and status information, and send this information to a monitor responsible for making this information available. The agent may send information upon request, when certain events occur, or at regular intervals. Combinations of these approaches are also possible. Installation of nodes and breakdown of nodes should also be handled. Installation of a node involves getting the address of the monitor. This may be done manually, or using a more automatic approach. Breakdown of nodes are detected as lack of messages from the actor installed at the node. A system may have one or more monitors depending on the number of nodes in the system.

In this report the data models proposed are used to describe an example scenario based on an application currently described using Java. However, this is not nearly the same as using the models to describe real applications and real environments. In addition no models have been tested in a computing environment. To be able to do this more work need to be done. The proposals made need to be fully described in a machine-comprehensible way, and software need to be developed able to understand the descriptions and execute accordingly. Much of the same goes for handling of resource information. The recommendations provided are made on a high level. More low level descriptions should be included before a final solution is chosen and implemented.

As a consequence of the lack of testing, the results of this work come mainly in the form of ideas. However, it is believed that the ideas provided may be of use to people working on similar problems. The ideas presented may also be evolved into more concrete results like new versions of the data models, this way providing support to describe more complex environments, requirements and behaviours. The ideas presented related to monitoring of resources may also be used as input to further work on this subject.

Table of Contents

IPreface

IIIAbstract

VTable of Contents

IXList of Figures

XIList of Tables

XIIIAbbreviations

11
Introduction

32
TAPAS Basic Architecture

32.1
Definition of Plug-and-Play

42.2
The Theatre Metaphor

42.2.1
Real life theatre

42.2.2
Theatre concepts as specified in TAPAS

52.2.3
Example of how the concepts may be related

62.3
Support Functions

62.3.1
Functions managing actors

72.3.2
Communication between actors

82.4
Layered Model

82.5
Example execution

92.6
Summary

113
TAPAS Dynamic Configuration Architecture

113.1
Capabilities and status

123.2
Framework

123.2.1
Capability and Status

123.2.2
Play Repository

133.2.3
Messages

143.2.4
Configuration Manager

143.2.5
Service Installer and Service Reconfigurator

143.3
Work so far

153.4
Introduction to the languages used

153.4.1
Common Information Model

153.4.2
Resource Description Framework

163.4.3
XML Declarative Description

163.5
Already proposed data models

173.5.1
Capabilities and Status Descriptions

183.5.2
Role Specification

193.5.3
Configuration Rules

213.5.4
Reconfiguration rules

223.5.5
Plans

233.5.6
Messages

243.5.7
Manuscripts

263.6
Summary

274
Specification of data models

274.1
Capability and Status Descriptions

274.1.1
Capabilities

274.1.2
Status

284.1.3
Combining capability and status information

284.2
Role Specifications

294.3
Configuration Rules

304.3.1
Conditions related to the incoming request

324.3.2
Conditions related to sets

324.3.3
Conditions related to existing configurations

334.3.4
General description of a configuration rule

344.4
Reconfiguration Rules

344.5
Plans

344.5.1
Configuration Plans

354.5.2
Reconfiguration Plans

364.6
Messages

374.6.1
Service Requests

384.6.2
Service Component Requests

384.6.3
Trouble Reports

394.7
Manuscripts

394.7.1
Discussion of current model

404.7.2
Extensions made regarding data, actions and outputs

414.7.3
Handling of typical actor behaviour and errors

434.7.4
Including support for decisions

444.7.5
Description of the final model and special symbols

454.8
Summary

475
Example Scenario

475.1
Introduction to TeleSchool

475.2
Describing a play

485.2.1
Manuscripts

515.2.2
Role specifications

535.2.3
Play configuration rules

555.2.4
Play reconfiguration rules

565.3
Describing the environment resources

585.4
Running a play

605.5
Summary

616
Capability Installation and Monitoring

616.1
Approaches to Monitoring

626.2
Monitoring the different update events

636.2.1
Installation of new node

646.2.2
Change in offered capabilities

656.2.3
Breakdown of a node

666.2.4
Status update

686.2.5
Possible solutions

717
Discussion

717.1
Data representation

727.2
Capability and Status Monitoring

738
Conclusion

75References

79Appendix A: TAPAS Layered Model

83Appendix B: Common Information Model

83Goal

83Components

83Specification

83Schemas

84XML representation

85Benefits

87Appendix C: Resource Description Framework

87Basic concepts

87RDF Statements

87RDF Graphs

89URI References

90Vocabularies

90Representation

91Summary

93Appendix D: XML Declarative Description

97Appendix E: Discussion of capabilities and status

97Discussion of Capabilities

99Discussion of Status

100Combining capability and status descriptions

103Appendix F: Description of Reconfiguration Rules

103Actor Relocation

104Actor Initialisation

105Actor Re-initialisation

105Actor Termination

106No Action

107Play Reconfiguration

107Summary

109Appendix G: TeleSchool implementation

110Location of Play Repository Data

111Code Examples

111Representation of Manuscripts

112Representation of Capability Requirements

115Appendix H: Manuscript for the role SchoolClient

119Appendix I: Alternative solution for update of capability and status information

121Comparison of the two approaches

List of Figures

4Figure 1: Concepts used in the theatre analogy

5Figure 2: Relations between theatre metaphor concepts

6Figure 3: Creation of actors

8Figure 4: Example scenario Role session action

8Figure 5: Layered model

9Figure 6: Example execution Basic Architecture

11Figure 7: Classification of capabilities

13Figure 8: Framework for dynamic configuration

16Figure 9: Representation of an XML clause

16Figure 10: Representation of variables using XDD

17Figure 11: Describing a printer using CIM

18Figure 12: Description of a computer system using CIM

19Figure 13: XDD descripton of capability and status requirements of the role DocMaster

20Figure 14: XDD description describing an example play configuration rule

21Figure 15: Specification of reconfiguration actions

22Figure 16: XDD descripton of a reconfiguration rule describing an actor relocation action

23Figure 17: Possible play configuration contained in a configuration plan

23Figure 18: Possible play reconfiguration contained in a reconfiguration plan

24Figure 19: Specification of messages

24Figure 20: Example service request described using RDF

25Figure 21: XML file structure for role representation

29Figure 22: Example role specification description

31Figure 23: Representation of a condition describing a service request

31Figure 24: Representation of conditions using information contained in a service request

32Figure 25: Representation of conditions describing constraints on sets

32Figure 26: Representation of a condition describing restriction on the number of actors that may run on the same node

33Figure 27: Representation of a condition saying that no new configuration should be created if one already exists

33Figure 28: Representation of a clause specifying a play configuration rule

35Figure 29: Proposed structure for configuration plans

36Figure 30: Proposed structure for reconfiguration plans

37Figure 31: Example service request

38Figure 32: Example service component request.

39Figure 33: Example description of an actor unreachable report

41Figure 34: Main parts of a manuscript representation

42Figure 35: Description of actions and outputs

42Figure 36: Description of error states

43Figure 37: Description of how one may enter an error state

43Figure 38: Description of sub transitions

44Figure 39: Representation of manuscripts including error states and sub transitions

48Figure 40: SDL description of parts of the manuscript of the role SchoolClient

49Figure 41: XML description of parts of the manuscript of the role SchoolClient

51Figure 42: XML description illustrating error handling

52Figure 43: Example role specification for the role SchoolClient

53Figure 44: Example role specification for the role SchoolServer

55Figure 45: Example configuration rule for play TeleSchool

56Figure 46: Example reconfiguration rule

57Figure 47: Example environment where TeleSchool is to be run

58Figure 48: Example service request

59Figure 49: Example configuration plan

59Figure 50: Example trouble report

60Figure 51: Example reconfiguration plan

62Figure 52: Recourses needed for monitoring objects

64Figure 53: Illustration of two possible ways for a node to automatically obtain the monitor’s address

66Figure 54: Illustration of how actor unreachable reports may be used to discover node breakdowns

79Figure 55: Illustration of how actors are related to nodes and threads

79Figure 56: Illustration of PaP support functions needed

80Figure 57: Layered model

88Figure 58: Illustration of a general RDF graph

88Figure 59: Simple example RDF graph

88Figure 60: Example RDF graph with several statements

89Figure 61: Example URI reference

89Figure 62: Example RDF graph using URI references

91Figure 63: Example RDF description

94Figure 64: Application of specializations

95Figure 65: XDD example

96Figure 66: Negation in XDD

97Figure 67: Capabilities in general

98Figure 68: Possible specialisations of the capability types functions, resources and data

99Figure 69: Possible QoS characteristics

99Figure 70: Possible relations between capabilities and QoS characteristics

100Figure 71: Status is information related to nodes, actors and capabilities

100Figure 72: Possible types of status information

101Figure 73: Overall relation of capabilities and status

102Figure 74: Example combination of status information and QoS characteristics

103Figure 75: Proposed description of an actor relocation rule

104Figure 76: Proposed description of an actor initialisation rule

105Figure 77: Proposed description of an actor re-initialisation rule

106Figure 78: Proposed description of an actor termination rule

106Figure 79: Proposed description of a no action rule

107Figure 80: Proposed description of an actor play reconfiguration rule

109Figure 81: The implementation of TeleSchool represented by UML class diagrams

119Figure 82: CapabilityAgents communicates with watchdog servers

119Figure 83: Watchdog server

120Figure 84: CapabilityAgent

120Figure 85: A TAPAS domain

List of Tables
3Table 1: Overview of TAPAS architectures

21Table 2: Reconfiguration actions

47Table 3: TeleSchool roles

93Table 4: Variable types

Abbreviations

	CIM
	Common Information Model

	CM
	Configuration Manager

	CSEMon
	Capability, Status and Event Monitor

	CSRep
	Capability and Status Repository

	DAML
	DARPA Agent Markup Language

	IDS
	Intrusion Detection System

	PaP
	Dynamic Plug-and-Play

	PAS
	PaP Actor Support

	PCI
	PaP Communication Infrastructure

	PlayRep
	Play Repository

	PNES
	PaP Node Execution Support

	PXM
	PaP Extended Management

	PXS
	PaP Extended Support

	QoS
	Quality of Service

	RDF
	Resource Description Framework

	RMI
	Remote Method Invocation

	SDL
	Specification and Description Language

	SI
	Service Installer

	SR
	Service Reconfigurator

	TAPAS
	Telematics Architecture Plug-and-Play System

	UML
	Unified Modeling Language

	URI
	Uniform Resource Identifier

	URIref
	URI reference

	URL
	Uniform Resource Locator

	XET
	XML Equivalent Transformation

	XML
	Extensible Markup Language

Introduction

"Civilization advances by extending the number of important operations which we can perform without thinking about them." - Alfred North Whitehead [31]

In the last few years telecommunication systems has become increasingly complex, this refers to both the complexity of the individual systems and the way they work together. This evolution has lead to a growing demand for skilled IT workers that are able to manage such complex systems. It has also resulted in a greater possibility for the whole process of development, installation, maintenance and evolution of such services to be inefficient. [19, 31]

Another property of computer systems is that they seem to evolve. During time, human needs, technology and application environment may change. This may result in a need for modifications and extensions to systems that could not be predicted at the time the system was designed. Such changes should be made dynamically, without interrupting the parts of the system not directly affected. [22]

A lot of research effort is, and has been made in solving these problems. In [22] guidelines for specifications of changes are stated. One is recommended to separate the change needed from how it is to be executed, specify changes in terms of the structure of the system, and to let the specification of changes be independent from the algorithms, protocols and states of the application. Changing a configuration may involve replacing, moving or adding software components. An approach made to make such actions while the application executes is explained in [16].

Currently, IBM and universities like Berkley and Colombia all have research projects working on utilizing autonomic computing to meet the above mentioned challenges. Autonomic computing systems are systems that have knowledge of their components and resources, are able to configure and reconfigure themselves under varying conditions, try to optimize its workings and are able to handle extraordinary events. [31]

Norwegian University of Science and Technology (NTNU), Department of Telematics, is also running a research project addressing these problems. The name of the project, Telematics Architecture Plug-and-Play System (TAPAS), reflects the solution proposed: dynamic plug-and-play. A platform based on this approach is thought to allow hardware and software components configure themselves when installed into the network, and support dynamically changes in behaviour. The system should also be able to adapt to changing environments. [1]

The work presented in this report is related to the research project of TAPAS. Its focus is on handling information related to the components and resources of the system, i.e. keeping this information updated. In addition data representations for the different information types needed in the system should be made. The data models should be based on CIM and recently developed languages for the semantic web, like RDF, RDF Schema and DAML languages. Using such languages should help making the representations both readable for humans and comprehensible by machines.

As stated above the work presented is divided into two parts: creation of data models, and handling of information on components and resources. However, creation of data models has been chosen as the main goal. In this work no data model has been given the main focus; the goal has been to make a proposed data model for every data element needed in the system. Choosing this approach has caused the result to be presented mostly taking the form of ideas, not being fully specified and not tested. Another approach may have resulted in better quality of the result; however, all data elements are in some way related and dependent on each other, resulting in a need for knowledge beyond the chosen element at task.

Having chosen data representation as the main goal, handling of system resource information has been given lower priority. It has not been the goal of this task to propose a solution to the problems in this area, but rather to discuss some possible approaches to the challenges related to installation of resources, and monitoring and update of resource information.

The information presented in this report may be divided into four parts. First TAPAS is introduced by its Basic Architecture (section 1) and Dynamic Configuration Architecture (section 2). During this introduction the concept of dynamic plug-and-play is explained, together with some data models already provided. Second, the development work based on the explained models is presented (section 3), and the proposed models used to present an example application scenario (section 4). This example is based on the already made TeleSchool application; however, this application is extended to include functionality provided by the proposed models. In the third part of the presentation a discussion relating to resource information handling is provided (section 5). Forth, the results presented in this work are discussed (section 6) and some concluding remarks added (section 7).

TAPAS Basic Architecture

The TAPAS project introduced in section 0 has developed four different architectures. [32] These may be seen in Table 1. This section will focus on the Basic Architecture of TAPAS, which defines many of the concepts used in work presented later in this report. The concepts explained include dynamic plug-and-play (1.1), the theatre metaphor (1.2), and the basic support functionality (1.3). The Basic Architecture has already been implemented using Java RMI technology. Applications utilizing this architecture have also been developed.

	Architecture
	Description

	TAPAS Basic Architecture
	The basis for all dynamic behaviour functionality. Defines many of the concepts used in the other architectures.

	TAPAS Dynamic Configuration Architecture
	Builds on TAPAS Basic Architecture. Provides support for dynamic configuration and reconfiguration of systems.

	TAPAS Mobility Architecture
	Builds on TAPAS Basic Architecture. Provides mobility.

	TAPAS Adaptive Service Architecture
	Handles complexity and diversity issues at a global scale. Demands an infrastructure enabling interoperation between services regardless of their programming language and operating environment.

Table 1: Overview of TAPAS architectures

The TAPAS architecture has been divided into four different platforms. [32]

1.1 Definition of Plug-and-Play

References: [3]

Plug-and-play (PaP) is a concept known from the personal computing area. It means that you can plug-in a component and, without any more effort, the system works. This type of PaP is denoted Static PaP because both the plugged-in component and the framework has a predefined functionality.

The TAPAS project talks about PaP in a different and more general way. In TAPAS the component to be plugged in has some basic capabilities, or external visible properties, that are fixed. The functionality, however, is defined as a part of the plug-in procedure and can be changed dynamically. This means that the definition of individual components, as well as the structure of components, can be changed online. This type of PaP is denoted Dynamic PaP. In addition to making it possible to dynamically change a component’s functionality, Dynamic PaP also is responsible for making all changes known to possible service users. This way the ability to use the service is propagated.

The difference between Static PaP and Dynamic PaP can be illustrated by an example. Normally when a cellular phone plugs into a network the system provides Static PaP with respect to the telephone service. The functionality of the phone is known in advance. It will work the same way no matter what user is logged on and what network it is attached to, as long as the network can provide the required capabilities. However, one could think of a scenario where a cellular phone that plugs into a network obtains the service it provides depending on its own capabilities, which user that logs on, and which network it attaches to. Here the cellular phone has some basic capabilities, but the functionality depends on the plug-in procedure, and can be changed if for instance a new user logs on.

From now on PaP means Dynamic PaP.

1.2 The Theatre Metaphor

To specify the support functions needed to realise PaP a theatre analogy is used. [3] The concepts used in the analogy are shown in Figure 1.

[image: image1.png]Theatre metaphor Concepts

A metaphor for concepts and functionality
jilieatisd definition.

Repertoire: The set of Plays that may be
performed at the theatre.

@ﬁ Play: Defines a set of related functionality.

Director role figure : The manager of plays,
and supervisor for role figures, constituted
by anactor .

"~ [Role figures : The performers of plays.
Constituted by actors playing roles.

L_
Capability: A unique set of properties of an

actor at the stage where he is playing

! AW
rcos T rr——

_— | Manuscript: The assigned behavior, i.e. the defined
}. B | role of a role figure, constiuted by an an actor:

Figure 1: Concepts used in the theatre analogy

Theatres have repertoires consisting of plays. Plays are performed by actors playing roles. Roles are defined by manuscripts. A director manages plays. Source: [32]

1.2.1 Real life theatre

When one thinks of a theatre, the first thing to cross one’s mind will often be the performance of plays. The ones performing plays are actors. Actors can play almost any role, if they are only given a corresponding manuscript. However, sex or age may cause some actors to be unable to play specific roles. When playing a role the actor will do what is specified in the manuscript for the role. This may include various types of actions, one of them being having a dialog with another role played by another actor.

When going to the theatre the actors often are the only persons seen on the stage. However, everybody knows that behind the scene various other persons are doing important jobs to keep the wheels running. One of these persons is the director. He is the one responsible for managing the play, and for supervising the actors playing the roles.

A theatre consists of all concepts mentioned above; this includes all actors, the director and all the manuscripts known by the theatre, in addition to the building and other equipment.

1.2.2 Theatre concepts as specified in TAPAS

References: [3]

In TAPAS the concepts used in the theatre metaphor means thoroughly the same as in real theatre life. TAPAS theatres consist of plays that are managed by directors, which is a special type of actor responsible for guiding other actors. Actor are generic object with generic behaviour, all having a set of capabilities telling what the actor is able to do. Capabilities can not be moved, replaced or copied without removing, replacing or copying the whole actor; one could say they are a part of the actor itself.

Plays consist of roles, where the behaviour of roles is defined by manuscripts. An actor playing a role therefore performs according to what is specified in the manuscript for the role.

Actors are able to play various roles, depending on their capabilities.

Performing according to a manuscript may include interaction with another role. All actions related to another role are performed as a part of a role session. The manuscript specifies cooperating objects, how to reach them, and the interactions with the cooperating objects, as well as internal behaviour resulting from an incoming interaction.

In following sections it will sometimes be necessary to make a distinction between the two actor types defined in this section. Directors will then be denoted DirectorActors, and actors of the type that would perform on a stage denoted ApplicationActors. [20]

1.2.3 Example of how the concepts may be related

References: [31]

Figure 2 shows an example that may help to understand how the theatre concepts may relate. It shows three actors with their own specific capabilities. The actors are playing roles and are performing according to manuscripts that have been provided by the director. Relations between the actors are shown as role sessions.

[image: image2.png]TAPAS Concepts

Role session Role session
(actorreationship) (actorrelationship)

Actor

(Rolo
N Figure (5
A PR b Figwe) e Figure)

[—
Pioy AP S a (ot

(Service system) (Domain Manager)

Figure 2: Relations between theatre metaphor concepts

A director has access to repertoires and plays. Plays are run by actors playing roles defined in a manuscript. A director supervises all actors in its domain, deciding which manuscripts the actors are to run. Actors may have relations to each other, called role sessions. Source: [31]

The actors shown are part of a domain controlled by a director. The director knows what plays are available, and have access to their specifications. In addition the director can control what role an actor is to play by using specific functions. These functions are named plugin, play and plugout in the figure. Plugin may be used to give a manuscript to an actor, play tells an actor to start performing according to its current manuscript, while plugout removes a manuscript from an actor.

1.3 Support Functions

References: [21]

As mentioned in chapter 1.2 all actors have common generic behaviour. This behaviour is denoted the PaP support functionality, and makes it possible to load and perform more specific behaviour. The functions shown in Figure 2 used for supervision of actors are examples of such support functions. However, their real names are slightly different. In this subsection some of the support functions specified in the Basic Architecture will be described.

Support functions come in different types. Some are related to handling of plays and some are related to handling of actors. This section will focus on functions related to actors. These functions can be divided into two groups: Functions used for managing of actors, and functions used by actors to communicate. The following sub sections will describe these two types of functions in more detail. For more information on functions related to handling of plays the reader is referred to [21].

1.3.1 Functions managing actors

For actors being able to perform someone must get them started, i.e. make sure they are plugged-in and give them behavior. The function used to create actors is named actor plug-in and is used by any actor or non PaP application that needs to create a role-session with another actor. When sending an actor plug-in request one can specify requirements for the actor. This includes the role to be played, the preferred location of the actor and the capabilities required. Requests for actor plug-ins are directed to the DirectorActor managing the domain of the actor issuing the request.

Figure 3 illustrates how creation of actors takes place. Some time in the past ApplicationActor 1 has been created by DirectorActor 1. Upon creation of an actor the actor gets information on which actor is the director, and how this director can be reached. Therefore ApplicationActor 1 and DirectorActor 1 know about each other, and one may say they are related. This relation is named A in the figure.

[image: image3.emf]ApplicationActor 1 ApplicationActor 2

C

DirectorActor 1

A

B

1

:

C

r

e

a

t

e

a

c

t

o

r

2

:

A

c

t

o

r

p

l

u

g

-

i

n

3

:

C

r

e

a

t

e

a

c

t

o

r

Figure 3: Creation of actors

ApplicationActor 1 is created by DirectorActor 1. This results in a relation being created between the two actors. When ApplicationActor 1 later requests an Actor plug-in this is directed to its own director, DirectorActor 1. This request results in ApplicationActor 2 being created, and the creation of relationships both between the two ApplicationActors and between DirectorActor 1 and ApplicationActor 2.

Time passes and ApplicationActor 1 is active and is performing according to a manuscript when it reaches a state where an actor plug-in is required. It then sends a request for actor plug-in to its director specifying the role that should be played by the actor, possibly together with requirements to location and capabilities. The director receiving the request responds by creating ApplicationActor 2. Because of this creation DirectorActor 1 and ApplicationActor 2 is related in the same way as explained for ApplicationAction 1 above. However, another relation is also created. The actor requesting the plug-in, and the actor plugged in as a consequence of this request, should know about each other so that they may be able to communicate. The director therefore distributes necessary information to the two actors resulting in the relation named C in the figure.

In the above example a new actor was created as a result of an actor plug-in request. This may not always be the case. If actors already exists that fulfil the requirements stated these may be used.

After an actor has been plugged in it should get a manuscript defining its intended behaviour. This is done using the function actor behaviour plug-in, alternatively actor change behaviour if an actor already has a manuscript installed. After a manuscript has been uploaded to an actor the actor should start to perform according to the manuscript. For this purpose the function actor play may be used.

Functions are also provided to plug out an actor’s behaviour or to plug out the whole actor itself. The name of these functions is actor behaviour plug-out and actor plug-out correspondingly. After an actor behaviour plug-out has taken place the actor will continue with the support functionality of the Basic Architecture. Actor plug-out will result in the removal of the whole actor.

1.3.2 Communication between actors

“Relations between actors imply that actors are aware of each other, and when they are aware of each other they may communicate and exchange information. Actors that are not aware of each other have no influence on each other.”[21]

In the discussion of actor plug-in requests above a description of how actors become related was given. Relations between actors are called role sessions, and are necessary for actors being able to communicate. Actors wanting to exchange information can do this by using role session actions. Figure 4 shows two actors communicating this way. Role session actions may be thought of as messages sent between actors. The actors communicating may be on different nodes and may be controlled by different DirectorActors. However, if they are avare of each other, i.e. are connected via a role session, they can communicate. Role session actions are the only support function not involving a DirectorActor.

[image: image4.png]Node 1
TAPAS-server

Node 2

TAPAS-server

‘{ ActarB

Figure 4: Example scenario Role session action

An actor at Node 1 initiates a role session with a node at Node 2. The two actors must already be related to each other.

1.4 Layered Model

Reference: [21]

The support functionality contained in the Basic Architecture may be thought of as a layer on top of the operating system and network functionality provided at a node (see Figure 5). This layer is utilized by applications wanting to use the PaP support provided. A more thorough description of the layered model is given in Appendix A.

[image: image5.png]Applications

PaP support

Opsys/network

Figure 5: Layered model

The support functionality provided by the Basic Architecture may be thought of as a layer on top of the operating system and network functionality provided at a node.

1.5 Example execution

Reference: [18]

As mentioned above (1.3.2) actors may run on different nodes. For these actors to be able to communicate some communication network is needed. In addition, a TAPAS system may consist of web servers containing TAPAS related software or play descriptions.

Figure 6 shows some example components of a TAPAS system. Two different web servers are shown together with three TAPAS servers containing different types of actors. The first time a play is requested director software may be downloaded from the web server providing software. In addition descriptions of the requested play may be downloaded from the web server where such descriptions are stored. Similarly, when an actor is requested to be plugged in actor software may be downloaded, together with descriptions of the role behaviour.

[image: image6.png]Node 2
web-server
Prays Directar
Node 4
TAPAS-server
Node 1
Web-server
Actars
TAPAS-server

Generic
platform

Actars

Figure 6: Example execution Basic Architecture

Actors may requests the director for plug-in of plays and actors. Software and plays may be loaded from web servers as needed.

1.6 Summary

From this introduction to TAPAS Basic Architecture one can see that this architecture provides support for creating applications utilizing PaP. It defines the concepts used, including play, actors, roles and manuscripts, and defines basic functions that must be supported by all TAPAS systems. In addition it makes use of a distributed system structure where actors may run on different nodes, and utilize information provided by web servers.

TAPAS Dynamic Configuration Architecture

One of the goals of the TAPAS project, as mentioned in section 0, is to create a system where components are able to configure themselves when installed, and when change in the environment occurs. This goal is the focus of the Dynamic Configuration Architecture.

The Dynamic Configuration Architecture is based on the Basic Architecture of TAPAS. However, dynamic configuration naturally plays a more important role in this architecture. It is also a first step in moving from pure Java RMI technology to a more XML based approach. [1]

In this section the main concepts and components of this architecture will be described (2.1 and 2.2). Related to these concepts the task that works as a basis for this reports will be further specified (2.3). The XML models created so far will also be introduced (2.4).

1.7 Capabilities and status

References: [1]

The concept of capabilities was introduced in section 1.2. Actors were said to have a set of capabilities which tells what the actors are able to do. In the Dynamic Configuration Architecture the concept of capabilities is used in a slightly different way. Capabilities are said to be properties of nodes, not actors. Actors playing roles will then use the capabilities offered by nodes. The concept of capabilities is very important in the Dynamic Configuration Architecture, and will therefore be further explained in this section.

Capabilities can be of different types, as shown in Figure 7. First capabilities can be classified into functions, resources and data. Functions refer to “pure software or combined software/hardware components which perform particular tasks” [1]. Resources are “physical hardware components with finite capacity, such as processing, storage and communication units”[1]. Data means just data. Although resources and functions are defined as two different concepts, they are often related and dependent on each other. Functions utilise the resources available, and resources realise functions.

[image: image7.png]optionabi

i

ate.

e

v

Figure 7: Classification of capabilities

Capabilities can be classified into different types: Functions, resources and data. In addition capabilities can be characterised by variety and arrangement, i.e. whether they are optional or absolute, and whether they are exclusive or shared. Source: [32]

Capabilities also have other properties that may be used for classification purposes. First, capabilities can be optional or absolute. To illustrate this imagine a node having a capability classified as a transmission function. This type of capability is optional, i.e. it has a variety of bandwidth options. This makes it possible to negotiate about its value. In contrast to this a capability classified as access right data is absolute, with no possibility for negotiation provided. Second, capabilities can be exclusive or shared, an example of a shared resource being transmission channels, which are often used by different users to transmit data. In contrast a password should be exclusive information only known by one user.

While the collection of capabilities is being a description of the resources, data and functions available in a system, the status of the system provides information on the situation at a certain time instant. A description of the situation in the system includes the actual number of nodes, the state of each node, how many plays are playing, and information on the traffic situation.

Both capabilities and status are used as a basis for decision making, as explained in the next section.

1.8 Framework

References: [1]

In order to provide dynamic configuration some special functionality is needed. This functionality is a part of the framework defined for the Dynamic Configuration Architecture. This framework is shown in Figure 8. It consists of many different components, each having their special responsibilities. Each component, and their function, will be described in the subsections following.

1.8.1 Capability and Status

The framework consists of two different repositories, one of them being the Capability and Status Repository (CSRep). This repository contains specifications of capabilities offered by the nodes in the system. In addition it maintains information regarding the status of the system at a particular time. The system described is shown as a box in the figure.

The Capability, Status and Event Monitor (CSEMon) is responsible for keeping the CSRep updated. It monitors the capabilities and the status of the system, and listens to events indicating changes in the system, or its environment. If changes are observed that will prevent the system from getting the level of services desired the Configuration Manager is notified. Such notifications are shown as trouble reports in Figure 8.

1.8.2 Play Repository

The second repository contained in the framework is the Play Repository (PlayRep) that contains definitions of plays. A play is defined by manuscripts, where each manuscript defines the behaviour of one of the roles participating in the play. In addition each role has a role specification that identifies the role’s requirements to capabilities and status. Associated with a play there are also play configuration rules specifying the constraints the play puts on the service system configuration. These rules can for instance state how many roles of each type that should be part of the same play. Restrictions on the number of actors allowed to run on the same node may also be stated, in addition to rules on which types of roles are allowed to run on the same node. This may be done in order to prevent overload. A play also has rules for handling events relating to reconfiguration. Events of this type may be component failure or resource unavailability. Such rules are called reconfiguration rules. Letting each application define own reconfiguration rules gives greater flexibility in application design. This way the same type of trouble may be handled in different ways depending on which application is running. If no rule is specified a default reconfiguration will take place.

Reconfiguration actions take place upon reception of a trouble report. Proper handling of errors therefore relies on clients and servers reporting troubles to the Configuration Manager.

[image: image8.png]- Telesenvice
o= Node providing PaP
it - and nor-PaP
ietalid
capatin] capabilty
system
sy
Senice
Capabilty, Status o]
& Event Nonior Capabilty -
(CSEMon) (C5Rep) i
A
o
Trouble
ieport
conts
PlayRep Configuration | piare.
Manager (M) |— |
- T~
/ - ~
ot | |Reconta) | o | manu Rezata
oot || es | | spec. [serts
7N,
Canatifty | Status Legend
e ||| EE Q e
Executable entty [T Data, message, knowiedge

Figure 8: Framework for dynamic configuration

The architecture providing support for dynamic configuration consists of many components each having their own responsibilities. The CSEMon is responsible for monitoring of capabilities and status, and makes sure this information is stored in the CSRep. The PlayRep contains all information relating to definition of plays, roles and manuscripts. The CM is responsible for decision making relating to installation of new services, location of roles, taking proper actions in case of trouble, and similar. Messages and information from CSRep and PlayRep serves as a basis for these decisions. The Service Installer and Service Reconfigurator are responsible for carrying out the plans made by the CM. Source: [32]

1.8.3 Messages

Trouble reports have been mentioned above (2.2.1 and 2.2.2). This is a special type of message. In addition to error handling, messages are needed for requesting services and service components. All message types needed are shown in Figure 8.

There exist two types of requests: Service Requests and Service Component Requests. A Service Request message request the installation of a PaP service not yet installed in the system. A Service Component Request message requests the instantiation of a service component in a running system, i.e. the plug-in of an actor. Each request carries information on which play or which role is requested.

Trouble reports may also be of different types depending on the type of trouble it describes. If the message is created because an actor is experiencing trouble reaching another actor, the trouble report is said to be of type actor unreachable report. However, if the trouble report is sent because an actor finds that the node where it is currently running can not offer sufficient capabilities, an insufficient capability report is sent. The different types of reports will be further explained when the data models created are introduced (2.5.6).

1.8.4 Configuration Manager

The Configuration Manager (CM) handles requests for installation of services and service components, and takes the proper action when an error occurs. Decisions regarding what action to take are made based on information stored in PlayRep and CSRep. This way more obtimal configuration can be chosen.

Upon reception of a service request the CM retrieves the play definition from PlayRep and the system capabilities and status from CSRep. Based on this information a configuration can be selected. Selecting a configuration means to decide which nodes should execute which actors or roles. The handling of service component requests is quite similar. Upon reception of such a request the component’s requirements are retrieved from PlayRep and, together with available capabilities and status, works as a basis for selecting a configuration. The resulting configuration of both these types of requests is described in configuration plans.

The reception of a trouble report will result in the CM analysing the problem described. Then information is fetched from CSRep and PlayRep and used as a basis for decision making. The result of this process is a reconfiguration plan. The contents of this plan depend on the nature of the problem and the reconfiguration rules defined.

1.8.5 Service Installer and Service Reconfigurator

As mentioned in 2.2.4, configuration plans are created as a result of requests for service or service component installation. When CM has made a configuration plan the plan is sent to the Service Installer (SI) for installation. SI will create the actors specified and make sure they start to perform according to the manuscripts specified. In the same way reconfiguration plans, resulting from trouble reports, will be handed over to the Service Reconfigurator (SR) being responsible for realising the plan.

1.9 Work so far

The framework explained above has so far been used to make a simple application used for managing a printer domain [32]. In this application, capabilities, plays and requests are modelled using CIM, XDD and RDF correspondingly. In addition a selection engine has been implemented making the configuration decisions specified for the configuration manager. [32] However, more general study has also been made. Data models for all data elements introduced in section 2.2 have been proposed, and these models have been used for describing example applications. [1, 2] In some ways one may say that the main goal for the work presented in this report, as stated in section 0, already has been solved. Therefore this work has focused on extending the existing models with new functionality. This has been done by studying the existing models trying to use them to describe example scenarios.

Extending the existing models has involved trying to categorize capability and status information, integrate capability and status information into role specifications and play descriptions, extend the types of configurations that may be selected, and describe manuscripts of clients being part of a real application. As a basis for this work the application TeleSchool has been studied and extended to include the functionality provided by the new models.

In section 0 several languages were listed that should be used for description of the different data elements. This list of languages includes the languages used in the models already provided. Since it has been chosen in this work to focus on extending these models, the languages already chosen by these models will still be used in the results described in this report. A discussion regarding which language to use for the different descriptions will therefore not be provided.

Regarding the second goal of this task, to handle information related to resources in the system, the discussion provided will be based on the framework developed for the Dynamic Configuration Architecture (see Figure 8). Resources will be described by capabilities and status, and handling of such information will be discussed in relation to keeping the CSRep updated using one or more CSEMons.

1.10 Introduction to the languages used

In this section the languages used in the data models will be introduced briefly. This introduction is meant to give the reader enough information to understand the models described in the following sections. For a more general introduction see Appendix B, C and D.

1.10.1 Common Information Model

Common Information Model (CIM) is a language created to describe components like applications, databases, events, networks and physical entities. [10] In TAPAS CIM is used for presentation of capability and status information. [1] The language may be represented using different approaches. However, the representations used in this report will be of type UML of XML descriptions. [10] For an introduction to UML the reader is referred to [15].

Using XML descriptions all entities to be described are described as instances having properties. Properties may be described by single values or arrays of values. Relations between entities are also modelled as instances. This type of instances has property references referring to the instances being part of the relation. These instances are referred to using key values that are to describe the instances uniquely. In a relationship one instance is said to be the group component and another actor is said to be a part of this group. [11]

CIM defines several models consisting of classes that should be used as a basis for developing individual models. [10]

1.10.2 Resource Description Framework

Resource Description Framework (RDF) is a language created for representing metadata. [25] In TAPAS this language is used for representation of messages. [1] RDF may be represented using a graphical approach described in Appendix C or by using XML. [25] In the descriptions following XML will be used, however, sometimes UML models similar to the graphical RDF models will be used to help in understanding the model.

In RDF information is represented using statements describing subjects having properties described by values. An example statement would be “Pizzario is a pizza delivery”. Subjects, properties and values may be defined by URIs, allowing for specification of the meaning of terms. [25]

1.10.3 XML Declarative Description

References: [6]

XML Declarative Description (XDD) aims to add the power to describe axioms, conditions, constraints and similar. In TAPAS the language is used to describe role specifications and configuration and reconfiguration rules. [1]
To understand descriptions using XDD it is important to understand the concept of XML clauses and the usage of variables. XML clauses consist of a head and a body where the body defines the conditions for the head to be true. XML clauses may be represented as shown in Figure 9.

[image: image9.png]Head -«—— Body

Figure 9: Representation of an XML clause

XML clauses consist of a head and a body where the body defines the conditions for the head to be true.

Variables have a representation like the one shown in Figure 10. They start with a $ followed with a capital letter telling the type of the variable. Then the name is provided. Variables may be of different types, the ones most used in the data models presented here being strings and expressions. Strings are represented by an S, while expressions are represented by the letter E.

[image: image10.png]$T:name

.

Figure 10: Representation of variables using XDD

Variables start with $ followed by a capital letter telling its type. After this the name of the variable is provided.

A more thorough introduction to XML clauses, variable usage and other concepts of the XDD language can be found in Appendix D.

1.11 Already proposed data models

Now it is time to introduce the data models already provided. First the model proposed for capability and status descriptions is explained (2.5.1). Then the model used to describe role specifications is explained (2.5.2), followed by descriptions of configuration and reconfiguration rules (2.5.3 and 2.5.4). Then models for the different types of plans are explained (2.5.5), and specifications of messages provided (2.5.6). At the end the proposed model for describing role behaviour is explained (2.5.7).

1.11.1 Capabilities and Status Descriptions

References: [1, 32]

The model proposed in [1] to describe capability and status is based on CIM. In the description provided an example is included where a printer is described using this approach. This example is shown in Figure 11 using both UML and XML like notation.

	
[image: image11]
Note: The instance being described is an object of the class CIM_Printer. Its DeviceID property, used for uniquely identifying a device, states that the instance is identified by http://PrinterX.PaP.org. Its availability status is Running/Full Power with a low toner error state. Its printing capabilities include duplex, black & white, and color printing. The horizontal and vertical resolutions are 1200 pixels per inch (this unit of measurement is predefined by CIM schema). Available character sets for the output are utf-8, us-ascii and iso-8859-1. Its marking technology is laser.
	
	
<INSTANCE ClassName="CIM_Printer">

<PROPERTY NAME="DeviceID">

<VALUE>http://PrinterX.PaP.org</VALUE>

</PROPERTY>

<PROPERTY NAME="Availability">

<VALUE>Running/Full Power</VALUE>

</PROPERTY>

<PROPERTY NAME="DetectedErrorState">

<VALUE>Low Toner</VALUE>

</PROPERTY>

<PROPERTY.ARRAY NAME="Capabilities">

<VALUE.ARRAY>

<VALUE>Duplex Printing</VALUE>

<VALUE>Black and White Printing</VALUE>

<VALUE>Color Printing</VALUE>

</VALUE.ARRAY>

</PROPERTY.ARRAY>

<PROPERTY NAME="HorizontalResolution">

<VALUE>1200</VALUE>

</PROPERTY>

<PROPERTY NAME="VerticalResolution">

<VALUE>1200</VALUE>

</PROPERTY>

<PROPERTY.ARRAY NAME="CharSetsSupported">

<VALUE.ARRAY>

<VALUE>utf-8</VALUE>

<VALUE>us-ascii</VALUE>

<VALUE>iso-8859-1</VALUE>

</VALUE.ARRAY>

</PROPERTY.ARRAY>

<PROPERTY NAME="MarkingTechnology">

<VALUE> Laser</VALUE>

</PROPERTY>

</INSTANCE>

	(a) UML graphical representation.
	
	(b) XML serialisation.

Figure 11: Describing a printer using CIM

The capabilities, status and certain operational attributes of a printer are described using CIM. Both a representation using UML and a representation using XML are provided. Source: [1]

From the example one can see that the description is quite straight forward. Capability and status information are described as properties of the printer, each of them having values. If a property contains more than one value, these are represented using value arrays.

In the above example only one single instance is shown. However, it is possible to describe situations where one component consists of other components. Such a situation is described in

Figure 12. The computer system shown consists of a processor and an operating system. Other components could have been added.

Figure 12 shows both a UML and an XML like presentation of the system. In UML such relationships between components are shown using composition. In the XML description the modelling is a bit more complex. A relationship is modelled using a special type of instance that describes what component is contained in another component. In Figure 12 the instance that describes that the processor instance is a part of the system instance, has class name CIM_ComputerSystemProcessor. The corresponding instance for the operating system has the class name CIM_InstalledOS.

As one can see from this introduction, the existing model utilizes features of the language CIM to represent capability and status information. Using this approach one can represent both simple and complex instances. Both UML and XML like representations may be used.

	[image: image12.png]http:/icomp PaP org - CIM_ UnitaryComputerSystem g

Dedicated = Nd Dediated”
Full Pover”

Paverstate

e processar -OM Processor
ol = Cariral Processar”
anily = Pentium) I
urentClockSpesd = 1000
oadPercertare = 10

PUStatus = "CP U Enabled”

compl_os_ i 08

S Type = TAINNT!
ol VitualMemorySize = 524293|
reevituaemory = 307200

roePhysicaliiemery = 37200

	<INSTANCE ClassName="CIM_Processor">

<PROPERTY NAME="DeviceId">

<VALUE>comp1_processor</VALUE>

</PROPERTY>

<PROPERTY NAME="Role">

<VALUE>Central Processor</VALUE>

</PROPERTY>

<PROPERTY NAME="Family">

<VALUE>Pentiium(R) III</VALUE>

</PROPERTY>

<PROPERTY NAME="CurrentClockSpeed”>

<VALUE>1000</VALUE>

</PROPERTY>

<PROPERTY NAME=”LoadPercentage">

<VALUE>10</VALUE>

</PROPERTY>

<PROPERTY NAME="CPUStatus">

<VALUE>CPU Enabled</VALUE>

</PROPERTY>

</INSTANCE>

<INSTANCE ClassName="CIM_OperatingSystemr">

<PROPERTY NAME="DeviceId">

<VALUE>comp1_osr</VALUE>

</PROPERTY>

<PROPERTY NAME="OSType">

<VALUE>WINNT</VALUE>

</PROPERTY>

<PROPERTY NAME="TotalVirtualMemorySize">

<VALUE>524288</VALUE>

</PROPERTY>

<PROPERTY NAME="FreeVirtualMemmory”>

<VALUE>307200</VALUE>

</PROPERTY>

<PROPERTY NAME=”FreePhysicalMemory">

<VALUE>307200</VALUE>

</PROPERTY>

</INSTANCE>

<INSTANCE ClassName="CIM_UnitaryComputerSystem">

<PROPERTY NAME="Name">

<VALUE>http://comp1.PaP.org</VALUE>

</PROPERTY>

<PROPERTY NAME="Dedicated">

<VALUE>Not Dedicated</VALUE>

</PROPERTY>

</PROPERTY>

<PROPERTY NAME="PowerState">

<VALUE>Full Power</VALUE>

</PROPERTY>

</INSTANCE>

<INSTANCE ClassName="CIM_ComputerSystemProcessor">

<PROPERTY .REFERENCE NAME="GroupedComponent">

<VALUE.REFERENCE>

<INSTANCENAME>

<KEYVALUE>http://comp1.PaP.org</KEYVALUE>

</INSTANCENAME>

<VALUE.REFERENCE>

</PROPERTY.REFERENCE>

<PROPERTY .REFERENCE NAME="PartComponent">

<VALUE.REFERENCE>

<INSTANCENAME>

<KEYVALUE>comp1_processor</KEYVALUE>

</INSTANCENAME>

<VALUE.REFERENCE>

</PROPERTY.REFERENCE>

</INSTANCE>

<INSTANCE ClassName="CIM_InstalledOS">

<PROPERTY .REFERENCE NAME="GroupedComponent">

<VALUE.REFERENCE>

<INSTANCENAME>

<KEYVALUE>http://comp1.PaP.org</KEYVALUE>

</INSTANCENAME>

<VALUE.REFERENCE>

</PROPERTY.REFERENCE>

<PROPERTY .REFERENCE NAME="PartComponent">

<VALUE.REFERENCE>

<INSTANCENAME>

<KEYVALUE>comp1_os</KEYVALUE>

</INSTANCENAME>

<VALUE.REFERENCE>

</PROPERTY.REFERENCE>

</INSTANCE>

Figure 12: Description of a computer system using CIM

A computer system consisting of a processor and an operating system is described. The individual components are described together with their connections. Looking at the XML description, CIM_ComputerSystemProcessor describes the processors connection to the computer system while CIM_InstalledOS describes the connection between the operating system and the computer system. This figure is based on a similar example in [32].

1.11.2 Role Specification

References: [1]

[1] also proposes a model that may be used to represent role specifications. A description made using this model is shown in Figure 13. As may be seen in the figure, the description of role specifications makes use of the capability and status description introduced in section 2.5.1 to specify requirements for nodes. The features of XDD are used to state that these requirements must be fulfilled before an actor may start to play a given role.

	
[image: image13]
	<Actor>
 <rolePlaying rdf:resource="http://PaP.org/DocMaster"/>
 <nodeInstalling rdf:resource=$S:nodeX />
</Actor>

(
<INSTANCE ClassName="CIM_Printer">

<PROPERTY NAME="DeviceID">

<VALUE>$S:deviceID</VALUE>

</PROPERTY>

<PROPERTY NAME="DetectedErrorState">

<VALUE>$S:errorState</VALUE>

</PROPERTY>

<PROPERTY.ARRAY NAME="Capabilities">

<VALUE.ARRAY>

<VALUE>Duplex Printing</VALUE>

<VALUE>Black and White Printing</VALUE>

$E:otherCapabilities

</VALUE.ARRAY>

</PROPERTY.ARRAY>

<PROPERTY NAME="HorizontalResolution">

<VALUE>$S:horizontal</VALUE>

</PROPERTY>

<PROPERTY NAME="VerticalResolution">

<VALUE>$S:vertical</VALUE>

</PROPERTY>

<PROPERTY NAME="MarkingTechnology">

<VALUE>Laser</VALUE>

</PROPERTY>

<PROPERTY NAME="PrintingSpeed">

<VALUE>$S:speed</VALUE>

</PROPERTY>

$E:printerProperties

</INSTANCE>,

[$S:horizontal >= 1200],

[$S:vertical >= 1200],

[$S:speed >= 25],

notMember($S:errorState, {"No Paper", "No Toner",
"Door Open", "Jammed", "Service Requested"})

	(a) Graphical notation.

	(b) XML serialisation.

	

	The head shows an actor playing the role DocMaster that is installed on a CIM_printer named nodeX. The body states the conditions that must be fulfilled for this being true. NodeX must be of type CIM_printer, have the capabilities of duplex and black and white printing, and have a horizontal resolution greater than 1200, a vertical resolution greater than 1200 and a printing speed greater than 25. In addition the marking technology used should be of type laser, and the node should not be in any of the error states no paper, no toner, door open, jammed or service requested.

(c) Textual description

Figure 13: XDD descripton of capability and status requirements of the role DocMaster

The body of the clause describes the requirements that must be fulfilled for nodeX to install an actor playing the role DocMaster. The requirements are represented in a similar way as capability and status requirements. Source: [1]

1.11.3 Configuration Rules

References: [1]

The data model proposed in [1] for describing configuration rules also utilizes the features of XDD. An example rule is shown in Figure 14. As shown in this example configuration rules may state requirements to the combination of roles that may be part of a play. One may specify what roles are to participate, how many actors should play the different roles, and what capabilities should be preferred when more than one actor is able to play the role. The head of the message shows what play version the configuration specifies, and the nodes or actors that are a part of the configuration.

In addition to the conditions specified above, [2] provides an example where another type of condition is described. In the example a requirement is stated that restricts the roles that can be played by actors installed on the same node. To specify this a constraint NotMember(NodeA, NodeSetB) is used where nodeA installs an actor playing role A, and NodeSetB is a set of nodes installing actors playing role B. The result of this constraint is the condition that roleA and roleB shall not run on the same node. Other constraints could be added in a similar way.

	
[image: image14]
	//
	An XML clause defining a configuration rule of the play http://PaP.org/IPM_1.0.

The clause’s head (A) expresses that a valid configuration comprises the realisation of certain roles in the play, specified by three roleRealisation associations. The first association indicates that there must exist exactly one actor constituting the role IPMManager at a node $S:IPM_node. The other two associations, relating to the objects $E:DocMasterSet and $E:GraphicMaster, specify that the configuration also contains installation of actors realising some particular roles. The conditions on the number of actors to install and the roles to play are defined by the clause’s body.

The clause’s body, comprising (B)–(F), specifies conditions for derivation of the defined configuration as well as its composition structure.

The expression (B) indicates that the configuration will be computed upon the receipt of a ServiceRequest for installing such a version of the play.

The expression (C) ensures that the node represented by $S:IPM_node has sufficient capabilities and status to install an actor for executing the role IPMManager

The expression (D) specifies that $E:DocMasterSet represents a set of actors to be installed at nodes that are capable of playing the role DocMaster. In this example, there can be more than one actor realising the role DocMaster.

Similarly, the expression (E) specifies that $E:GraphicMasterSet represents a set of nodes which are capable of playing the role GraphicMaster.

In this example, exactly one actor is permitted to play the role GraphicMaster. In case there are multiple nodes in the system satisfying the specified requirement, the SelectInstance constraint (F) selects a node from the set $E:GraphicMasterSet given that the one with Laser MarkingTechnology property is preferable. The variable $E:GraphicMaster then represents the selected node.

Note that a restriction on the number of roles that an instance can play is not defined. Therefore, a particular printer may realise both DocMaster and GraphicMaster roles at the same time.

Figure 14: XDD description describing an example play configuration rule

The body of the clause describes the requirements that must be fulfilled by a play configuration of the play IPM version 1.0. The requirements specified may restrict the number of actors playing the roles constituting the play, specify preferences on which actors to chose, and state restrictions on when to create a new configuration. Source: [1]

1.11.4 Reconfiguration rules

References: [1]

Reconfiguration rules specify actions that should be taken upon receipt of trouble reports. The actions taken may be of different types. These are described in Table 2. Figure 15 show how the actions are related, and the components that are involved.

	Reconfiguration action
	Description

	No Action
	It is decided not to take any action.

	Actor Initialisation
	It is decided to install a new actor; this includes instantiation of a new actor, installation of the manuscript defining the behaviour of the actor, and execution of the actor.

	Actor Termination
	It is decided to terminate the actor freeing all resources allocated to and consumed by that actor.

	Actor Reinitialisation
	A sort of combination of Actor Termination and Actor Initialisation that terminates the actor and reinitialises it on the same node.

	Actor Relocation
	It is decided to move the actor to a new node.

	Play Reconfiguration
	It is decided to reconfigure the whole play. All actors involved in the play are influenced by this action. The best node for executing each role is computed, and the actors will be relocated to these positions.

	Default
	Relocation of all actors involved in the problem.

Table 2: Reconfiguration actions

Using reconfiguration rules one may specify the reconfiguration action to take upon request of a trouble report. If no specific action is specified, the default action will take place.

XDD is also used for the specification of reconfiguration rules. The type of action taken and the actors, roles and nodes involved are shown in the header. The body represents the conditions for the specified action to take place. An example rule is shown in Figure 15 specifying an actor relocation action.

[image: image15.png]Reconfiguration

TroubleReport

‘ NoAction ActorReconfiguration

‘ PlayReconfiguration

Actor ‘ive:nnﬁguvmgALmVJ

Node

relochtionTo
1

[Actorintiatisation | [ActorTermination

[ActorReiniatisation

[ActorRetocation]

Figure 15: Specification of reconfiguration actions

Three main types of reconfiguration actions exist. One of the actions is to take no action at all. Another action is to reconfigure actors involved in some way. Still another action is to reconfigure the whole play. Reconfiguration actions take place upon reception of a trouble report. Source: [32]

From this example one may see that the described model utilizes the features of XDD to specify conditions for specific reconfiguration actions to take place. However, the only reconfiguration action described is an actor relocation action. Example descriptions of the other action types should also be provided.

	
[image: image16]
	/////////////////////////
	The clause models a specific reconfiguration rule for handling InsufficientCapabilityReport of an actor playing the role IPMManager. In essence, it defines that:

(A)
an ActorRelocation plan, specifying that the actor $S:actorA is to be relocated to $S:newNode, will be derive,

if

(B)
there arises an InsufficientCapabilityReport, identified by $S:reportID and describing that the actor $S:actorA, currently playing the role IPMManager at the node $S:node, has insufficient capabilities to execute its functionality, and

(C)
there exists a node in the system which is currently available and capable of playing the role IPMManager, and denote such a node by $S:newNode.

Figure 16: XDD descripton of a reconfiguration rule describing an actor relocation action

The head of the clause tells that this is a reconfiguration rule that describes an actor relocation of an actor playing the role IPMManager. The body of the clause states the condition that must be fulfilled for such an actor relocation to take place. Source: [1]

1.11.5 Plans

The Dynamic Configuration Architecture has not made a specification for plans directly. However, in [32] examples may be found where plans are specified as a part of messages, i.e. configuration plans as parts of ServiceRequests and reconfiguration plans as parts of TroubleReports. In this section these descriptions of plans are introduced.

1.11.5.1 Configuration Plans

Figure 17 shows the XML description found in [32] together with a UML description of the play configuration. One can see that the elements constituting a configuration plan are the same elements as may be found in the head of configuration rules (2.5.3). The version of the play is given, together with the actors that are to perform roles of this play. For each actor the role it is to play and the node where it is to be installed are specified.

1.11.5.2 Reconfiguration Plans

Figure 18 shows the XML description found in [32] together with a UML description of the reconfiguration information contained. The reconfiguration plan specifies an actor relocation action. The message that caused the reconfiguration to take place is described, together with the node that is to be relocated, and the node where the actor is to install. This is similar to what can be found in the head of reconfiguration rules (2.5.4).

Actor relocation is the only type of reconfiguration that is described in [32].

	[image: image17.png]ftti:PaP orgdPM 1.0 Play|

apversion

PlaxConfauration]

eleRealssto

releRealisation

nodeinstaling
/P P oralPitansser Fale

Fiecom Par ore oo Wf”w

m\eP\ay;% ptte:ficom 1 PP org|
erentoston] [P e e

actor
memng
rolePlayin i ficomp1 Pab org|

/PP orlPMManzcer - Fole]

	<configurationPlan>

<PlayConfiguration>

<playVersion rdf:resource=”http://PaP.org/IPM_1.0”/>

<roleRealisation>

<actor>

<rolePlaying

rdf:resource=”http://PaP.org/IPMManager”/>

<nodeInstalling

rdf:resource=”http://comp1.PaP.org”/>

</actor>

</roleRealisation>

<roleRealisation>

<actor>

<rolePlaying

rdf:resource=”http://PaP.org/DocMaster”/>

<nodeInstalling

rdf:resource=”http://PrinterX.PaP.org”/>

</actor>

</roleRealisation>

<roleRealisation>

<actor>

<rolePlaying

rdf:resource=”http://PaP.org/GraphicMaster”/>

<nodeInstalling

rdf:resource=”http://PrinterZ.PaP.org”/>

</actor>

</roleRealisation>

</playConfiguration>

</configurationPlan>

Figure 17: Possible play configuration contained in a configuration plan

Configuration plans contains play configurations that describe the play version to be run and the actors that are to participate in the play. For all actors the role that is to be played and the node where the actor is to be installed are specified.

	[image: image18.png]AdtorRelocation|

(dacationTo

resporseT: o ooyt P o

1P o craimsad]

reconfguingadtor

[teiPaP oroadon _ador]

	<reconfigurationPlan>

<actorRelocation>

<responseTo rdf:resource=”http://PaP.org/msg04”/>

<reconfiguringActor rdf:resource=”http://PaP.org/actorD”/>

<relocationTo rdf:resource=”http://comp4.PaP.org”/>

</actorRelocation>

</reconfigurationPlan>

Figure 18: Possible play reconfiguration contained in a reconfiguration plan

Reconfiguration plans contains reconfigurations that may be of different types. The play reconfiguration described here is of type actor relocation. The message that causes the reconfiguration to take place is specified, together with the actor that is to be relocated and the node that is to be the new location for the actor.

1.11.6 Messages

References: [1]

As mentioned in section 2.2.3 messages can be of different types. Figure 19 shows the message types that have been defined, and the information contained. As may bee seen from the figure, all messages have a similar representation. They are identified by an URI, and include information on the sender of the message and the time of the postal. However, the messages may be of different types and may contain type specific information.

[image: image19.png]nedretaling

[sovemtonmt | [ceremEomponenienue]

[remisneer |

T T

playfequesting oleRequesting

S |

s ufioRnte apabilty port

insuffcentC apabiitactr

Figure 19: Specification of messages

Three types of messages exist: Service Requests, Service Component Requests and Trouble Reports. In addition Trouble Reports may be of different types. The attributes of a message depends on its type. Source: [32]
Messages are described using RDF. An example service request described this way is shown in Figure 20. As shown in the figure, the subjects, predicates and objects used follow the definition in Figure 19.

	<ServiceRequest rdf:about="http://PaP.org/msg01">

<sender>

<Actor
rdf:about="http://PaP.org/actorA">

 <rolePlaying rdf:resource="http://PaP.org/roleR"/>

 <nodeInstalling rdf:resource="http://comp1.PaP.org" />

</Actor>

</sender>

<dateTime>14/10/2002 GMT 14:10:00</dateTime>

<playRequesting rdf:resource="http://PaP.org/IPM_1.0"/>
</ServiceRequest>

Figure 20: Example service request described using RDF

The message contains both information common to all messages and type specific information specifying the play requested.

From this discussion one may see that all messages are generalizations of a general message type. This results in all messages having similar representations. However, messages may also contain information specific to its type. All message types therefore need their own representation.

1.11.7 Manuscripts

References: [17]

In [17] an approach is taken to make XML based role behaviour representations. Like the java implemented manuscripts used until now, it is based on state machines. The proposed model is shown in Figure 21.

As shown in the figure the XML file consists of different components. First every state machine, or <fsm>, has an element called <name> that specifies the name of the role described by the state machine. In addition the initial state and current state is specified using the elements <init_state> and <cur_state> correspondingly. Initialy <cur_state> has the same value as <init_state>, but this will change during execution.

A state machine can also contain data. Data can be of different types. Both role session ids and more application specific data can be represented. Data is described by <name> and <value>. If the data represents a role sesson id, <name> will be the name of the target role figure of the role session and <value> will be the id of the role session. If the data represents more application specific data, <name> will be the name of the variable, while <value> will give the value of the variable.

[image: image20.jpg]+ name

stin
+init_state,
srin

* cur,state%
srin

= * name%
FSMg + data strin

D
+ valueg]
+ name
srin
* msg,name%
srin
+ state|

+ output
s
+ dest,
s
* next,state%
g
* meth,name%
+ action, L
k3 param%
<trine

Figure 21: XML file structure for role representation

A role is represented as a state machine. The state machine may contain data of different types. Transitions depend on the state and the input received, and is described by internal actions and sending of output.

A big part of the description of a role is the description of the possible states of the role, and the handling of input messages. States are described by <name> and <input> where <name> gives the name of the state and <input> describes the handling of a specific input message. The different messages are described by their name using the element <msg_name>. In initial states the message name INITIAL_TRANSITION is used. This is because no input message will trigger the transition specified there.

Each input specifies a transition. Transitions may contain internal actions (<action>) each having a method name (<meth_name>) and a parameter (<param>). The value of <param> is the name of the parameter. Actions are described in an action library. This may be thought of as a kind of database where all internal actions are coded. A common library for all plays is recommended to facilitate reuse and maintenance.

After having performed the internal actions specified for the transitions, an output message may be sent. The name of the message is specified by the value of <output> while <dest> gives the destination. Since this is a description of a role’s behaviour, outputs will be role session actions. This implies that before such outputs may take place a role session must exist between the two actors participating in the communication. [17] proposes to let the creation of such role-sessions be done automatically when sending outputs. If the role session does not exist it will be created by plugging in the receiver before sending the output.

At the end of each transition the actor playing the role will jump to a new state. The state that is to be the new current state is specified by the value of <next_state>. After the transition is made <cur_state> will get this value.

As opposed to manuscripts, the model introduced here describes a role currently performing. However, it contains much the same elements that need to be part of a more static role behaviour description.

1.12 Summary

The Dynamic Configuration Architecture builds on the Basic Architecture of TAPAS introduced in 1. The same concepts are used, however, a whole new framework has been included that may be used for providing dynamic configuration. Based on this framework an example application has been created together with a selection engine that may be used for making configuration decisions. In addition the data needed to facilitate such configuration decisions have been specified and given a representation based on languages for the semantic web. In the work presented in this report these models, and the framework specified, will be used as a basis for extending the current functionality. It will be proposed to extend the current models more descriptive power and a discussion regarding monitoring of capabilities and status will be provided.

Specification of data models

Based on the work already made in representing data using CIM, RDF and XDD (2.5) this section proposes extensions and changes to the current data models. The models will mainly be represented using UML. However, more XML based representations are possible. An example usage of the models proposed will be provided in section 4.

1.13 Capability and Status Descriptions

In section 2.4.1 an already made approach for representing capability and status descriptions was introduced. This model uses the language CIM for representation. This language will therefore also be used as a basis for descriptions proposed in this section. The current model can describe different types of entities. From the examples included in section 2.4.1 one can see that both printers and more complex computer systems consisting of different types of entities may be described using this approach. However, the model may look a bit confusing since status and capabilities are described in the same way. In addition none of the capability characteristics introduced in section 2.1, like arrangement and complexity, are described.

This section concentrates on discussing what information that should be contained in capability and status descriptions. This is done on a more general basis without using CIM related classes directly. This way one gets more freedom when making ideas, and the possible solutions are not restricted by the knowledge of classes and features of CIM. However, one may get a result that may not be compliant with the chosen language.

A complete discussion of this subject may be found in Appendix E. However, the main ideas and proposals are summarized in this section. As a consequence of the method chosen the model resulting from this work is not really a model based on CIM, but a model that may be represented in a CIM like way. This model may later be used as ideas that may improve the current model.

1.13.1 Capabilities

As mentioned above, the already proposed model provides descriptions of capabilities that differ from the way capabilities are defined in section 2.1. To change that this work proposes a model where all capabilities may be described by arrangement and complexity, and where all capabilities are of one of the types mentioned, i.e. a resource, a function or data. These types may be specialized into more specific types, like storage, transmission function or user data, which again may be specialized into for instance harddisc, LAN connection or password. And so it goes until the desired level of detail has been reached. Capabilities of type data are described by data values. Resources and functions, on the other hand, are described by Quality of Service (QoS) characteristics describing such things as storage capacity or bandwidth provided. These characteristics are also part of a hierarchy in the same way as capabilities, where more general characteristics are specialised into more specific characteristics.

1.13.2 Status

Status is information on the state of the system at a given time instance (section 2.1). The status of the system is dependent on the status of the nodes constituting the system. The status of the nodes is again dependent on the status of the capabilities of nodes, and on what actors are currently installed. Therefore nodes, capabilities and actors are described by status information, where a nodes status includes the status of its installed actors and capabilities.

Like capabilities and QoS characteristics, status types are also part of a status hierarchy where special status types are specializations of more generic status types.

1.13.3 Combining capability and status information

From the discussion in section 3.1.1 and 3.1.2, capabilities of type resource and function are described by both QoS characteristics and status. Having a storage device an example of information being part of the QoS characteristics would be disc capacity, while status information would include information on free disc capacity. Having separate descriptions of status and characteristics would help distinguish between the two information types. However, as the example may illustrate, the information is strongly related and a separation will probably be more confusing than explanatory. It is therefore suggested to combine these descriptions unto one single type describing both QoS characteristics and status. This type will, in the same way as the two individual information types, be described as a part of a hierarchy.

To summarise, it is proposed to use the capability definition described in section 2.1 as a basis for describing capabilities. Special capabilities are generalizations of the more generic capability types, and are described by QoS characteristics and status. The status of a system is described by the status of nodes, where this status is a combination of the states of the actors installed at the node and the capabilities provided by the node.

As mention above, the proposed approach is not really based on CIM, but may work as ideas that may be used to extend the current model

1.14 Role Specifications

An already made approach for describing role specifications was introduced in section 2.5.2. Role specifications describe a role’s requirements to capabilities and status. In the model presented this is described using XDD, where the body of the clause states the conditions that must be fulfilled for a node being able to play a certain role.

This section proposes to continue to use a similar approach for describing role specifications. The model currently available is able to describe capability and status requirements in a good way distinguishing between conditions and consequences. However, addition of environment specification is proposed. The reason for this will maybe become clearer in the discussion of configuration rules provided in section 3.3.

Figure 22 shows an example role specification containing environment information. The specification describes the requirements of roleA in environment env1. As one may see from the figure, the body of the clause describes capabilities and status in a similar way to what is proposed in section 3.1 and Appendix E. This corresponds to what is currently done in this type of models.

[image: image21.png]actor nodeinstaling SinodeX T4P ASHode]
. 1
. i fapas orblavioles _rok]
releptanin e
1
operatingEnirorment _fe ipapes oroferniony! EmirormentTyse]
1

-—
1 [SpdeX 1A ASliode]

1. 1 1.

Haridisc 1 [LANCornedion|

1 1 T

DiscCapacty. Bardwdh Delay
Sz Teger Tue Trtege [pverege - Ineger = S5:delay
it String = "G8" it String = Imin: Ineger
resspace : Sting= 35 fesspace| erserilizaton: Integer Ima: Integer
usedspace - Siring [averegeMeasuredDelay : Integer|

195; resspace»=5]

Figure 22: Example role specification description

Role specifications are related to a specific role and environment. Capability and status descriptions are used for describing conditions.

1.15 Configuration Rules

An already made approach to representing configuration rules was introduced in section 2.5.3. This model uses XDD. The conditions to be true for the configuration to be correct are stated in the body of the clause, while the result of the configuration is given in the head. Using this approach conditions related to the number of different roles that may be active at the same time are stated. One may specify that only one instance of a role should be active at any time, or one may specify no restriction, i.e. that zero or more actors may play the role simultaneously. Limitations on which types of roles that may be played on the same node are also described. In addition constraints are introduced for being able to specify which node to select among a number of nodes fulfilling the requirements of a role. Configurations may also be specified to be a result of a request. This way one ensures a configuration is only computed when needed.

Representing configuration rules this way has many advantages, and all the conditions described are important and will be needed in any such model. The already made model will therefore be used as a basis for further development. However, other types of conditions may also be needed. This section will discuss possible conditions that might be needed and show how these might be described in play configuration rules.

As mentioned above, the already proposed model may contain conditions describing how many instances of a role may be active at the same time. However, no examples are given where the conditions stated specify anything between only one instance allowed or no restrictions. How to represent that three actors should play this role simultaneously, or that less than five, or more than two instances of the role should be active at any time is not shown. This should be included in the new model.

Including restrictions on sets of nodes adds the need for specifying preferences when more than one instance is to be selected. Currently an example is given that shows how one instance can be selected from a set. This functionality should be extended.

Conditions that states that a configuration should be computed upon request are included in the current model, as stated above. However, such requests may contain much more information that may influence the configuration choices. First of all the sender of the message is included described by both role and location. One is therefore free to make restrictions based on these values. In addition one may think of possibilities to describe preferences like environment, scale of the system, or preferred locations. Environment specifications give the possibility to have different configurations for for instance desktop environments and PDAs. Scale, on the other hand, gives the possibility to make configuration choices based on for instance the number of users expected. Giving the requestor the possibility to specify locations and similar for the roles involved gives greater freedom to actors. In addition allowing specification of such type of information is in conformance to the Basic Architecture where location is a possible parameter in actor plug-in requests (see 1.3.1).

In addition to the constraints mentioned above one may want to restrict the number of actors that may run on a node. This may be done to obtain better QoS. One may also want to specify constraints that states that no configuration will be made if one already exists, this way preventing the number of configuration to be unnecessarily high.

Having obtained the need for including more types of conditions, it is time to give them a representation. When specifying such conditions in play configuration rules these representations should be included in the body of the clause working as conditions for the configuration shown in the head of the clause.

1.15.1 Conditions related to the incoming request

Starting with the messages received, these can be represented with all their content in the way shown in Figure 23. The content represented may then be used to state constraints on what roles a sender should play, the environment requested, the scale requested and similar. This is shown in Figure 24.

As described in Figure 24, the environment requested may be used to specify conditions saying that the role requirements for the chosen environment should be fulfilled. Role specifications were explained in section 3.2. In a similar way, information on the role of the sender may be used to specify restrictions stating that this role should be of a specific type, or alternatively not have a certain value. Both these types of sender-role conditions are included in the figure for illustration purposes. However, only one of the alternatives should be included at the same time. Relating to scale it is suggested that one divides play configuration into scale types, i.e. small, medium and large. Then one can make restrictions on how many actors one should have of a specific role to be of a certain type. How to do this is shown in Figure 24 where the number of requested instances of RoleA should be between 15 and 30 to be of the type in this example, say medium. One may also specify that the preferred configuration specified in the service request should be a part of the new configuration made.

[image: image22.png]sender recEmironment reaScele
! 1 1 4 1
$5ay Play| [pSsener Ador] fiSieny EnvronmertTwee| [fErSc: Scae] [IE-raCont. PrefereaContuurstion]
I
! rolcPlaying

radeinstalng
tin

[iS Serdemod TAP ASHiode)

S sencermle _Fole]

e 205 Scale|@-

S redcriok - ScaledRale)

rolame.

S schle Rk

rumberinstances.

BEreqConProfenedConfourstior

o-

rlePlaying

SSnumber

S redRol Fole

Ereatdor Aol

L consams

T

S recilode AP ASHode]

Figure 23: Representation of a condition describing a service request

The figure shows the information that may be included in a service request and how this information may be named so that it can be referred to when describing other conditions. Similar representations may be included in the body of clauses describing play configuration rules.

[image: image23.png]1 1

iS.adora_adar] 1 (okEL Mapas oroRolea. Role]
. W S nodeA TP ASliode|

1
operatingEmironment o o]

Mermher(§S:senderrole. (Htpivw.anas.or/RoleA, Hilp:iwny tapas. o/RoleB)
Noth srmber(§:sendertole, it fhwwnw tapas orgiRolsC)

Member(§S:scRole, hito: i tapas. org/RoleA)
LT(88 nurrier, <nurm> 30 <fnum=)
GBS nUMber, <num> 15 <fnurm>)

Member(SE:reqCont, SE:newPlayConf)

Figure 24: Representation of conditions using information contained in a service request

Environment information contained in requests may be used to check that nodes fulfil the role requirements for this environment. The type of role played by the sender of the message may be said to be, or not be, of a specific type. The number of actors requested may be used to decide the scale of the system, and the configuration requested in the service request may be required to be a part of the final configuration. Other possible constraints may also be stated.

1.15.2 Conditions related to sets

Representation of constraint on the number of actors contained in sets was a requirement discussed above. So was the requirement to be able to specify preferences on which nodes to select, when selecting a subset. Figure 25 shows how this is handled today for selecting only one instance. In addition the figure includes a proposed solution for selecting subsets and specifying the number of actors that is to be contained in a set.

[image: image24.png]Selectinstance(

SelectSubset(

<preference>
<PROPERTY NAME

<lpreference>,

$EroleAset,

$Eroles)

LANConnection"/>

<preference>
max(<PROPERTY NAME

<lpreference>,

<min>1 </min>,

<max> 3 <fmax>,

$EroleBset,

$EroleBs)

DiscCapacity freespace’s>)

Figure 25: Representation of conditions describing constraints on sets

The constraint SelectInstance was introduced in the already proposed model to select one instance from a set based on preferences. Here including a constraint SelectSubset is proposed to select subsets from a set based on preferences, and to specify constraints on the number of instances that should be contained in the resulting set.

As shown in the figure, the proposed solution for selecting one instance based on preference is to include a SelectInstance constraint that specifies the preference, the set to choose from and the name of the variable that is to hold the result of the selection. Based on this, the solution proposed for selecting subsets is to include a SelectSubset constraint that specifies the preference, the minimum and maximum number of instances in the set, the set to use as a basis for selection and the name of the variable that is to store the result. If no preference is included, only the number of instances to be contained in the set is specified.

Restrictions on the number of actors that may be installed on a node may also be specified using constraints. Figure 26 proposes to use a constraint maxNumberActorsOnNode for this purpose where the role and the maximum actors playing this role on the same node are specified.

[image: image25.png]maxMNumberActorsOnNode(http: #tapas.org/Roled, 2)

Figure 26: Representation of a condition describing restriction on the number of actors that may run on the same node

The inclusion of a constraint maxNumberActorsOnNode is proposed that specifies how many actors running a specific role can play on the same node. In this example it is said that no more than two actors playing RoleA can be installed on the same node.

1.15.3 Conditions related to existing configurations

As pointed out in the discussion above one may not want to create a new configuration if one already exists. A possible specification of such a constraint is shown in Figure 27. This figure shows a play configuration playing a certain play in a certain environment at a certain scale. The description is surrounded by brackets. This is the way of representing negation in XDD (see Appendix D). The meaning of the description is therefore that no configeration like the one specified should exist.

[image: image26.png]slayversion | PlayConfouration}

operatingEnronment
1 4 1

(o] [Eriomerttys] foedun St

Figure 27: Representation of a condition saying that no new configuration should be created if one already exists

The type of configuration that should not exist is specified within brackets. Brackets represent negation in XDD.

1.15.4 General description of a configuration rule

Having defined how to describe these kinds of conditions, it is time to look at the overall clause. The head of the clause will still represent the resulting configuration; however some elements will be added because of the introduction of environments and scale. The body of the clause will contain conditions of the form specified above and in the already proposed model. This is shown in Figure 28. In this figure the head of the clause shows the result of the play configuration including play version, scale, environment, the different actors playing roles, and the request that caused the configuration to take place. The body may then specify several conditions that must be fulfilled for the head of the clause to be true.

[image: image27.png][ieiAapas oraPlavlPiay]

message constraints
ole specification constraints
set constrairts

medium : ScaleT yoe|

1 [EnvrementTye|

Jayversian s operatingEmironment
E play - PlayContouraton]
N [—te0n8T0 S requed - ServiceReques!
1 1
1
rleRealisaion | roleR salisfion
1 1
SEroeh SErleBs

Figure 28: Representation of a clause specifying a play configuration rule

The head of the clause specifies what should be the result of a configuration, while the body of the clause contains various conditions that should be fulfilled by a configuration of this type.

From this discussion one can see that the model already proposed is extended to include descriptions of more types of conditions. These where possible to include in the already specified model, however the lack of examples made this more complicated. Such examples have been included in this section.

1.16 Reconfiguration Rules

Section 2.5.4 introduces a data model already made that may be used for describing reconfiguration rules. This model is capable of describing rules dependent on the trouble report received, the actor that experiences the problems and the existence of nodes that are capable of playing a certain role. It is thought that this model has enough descriptive power to be able to represent the rules needed. Therefore no big changes have been made. However, only one type of action has been described in the work presented. In this work example rules describing other types of actions have been added. The examples may be found in Appendix D.

As can be found in Appendix D, the information included in the head of clauses specifying reconfiguration rules depend on the action specified. Common to all actions is the inclusion of the id of the report resulting in the reconfiguration taking place. For most other actions the actor involved is described including its current role and location. In some cases a new location will also be specified.

1.17 Plans

In section 2.5.5 the already made approach to representing plans was discussed. No specific representation of plans was found. However, inclusions of such plans were found in messages requesting services and in trouble reports. These plans had a similar representation as the heads of the clauses specifying configuration and reconfiguration rules.

In this section a more specific model for plans is proposed. These plans should not be included in service requests or in trouble reports, but be messages on their own. This corresponds to what is modelled in (Figure 8) where plans are sent between the Configuration Manager and the installers. The model will be based on the result of the configurations and reconfigurations; however, their representation will not necessarily equal the head of the clauses specifying configuration and reconfiguration rules. All information may not be needed, and other information not included may be relevant for installation and should be added.

1.17.1 Configuration Plans

Configuration plans are the results of service requests or service component requests, and will be sent to a component responsible for making the necessary installations. Upon reception of a service request, configuration rules will be used to create a configuration fulfilling the request. The configuration will be described by the play version, the message resulting in the configuration being made, the scale and environment of the configuration, and the different actors being a part of the play. Actors are described by the role they are playing and the node where they are installed (see section 3.3).

When installing a configuration the scale of the configuration and the environment is not important if only the installer has knowledge of all actors that are to be installed, the roles they are to play and the nodes where they are to run. However, some actors specified may already be playing other roles, and should therefore change behaviour, some nodes specified may be in a kind of waiting states having no manuscripts loaded, only running the basic actor functionality explained in section 1.3, while some actors have not yet been created. The action taken by the installer may depend on the state of the actor. Such information should therefore be included in the plan. The head of the configuration rule contains information on what message that caused the configuration to take place. This message itself is not important, however, the sender of the message may be included to give the installer the possibility to send confirmation or error messages back to this actor. This may for instance be needed to distribute role session ids (see section 1.3.1). The id of the sender should therefore be included.

Figure 29 shows the proposed structure of configuration plans. As one may see such plans contain information on the nodes involved and the actors that should run on these nodes. For each actor the current status is given together with the role it is supposed to play. The installer will then be responsible for making the necessary actions based on this information. For each plan the actor making the request resulting in the creation of the plan is included. The reason for this is discussed above.

[image: image28.png]onfigurationplan|

contauatose T soner
i |
EZE weor
contgredado f— ——
i
| |
actor role TAPASHode
-] . [
sorsttus] hevide
o |

atus role

Figure 29: Proposed structure for configuration plans

Configuration plans describe which actors are to be created or to get new behaviour. The status of each node is included for the installation to know what actions to perform. The nodes where the actors are to run are also specified. In addition, the sender is included to make it possible to send back confirmation messages.

1.17.2 Reconfiguration Plans

Reconfiguration plans are the results of trouble reports and are sent to a component responsible for handling reconfigurations. What reconfiguration actions are specified in the plan depends on the different reconfiguration rules that exists for the corresponding play.

As stated in section 3.4, the information included in the head of clauses specifying reconfiguration rules depend on the action specified. For all actions the id of the trouble report causing the action to take place is included. Other information that may be included is the current location and role of the actor, and possibly a new location.

In the same way as for configuration plans (see section 3.5.1) the component responsible for implementing the plan need to know which nodes and actors that are involved, the current states of the actors, and the roles that are to be played, or the nodes where the actors are to be removed. Most of this information is found in the head of the clause specifying the reconfiguration rule. The sender may also need to be included to that confirmation messages may be sent.

Figure 30 shows the proposed structure for representing reconfiguration plans. All involved nodes are included. For each node the actors involved are described with status and action. Each action is of a specific type and is identified by the element reconfType in the figure. If the action is of type actor relocation the role of the actor and the node where it is to be moved is specified. If the action is of type actor initialisation information on the role will be included. Role information is also included in descriptions of actor re-initialisation actions, while actor termination needs no additional information. The action type no action will not result in a reconfiguration plan being made. The action type play reconfiguration will probably result in a series of actions of the types already specified. Information on the sender is included for reasons stated above.

[image: image29.png]reconfiurebioe_| [sender

I .
TapASHote wwor
N I
reconfiguredActor| rolePlaying[* |nodeinstalling
1 1 1
actor role TAPASHode
i il
orsa
pot i FE——
s wcion
p i g SR
P newRole newiiodt
e b (k)
oo e | [PASiode

Figure 30: Proposed structure for reconfiguration plans

Reconfiguration plans describe the actors to be reconfigured, including their status and the reconfiguration action that is to be performed. The nodes where the actors are running, or will be running, are also specified. In addition, the sender is included to make it possible to send back confirmation messages.

1.18 Messages

Messages may be of different types. These are specified in section 2.5.6. Each type of message will contain information specific for that type of message. One therefore needs to create models for each message type.

Section 2.5.6 introduces an already made model for representing messages. For each message an id is given together with information on the sender and the time of the postal. In addition service requests describe the play that is to be installed, service component requests describe the role that is requested, and trouble reports contain information on the actor experiencing problems, i.e. the actor that can not be reached or the actor experiencing capability problems.

The already made approach for representing messages is quite easy to understand and contains information relevant to the different types of messages. However, the discussion of play configuration rules given in section 3.3 introduced the possibility to include more information in messages. The models already made will therefore be extended so that more information is contained.

1.18.1 Service Requests

Starting with service request section 3.3 suggests that such messages may contain information on environment type and scale in addition to the information already contained in the proposed model. It is also suggested that the sender of such request should be able to represent preferred configurations containing information on where to locate the actors that are to play the different roles. This information will therefore be included in such messages.

Figure 31 shows an example service requests including such types of information. The information described from line one to line nine corresponds to what is included in the existing model. This may be found from comparing this figure with Figure 20 showing an example description of a service request using the current available model. The rest of the message shows how additional information may be added. In line ten the environment type is specified. In line 11 until line 20 a preferred configuration is specified where preferred locations for specific roles are stated. Then in line 21 until line 27 the expected scale of the system is specified telling the expected number of certain role types. This way all the above mentioned information has been included.

	1 <ServiceRequest rdf:about="http://tapas.org/msg01">

2 <sender>

3

<actor rdf:about="http://tapas.org/actorA">

4

<rolePlaying rdf:resource="http://tapas.org/roleR"/>

5

<nodeInstalling rdf:resource="http://comp1.tapas.org"/>

6

</actor>

7
</sender>

8
<dateTime> 14/10/2002 GMT 14:10:00 </dateTime>

9
<playRequesting rdf:resource="http://tapas.org/IPM_1.0"/>

10
<environment> http://tapas.org/env/desktop </environment>

11
<preferredConfiguration>

12

<actor>

13

<rolePlaying rdf:resource="http://tapas.org/roleA"/>

14

<nodeInstalling rdf:resource="http://comp1.PaP.org"/>

15

</actor>

16

<actor>

17

<rolePlaying rdf:resource="http://tapas.org/roleB"/>

18

<nodeInstalling rdf:resource="http//comp2.tapas.org"/>

19

</actor>

20
</preferredConfiguration>

21
<scale>

22

<scaledRole rdf:resource="http://tapas.org/roleB">

23

<number> 20 </number>

24

</scaledRole>

25

<scaledRole rdf:resource="http://tapas.org/roleC">

26

<number> 3 </number>

27

</scaledRole>

28
</scale>

29 </ServiceRequest>

Figure 31: Example service request

Service requests may contain information on the sender, the time of the postal of the request, the play requested, the environment preferred, preferred locations of actors and the scale of the system.

1.18.2 Service Component Requests

The content of service component requests has not been discussed in such detail as the content of service requests, but much of the same information will probably be needed in both these types of messages. The required role may be needed to function in a given environment. It may also be preferred to be able to specify a location for the role. This is information that could be included in the ordinary actor plug-in requests (see section 1.3.1). However, scale is not important when requesting an actor. The scale refers to the whole play configuration, not to components of the play.

Figure 32 shows an example service component request containing descriptions of the information discussed above. Line one until line nine is based on the already proposed model for this message type. This will be clear from Figure 19. Line ten describes the environment in a same way as for service requests. However, the preferred location is represented in a simpler way in this type of message, as shown in line 11 until line 13. Comparing this representation to the approach made in service requests one can see that the actor and the role is not specified. This is because the service component requests only requests one actor. The actor the location refers to is thereby given. Service requests, on the other hand, refers to a whole play where the individual actors need to be referred to directly when specifying location.

	30 <ServiceComponentRequest rdf:about="http://tapas.org/msg02">

31
<sender>

32

<actor rdf:about="http://tapas.org/actorA">

33

<rolePlaying rdf:resource="http://tapas.org/roleR"/>

34

<nodeInstalling rdf:resource="http://comp1.tapas.org"/>

35

</actor>

36
</sender>

37
<dateTime> 14/10/2002 GMT 14:10:00 </dateTime>

38
<roleRequesting rdf:resource="http://tapas.org/roleA"/>

39
<environment> http://tapas.org/env/desktop </environment>

40
<preferredLocation>

41

<node rdf:resource="http://comp1.tapas.org"/>

42
</preferredLocation>

43 </ServiceComponentRequest>

Figure 32: Example service component request.

Service component requests may contain information on the sender of the message, the time of the message postal, the role requested, the operating environment and the preferred location of the requested actor.

1.18.3 Trouble Reports

Section 2.5.6 also proposes models for representing trouble reports, i.e. actor unreachable reports and actor unavailable reports. These messages contain information on the sender and the time of the postal of the report, in addition to information on the actor involved in the problem. This seems to be enough information to make decisions based on reconfiguration rules. However, information on the operating environment of the actor in trouble also is needed. This information is therefore included.

Figure 33 shows an example actor unreachable report. This report what is specified in Figure 19 except that an actor also is described by its operating environment. This information should be added to insufficient capability reports in a similar way.

Section 2.5.6 also introduces an error report used to report QoS degradation. This is a report that should be used by QoS sensitive systems. This functionality is not present in current systems, and the message type is therefore not specified further.

	44 <ActorUnreachableReport rdf:about="http://tapas.org/msg03">

45
<sender>

46

<Actor rdf:about="http://tapas.org/actorA">

47

 <rolePlaying rdf:resource="http://tapas.org/roleR"/>

48

 <nodeInstalling rdf:resource="http://comp1.tapas.org"/>

49

</Actor>

50
</sender>

51
<dateTime>14/10/2002 GMT 17:10:00</dateTime>

52
<unreachableActor>

53

<Actor rdf:about="http://tapas.org/actorB">

54

 <rolePlaying rdf:resource="http://tapas.org/roleR"/>

55

 <nodeInstalling rdf:resource="http://comp1.tapas.org" />

56 <operatingEnvironment rdf:resource="http://tapas.org/env/desctop" />

57

</Actor>

58
</unreachableActor>

59 </ActorUnreachableReport>

Figure 33: Example description of an actor unreachable report

The unreachable actor is described also by its operating environment.

To summarize, in this section the current message models have been extended to include information needed because of changes in other data models. Later work may reveal the need to include more information in the messages, or maybe to introduce new message types. This could be done in a way similar to what explained in this section.

1.19 Manuscripts

An existing data model that may be used for descriptions of role behaviour was explained in section 2.5.7. In this model behaviour is described using state machines. The actions taken by an actor will therefore depend on current state and the role session actions received. This corresponds to the way behaviour has been described using Java. The same approach will be taken in this section. The data model already explained will be discussed and used as a basis for further development.

1.19.1 Discussion of current model

The existing data model describes a role that is currently performing, as opposed to a static description of a role’s behaviour. Manuscripts are static descriptions. The information represented in the two models may therefore differ in some ways. This will become clearer after a discussion of the information on current state. Current state is included in the role behaviour description already proposed, but will this type of information be necessary to describe in a manuscript? A manuscript being a static description will never be in any specific state. Describing the current state of a manuscript therefore provides little meaning. However the role performing according to the manuscript will have a current state being one of the states described in the manuscript. Following this way of thinking, one may also conclude that the values of data components may not need to be included in manuscripts. Data elements are typically getting their value at run time. A static description of their value will therefore be of little use since the values can not be known beforehand. However, it may sometimes be desirable to specify initial values of variables. The value element should therefore not be removed.

The other data elements contained in the data model will be relevant to include in a static description. The states need to be described together with the handling of input messages. Actions will still be needed, and the output messages must be described. Information on the initial state is also important so that a role starting to perform according to the manuscript knows where to start.

Trying to use the model described in section 2.5.7 to describe example manuscripts one may obtain a need for more descriptive power. Data is represented by their names, but knowing their type would add more meaning to the description. Probably this would make it easier to use the data elements correctly when playing the described role. Having data that may be used in the scope of the whole role execution is a good thing, but making transitions one may obtain a need to use data that should not be used or known elsewhere in the state machine. Examples of data of this type may be temporary results and similar. Therefore, gain may come from adding data to transition descriptions. These types of data will only exist as long as it takes to make the transition.

During run time, data should be obtained and used. One way of using data is to provide it as parameters to actions. In the current data model parameters are only described by names. Their value will be specified later. However, in a manuscript it may be important to specify what data is to be used as the parameter value. Support for this should therefore be added. Data may also be obtained by using actions. This data may need to be stored in variables so that it may be used later. It should therefore be possible to store results from actions, and to specify what data element that is to be associated with the result value.

When sending messages, or outputs, to destinations, providing a message name may not meet the demand for information distribution. Often parameters are used to bring additional information. This information may be very important, and one should have the possibility to describe this information in the manuscript. One may also need to send more than one output message at each transition. If this is the case one would need the destination to be more tightly coupled with the output, so that every output may have its own destination.

1.19.2 Extensions made regarding data, actions and outputs

As a result of the above reflections a new data model has been made based on the model already presented. The main parts of the model are shown in Figure 34. Some of the elements shown will be further extended later. Comparing this figure with Figure 21 one may see that the models have a lot in common. The only changes for now being:

· removal of <cur_state>

· Addition of <type> to data descriptions

· Adding data elements to the description of input handling

· Moving destination. The new location can be obtained from Figure 35.

The reasons for these changes have already been discussed (section 3.7.1).

In Figure 35 <action> and <output> from Figure 34 have been extended. Comparing the new description to the data model explained in section 2.5.7 one can see that some changes have been made. Actions may now have more than one parameter, and parameters are described by both name and value. Providing the parameter name makes the order of parameters irrelevant, while adding parameter values gives support for specifying the value of parameters, as were discussed above. Parameters may now also be specified for output messages. The representation of parameters is similar in both situations.

Studying the figure one may also notice that a whole new element has been added to action descriptions. Actions may now specify what data element that is to store the result of the action by using <store_return>. <store_return> should specify the name of the data element that is to be associated with the returned value.

[image: image30.png]manuscript

fom

1
1 T 1
nare i side
1 .
1
Sate ax
I . !
T A
1 1 01
nare we valus
P T P—
1
1
1
. . 1
oy action o o state

Figure 34: Main parts of a manuscript representation

Manuscripts are described using state machines containing descriptions of data and states, including information on which state is the initial state. For each state the possible input messages is described together with the transitions that may result from such inputs. Transitions may contain internal actions and specification of outputs together with information on which state is to be the next state.

As pointed out above, the specification of the output destination has been moved. This is done to provide support for having more than one output message that possibly may have different destinations. Output messages therefore are described by both type and destination, in addition to parameters.

1.19.3 Handling of typical actor behaviour and errors

Having extended the existing data model based on the discussion above it is time for discussing if this new model has necessary support for describing typical actor behavior and typical state transitions. Starting with typical actor behavior; how is basic support functions like actor plug-in and plug-out handled? As pointed out in section 2.5.7, the existing approach suggests that actor plug-in should be handled automatically if the necessary role-session is not present upon sending an output message. However, using this approach, how may one specify what role is requested, and such things as location or environment discussed for service component requests above (3.6.2)? Because of this problem, actions are chosen as the way to specify basic actor behavior. But still problems may arise. This is due to that actor plug-in requests may not always result in an actor being provided. Errors may occur, and these may need to be handled in specific ways. To make it easier to handle errors the concept of error state is added. This is shown in Figure 36. An error state has many of the characteristics of a state, the change being the way one enters the state and starts a transition. Error states may be entered by adding an element called <error> to actions and output messages. This is shown in Figure 37. Only the elements relevant to the discussion of error states are included. As an example, if one is to request an actor plug-in one may want to send an error message to another actor if the actor plug-in for some reason can not take place. One may then specify that in such cases one should go to errorstate_A with the error message NoActorPlugIn. This will result in a jump to errorstate_A where one will immediately start on the actions and outputs specified for the error input NoActorPlugIn.

[image: image31.png]action

eth_narme

tore_retum

output

Figure 35: Description of actions and outputs

Actions and outputs are specified related to a transition. They may both contain parameters. In addition one may specify where to store the result of an action and where to send an output message.

[image: image32.png]emorstate

rorinpat

e

action

nedt_state

output

@t

Figure 36: Description of error states

Error states are defined by name and may contain more than one input message. Error messages have a type defining the error that is be handled. For each error input internal data may be specified, actions and output messages described and a next state given.

Adding support for error handling of course makes it easier to handle errors, but it also makes the manuscripts easier to understand for humans. This way the main behavior of the role is described in one way using ordinary states, while the actions that only should be taken in special situations are described elsewhere. The human reader may then first concentrate on the main behavior, without having to understand all the possible error states that may occur.

[image: image33.png]output

action oy
[
1 T
01 [0
LK 3
T 4
1 1
oo smorsiae] aromeg

Figure 37: Description of how one may enter an error state

Error states may be entered from actions or output messages. If an error is to be handled the <error> tag is included in the XML description together with a specification of an error message and the error state where the error will be handled. If an error occurs the actor will immediately go to this error state and start performing as specified there.
1.19.4 Including support for decisions

Internal actions may be of different types. Specification of actor plug-in, plug-out and similar has already been mentioned as a range of use. Other typical example applications are setting of variables calculations and decision making. However, to make handling of decisions easier to specify some support may be needed. This section proposes to include sub transitions into manuscripts. Including sub transitions gives the possibility to describe parts of a transition in another place. This gives greater flexibility when wanting to describe different actions, outputs and next states based on for instance the value of a variable. Actions may then specify different sub transitions for different values, and make sure a jump to the proper sub transition is made. The description of sub transitions is shown in Figure 38.

[image: image34.png][subtransition|

action

output

ext_state

wta

Figure 38: Description of sub transitions

Sub transitions are identified by name and may contain internal data, specifications of actions and output. In addition they must specify the next state.

After a jump to a sub transition one will start executing any action specified there immediately. No input message is specified. However all elements available at a normal transition is also available at a sub transition. This means that sub transitions may have internal data, and may specify actions and outputs. In addition the next state must be included. After executing a sub transition there will be no jump back to the origin transition. Any behavior specified after the action making the jump will therefore only be performed by actors not making the specified jump.

1.19.5 Description of the final model and special symbols

Figure 39 shows the manuscript with all its main components after the inclusion of sub transitions and error states. Now all elements of the new model has been included, however one may need to include symbols that are to have a predefined meaning Imagine using the proposed XML structure to describe an initial state. This state will have a transition, but no input. One possible way to solve this is to let a special message name represent this special case. As introduced in section 2.5.7, [17] proposes to use the message name INITIAL_TRANSITION in such cases. One may also need to refer to oneself, i.e. the node of the actor running the manuscript, the message just received, and its parameters, or messages that are received, but not specifically handled by a transition. One possible way of doing this is to refer to the node where the running actor is installed as THIS, the message just received as INPUT_MSG, and correspondingly refer to its parameters as INPUT_MSG. <parameter_name >. Unhandled messages may be referred to using the message name UNDEFINED. This is just a proposal, several other solutions could have been chosen instead. However, this is the symbols that will be used in the examples provided in this work.

[image: image35.png]manuscript

ate

wta

int_state

[eubtransition]

omorstate

Figure 39: Representation of manuscripts including error states and sub transitions

Descriptions of sub transitions and error states are included in the manuscript in the same way as descriptions of states.

Having described a new proposal for a data model to represent manuscripts, a few remarks need to be made about actions. First, since transitions may include more than one internal action, the order of which these are to be performed should be clear. In this work the order of which the actions are represented in the manuscript is also the order in which the actions are to be performed, i.e. the first action is to be performed first. However, another possible solution is to include this information in the description of each action. Actions also need to be specified somewhere. This could be done in the manuscript, in some database specific for the play, or in a common database. As mention in section 2.5.7, [17] recommends using a common action library for all plays. This recommendation still stands.

From this discussion the new model proposed extends the current model with better support for error handling and decision making. In addition the description of outputs is extended to support several output messages in one transition, and to allow for specification of parameters in output messages. The description of parameters in actions is also extended. Actions may now have several input parameters, and the value of these can be described. Actions may also be specified to store the result of the action in a variable.

1.20 Summary

Based on the already proposed data models the work presented proposes to add more functionality and provides examples on how this may be done. The biggest changes may be found in the models proposed for configuration rules and for manuscripts. The changes of the other models are in high degree a consequence of changes in these models. In addition a discussion on capability and status description is given that may be used as a basis for further development of the existing models for describing such information.

Example Scenario

Section 3 introduces new or extended data models that may be used to describe different types of information needed in a TAPAS system. In this section these new models will be used on an example scenario based on the application TeleSchool.

1.21 Introduction to TeleSchool

References: [20, 32]

TeleSchool is an example application built to demonstrate the use of PaP. An implementation of the application already exists that builds on the Basic Architecture explained in section 1. As the name of the application indicates, the functionality of the application is related to schools and network based learning.

In TeleSchool students and teachers attaches to a school to get access to services. The services provided are utilized to perform real time lectures, review stored lectures and to allow communication between students and teachers. The services may include distribution of multimedia communication.

Four different roles have been defined for the play real time lecture. These are shown in Table 3. In the TeleSchool implementation each of these roles are represented by a Java class containing a description of the role’s manuscript, and information related to role specifications are specified when requesting actor plug-ins (section 1.3.1). However, mostly requirements to location are included. Other requirements will therefore be added in the example scenario provided here. The same goes for configuration and reconfiguration rules. Descriptions of these types are hardly present. For more information on the current application the reader is referred to Appendix G.

	Role
	Description

	ShoolRTLServer
	Provides functionality specific for real time lectures.

	SchoolServer
	Defines the behaviour of the server for all clients running TeleSchool.

	SchoolClient
	Defines the behaviour of students and teachers.

	SchoolUserInterface
	Presents the user interface for the students and teachers.

Table 3: TeleSchool roles

These four roles are needed to perform a real time lecture

1.22 Describing a play

Before one can start to describe a scenario based on an application one does need to describe the application itself. In TAPAS applications come in form of plays. Plays are partitioned into roles having a defined behaviour. Describing a play therefore involves specifying the behaviour for each role. Applications may also have requirements relating to the environment and configuration. Specifying such requirements is important to make sure the application will function as intended, so is specifying what will happen if requirements are not fulfilled or if errors occur.

As will be clear from the earlier discussion of TAPAS concepts (2.2), manuscripts, role specifications, play configuration rules and play reconfiguration rules are the data units used for representing the information described above. In this section, parts of a possible description of the play TeleSchool are provided.

1.22.1 Manuscripts

Starting with manuscripts, this is the data element used to describe role behaviour. In TeleSchool four roles are needed to run a RealTimeLecture: SchoolClient, SchoolServer, SchoolRTLServer and SchoolUserInterface. In this section, parts of the manuscript for the role SchoolClient is provided using the data model proposed in section 3.7. The full representation of this manuscript can be found in Appendix H.

The manuscript of the role SchoolClient contains many different states. Figure 40 describes one of the states using SDL (for an introduction on SDL the reader is referred to [8]). From the description provided in the figure one can see that this state handles two message types: RealTimeLectureEventInd and CancelEventInd. This text will concentrate on the handling of the message RealTimeLectureEventInd. The behaviour resulting from the reception of this message is described using XML in Figure 41.

[image: image36.png]DCL curentUser String;
DCL cunertSchool String;
DCL cureriCourse String;
DCL cuneriLedure St
DCL cunertTeacher Sting;
DCL cunertStudent Stimg;

stivatServiceType

RealTimeLechreE vertind
> course, lecture, tescher, tuderi) > CancelEventin
WindowClose(
CorsesndL ectures)
0

currentCourse:

curtentLedture:—lecure,
curtentT eacher eacher,
curtentStudent =student

oth st
alse andteacher o
seledted
WindowessageRetiest
Wodoncloss(CEsadtlyane of Teacher or
Cousssaretectues) Stucdert mustbe selectect)
T0
Sehoallserinterface SchoslUssrinterface

RTLStarR eq(cumertUser,
curtentSchon,
aurentCourse,
currentLecture,
curtentTeache,
curtentStudert)
0

SchoaiServer

D

Schoallserinterface

WindowNewtVarkTaDo)
0
Schoallserinterface

Gt TypeSelect

Figure 40: SDL description of parts of the manuscript of the role SchoolClient

This figure shows the transitions specified for the state stWaitServiceType. What transition to make depends on the input signal.

	1

<data>

2

<name> v_currentSchool </name>

3

<type> String </type>

4

</data>

5 ...

6

<state name="stWaitServiceType">

7

<input msg="RealTimeLectureEventInd">

8

<data>

9

<name> v_temp </name>

10

<type> boolean </type>

11

</data>

12

<action>

13

<meth_name> setVariable </meth_name>

14

<param>

15

<name> value</name>

16

<value> INPUT_MSG.course </value>

17

</param>

18

<store_return> v_currentCourse </store_return>

19

</action>

20 ...

21

<action>

22

<meth_name> bothSelected </meth_name>

23

<param>

24

<name> var1 </name>

25

<value> v_currentTeacher </value>

26

</param>

27

<param>

28

<name> var2 </name>

29

<value> v_currentStudent </value>

30

</param>

31

<store_return> v_temp </store_return>

32

</action>

33

<action>

34

<meth_name> conditionalJump </meth_name>

35

<param>

36

<name> variable </name>

37

<value> v_temp </value>

38

</param>

39

<param>

40

<name> value </name>

41

<value> true </value>

42

</param>

43

<param>

44

<name> gotoSubtrans </name>

45

<value> TeacherAndStudent </value>

46

</param>

47

</action>

48

<output>

49

<msg type="WindowClose">

50

<param>

51

<name> windowType </name>

52

<value> CoursesAndLectures </value>

53

</param>

54

<dest> v_interface </dest>

55

</msg>

56

<msg type="RTLStartReq">

57

<param>

58

<name> user </name>

59

<value> v_currentUser </value>

60

</param>

61

...

62

<dest> v_server </dest>

63

</msg>

64

</output>

65

<next_state> stWaitForServer </next_state>

66

</input>

67 ...

68

</state>

69

<subtransition name="TeacherAndStudent">

70

<output>

71

<msg type="WindowMessageReq">

72

<param>

73

<name> message </name>

74

<value> Exactly one of Teacher or Student must be selected </value>

75

</param>

76

<dest> v_interface </dest>

77

</msg>

78

</output>

79

<next_state> stWaitServiceType </next_state>

80
</subtransition>

Figure 41: XML description of parts of the manuscript of the role SchoolClient

This figure illustrates many of the important features of the new data model for manuscripts. Sub transitions may help in specifying decisions. In addition data may be specified by value, parameters may contain both name and value, parameters may be used in output messages, and several output messages may be sent in one transition. The full description of the manuscript may be found in Appendix H.

From these descriptions the first action taken upon reception of this type of message is the storage of parameter information. In the XML description this is done using an action setVariable that takes a parameter as input and stores the value of this parameter in the data element specified by <store_return>. This must be done for every parameter of the input message that should be stored. Then a decision should be made. This is done to ensure that no one can be a teacher and a student at the same time. The actions taken will depend on the result of this decision. In the XML description this decision is made using two actions. The first one is named bothSelected (line 21 – 32) and is used to check if the user claims to be both student and teacher. It takes two parameters as input specifying the two variables that is to be checked. The result is a boolean that is stored in the variable specified by <store_return>. In this case this variable is local to the transition. This variable will now have the value true if both teacher and student have been selected, false otherwise. After this action is finished another action named conditionalJump (line 33 – 47) should be taken. This action takes a variable name and a value as an input together with the specification of a sub transition. If the input variable has the value specified by the value of the parameter named value, a jump will be taken to the sub transition. In this case a jump will be taken if the action bothSelected evaluates to true. Then the actor should start performing as specified in the sub transition named TeacherAndStudent. This sub transition should be found somewhere else in the manuscript, in this case in line 70 to 81, where it specifies the sending of an error message and which state to enter next. However, if the action bothSelected has evaluated to false nothing will happen in the action conditionalJump. The actor should then continue performing as specified after this action. In this case that means it should send a message to an actor playing the role SchoolUserInterface requesting it to close the window of type CoursesAndLectures. In addition it should send a message to an actor playing the role SchoolServer to request the start up of a real time lecture. In XML this is specified using output messages that may have their own name and destination, and their own parameters. At the end the actor is said to enter the state stActiveService.

After studying this example the reader should have got an impression of how manuscripts may be specified using the proposed XML based data model. Many of the features added in section 3.7 have been shown, this includes describing data by value, specifying parameters that contain both name and value, usage of parameters in output message, and sending several output messages in the same transition. The usage of sub transitions has also been illustrated by the example. Combined with actions, this feature makes it easy to specify alternative behaviour. Without this feature one would need to use more complicated actions that could specify several behaviour scenarios. Alternatively, actions would need to specify output messages for each scenario. These messages should then be sent to oneself and received in another state created to handle these inputs. Either way handling of decisions would become quite messy.

Usage of error states is not included in the above example. However, Figure 42 shows how this feature may be used to handle errors. The first part of the figure shows an action specified in the state stInitUserInterface that describes an actor plug-in. If an error occurs during this plug-in the action specified by the tag <error> will be taken. This means that the actor will start performing according to what specified by the error state stInitUserInterfaceError and the error message SSPluginError. As one may see from the second part of the figure this involves sending an output message telling about the error that has occurred. For more examples the reader is referred to Appendix H.

	81

<action>

82

<meth_name> ActorPlugInReq </meth_name>

83

<param>

84

<name> role </name>

85

<value> SchoolServer </value>

86

</param>

87

<store_return> v_server </store_return>

88

<error>

89

<goto_errorstate> stInitUserInterfaceError </goto_errorstate>

90

<errormsg> SSPluginError </errormsg>

91

 </error>

92

 </action>

	a) Action where the error occurs

	93

<errorstate name=”stInitUserInterfaceError”>

94

<errorinput type=”SSPluginError”>

95

<output>

96

<msg type=”WindowMessageReq”>

97

<param>

98

<name> message </name>

99

<value> Failed to start common School Server </value>

100

</param>

101

<dest> v_interface </dest>

102

</msg>

103

</output>

104

<next_state> stInitUserInterface </next_state>

105

</errorinput>

106

</errorstate>

107

	b) Error state where the error is handled

Figure 42: XML description illustrating error handling

The first part of this figure shows an action requesting the plug-in of the role SchoolServer. If an error occurs during this plug-in the performing actor is specified to jump to the error state stInitUserInterfaceError with the error message SSPluginError. The description of the error state and the handling of this error message is shown in the last part of the figure.

To summarize, having specified SDL diagrams or other types of state machine representations, one may translate these into the XML description proposed in section 3.7. Internal behaviour is described using actions. These should again be described to ensure that the intended behaviour is fully understood by the actor performing according to the manuscript. Here the action library introduced in section 2.5.7 and 3.7 comes on stage. Inputs and outputs from state charts may be directly mapped to inputs and outputs in the XML description. The same goes for definition of the state to enter next. Data can also be directly mapped by name and value, the only difference being that variables can be local to a transition. Local data should normally be used only in relation to actions as shown in Figure 41. As may be seen from Appendix F the proposed model is able to specify behaviour needed by a real application. To specify the application TeleSchool fully, the other roles should be described in the same way.

1.22.2 Role specifications

Having specified the behaviour of the roles it is time to specify their requirements. Each role should get a role specification for every environment type where the play may be run. In this section a role specification for the roles SchoolClient and SchoolServer is described. These role specifications apply to the environment type desktop. Other role specifications should be described in a similar way.

Figure 43 shows an example role specification for the role SchoolClient within a desktop environment. As one can see from the description, the node that is to install an actor running this role needs to have a harddisc with free space greater than or equal to 5 GB. In addition a LAN connection is required which has a bandwidth greater than or equal to 10 Mbps, and a utilization less than 20 percent. In addition the measured average delay of this connection should not be greater than 60 ms. A video player is also required. This video player should have a sampling rate greater than or equal to 40, and a horizontal and vertical resolution better than or equal to 640 and 480 correspondingly.

The role specification for the role SchoolServer is shown in Figure 44. Comparing this to the role specification for the role SchoolClient explained above one can see that a SchoolServer have no requirements for a video player. However, the requirements to the available harddisc and LAN connection are stricter. A harddisc with free space greater than or equal to 30 GB is required, and the LAN connection needs to have a bandwidth greater than or equal to 100 Mbps. In addition the utilization of this connection should not be greater than 25 percent, and the average measured delay not reach 30 ms.

The role specifications explained here may easily be extended to include more requirements. All capabilities and status types that may be described in the capability and status model (2.5.1 and 3.1) may also be used to describe conditions.

[image: image37.png]Ador rodelnstaling S nodeX AP ASHode]
. 1
. o /Rapas orafelesshoolSchoolClirt o]
rolepavin
1
operatingEmironment - fapes crajernidesiion _EmironmentTyge]
1
-—

1 [ESmoX 1A ASliode]

-
. ¢ 1
4 "
Harddso idoPiaer LiiConnedion]
, T 1
T 1 1

1 [¥eaChamderstics
—e{Fremngrate Tege]

usecspacs - String

erage rteger

e
FESr T e s
orriaRestion iegr < ST (B E. e <SSR Lo aamrecoty: et 55
ermpesoon: etgr e ey

35 esspace:
135 bandicth==10]
R ool
35 delay==60]
[35:sampRate>=40]

Figure 43: Example role specification for the role SchoolClient

The role SchoolClient requires the capabilities harddisc, video player and LANConnection with the corresponding characteristics specified.

[image: image38.png]nodeinstalling SinodeX T4P ASHose]

[fapas orafteleschod SchoolServer o]

releplanin
1
operatingEnranment o /Rapas oralemtesidop ErironmentType]
1
-—
1 [{Snotex TAPASHo|
—f -
1. e
Haridiss 1 [LANCoecton]
1
! 1 1
1
DiscCapaci Bartwidh Delay
2 Integer e - Trteger [rverage - Teger
it String it - String fnin Ineger
ecspace - Sting JpercentUtization nteger fnax: Integer
ssedispas Sting laverageMeasuredDelay : Integer
Jnit - Sring

195; reespace:
{35 bandvict==100]
35 builtizaon<=23]
155 delay==30]

Figure 44: Example role specification for the role SchoolServer

The role SchoolServer requires the capabilities harddisc, video player and LANConnection with the corresponding characteristics specified.

1.22.3 Play configuration rules

When each role has been given its role specification, play configuration rules should be stated that describes the requirements to the play as a whole. Figure 45 shows an example configuration rule. In this rule only the roles SchoolServer and SchoolClient is described to be a part of the play. This is done to keep the example simple and then easier to understand. In real configurations normally all the roles of the play will be included.

Studying the example rule shown in Figure 45 one can see that the head of the clause describes a configuration of the play TeleSchool at a small scale. Two types of role realisations is described, and the configuration is said to be a response to a service request. The configuration is also related to a specific environment type. Studying the body of the clause one will obtain the conditions for this described configuration to be possible. The service request is described with some of the information it includes. The environment and play version of the head should be the same as specified by this request, and the scale specified for the role SchoolClient should be somewhere between one and fifteen. Any configuration specified by the request should also be a part of the final configuration.

Other conditions not related to the service request are also stated. One of them says that there should be no existing configuration for the same play, environment and scale. Other conditions states that any actor playing a role being a part of the play should be installed on nodes that fulfil the role specification for the role at the specified environment. Preferences on which actors to choose are also stated, together with specification of the number of roles that could be a part of the play. A condition also specifies that there should be no more than two actors playing the role SchoolClient on every node.

From this example one should get an impression of how configuration rules may be specified. More complex rules may be specified adding more roles and more conditions.

[image: image39.png]|t Aapas ora/scale/small - S caleT voe|

Fite-iapes orafeleschonl 10 Piay]

reggnronmen|

1

1 L seae 5 e ErvionmentT el
operatingEnrorment|
Jeyversion
1 .
E-piay PlavConfourdion]
. [—te0n8T0 b5 requed - ServiceR equed]
! 1
1
rleReslission_|_rdleRealisstion
1 1
[EE-Schoaiserver] E-SchoolClerte]

[pSreques_ServceRequed]

reaseale.

reaConfguration

i fages orteleschool 10 Play]

[BS.eny_ EnvironmentTye|

[BEaCont PrefeneaConiourstion|

B

fBS reuScole: Scaledfole]

rolelians

[T S

] 1 .

playversion

i fapes oraySchoolCliert Rl

rumberinstances.

operatingEmironment|

PlavConfourdion]

SSnumber

[ifieifapas orafeleshod 10 Play]

5.0y _ErvronmentTuge]

[iezapas orafscalersmal_ScaleT]

[image: image40.png]rolePlaing fitoritapas oroiSchoolS erver - Role]

operatingEmironment.

I
w 555 Node | TAP AShore

5 20y EmiromentTyge]

E-tompSchaolClentsel]

olep layiy

i fapes orarschoolClient_Fale

operatingEmironment

noceinstalin 5:SChlode T AP ASliode]

5 ny EnvrenmentTune]

LT(5S:number, <num> 15 <hum=)
GT(FSimumber, <rum> 1 <ium>)

Selectinstance(

SelectSubsel(

<preference
<PROPERTY NAME ="LANConnectior

<preferences,

SEtempSchosiSenerSet,

$E SchodServer

<preference>
max{<PROPERTY NAME="DiscCapacty freespace"s:

<preference=,

<min 1 <imins,

max-Snumker <,

SEtempSchoolClieriSet,

$E SchodClertSe)

mastiumber ActorsOnilode(hiy: apas orgfSchoolCliet, 2)

Member(3E -reaCorf. $E-play)

Figure 45: Example configuration rule for play TeleSchool

A configuration rule for version 1.0 of the play TeleSchool is specified. The configuration is of small scale, and its configuration depends on information provided in the service request requesting the play and on the nodes available.

1.22.4 Play reconfiguration rules

Handling trouble is an important part of every application. To specify how this should be done an application will probably need to specify several reconfiguration rules. In this example scenario only one rule is specified. Other rules may be specified in a similar way using the examples in Appendix F.

Figure 46 shows an example reconfiguration rule. The action specified is a response to an insufficient capability report stating that an actor playing the role SchoolServer is experiencing capability trouble. If in such a situation there exists a node that may play the role SchoolServer the rule states that the actor currently playing this role should be relocated to this node and continue performing there.

[image: image41.png]rolePlahing S reconRole Role
reconfiguinghdor E reconiactor adia] 1

e | . .
T

.
g e e ;

1

respenseTo

SrepoiD

5 roporlD - InsufidertCapahiltRepor]

insuficientCapabityador
1

1 [Eecnitclar ador]

1

1 |nodeintating loperatingEnrcnment

olePlayiny
i 4 1

iz Pl sl Thpan| (B Euementer]

4 1
actor padelnaliog S newhlode - PaPNode]
—l—m\e?\wm;
5 reconfRcle ok
, Sremnfoe fok
operatincEmironment S enEnirormertTopd
1

mermber($S: reconfRole, hitp:itapas org/SchoalServer)

Figure 46: Example reconfiguration rule

The rule specifies how to handle an insufficient capability report where the actor in trouble is playing the role SchoolServer. If another node is able to install the actor, the actor should be relocated to this node.

1.23 Describing the environment resources

Having specified all manuscripts, role specifications, configuration rules and reconfiguration rules of the play it is time to start performing the play. However all plays or applications will be run in an environment having certain characteristics. This section will explain an example environment where TeleSchool is to run. In the description the capability and status model of section 3.1 is used.

The environment where TeleSchool is to be run is described in Figure 47 and consists of three nodes: nodeA, nodeB and nodeC. As one may see from the figure, nodeA and nodeC is quite similar. They both have a large disc capacity and a fast LAN connection. However, the utilization of the resources, and the delays experienced are different. NodeB, however, do not have a harddisc and a LAN connection as fast as the two other nodes, but on the other hand it contains a video player. Such a player is not present on any of the other nodes.

[image: image42.png]lA_d_DiscCapacty

22 - Infeger - 100
it String = "GB" 1

eospace - Siring = 60 1

lan el Delay.

oA Hardidisd]

werageMeasurecDelay Irteger = 50

it String = 'ms”
g e
o e bw: Bandivict

Tue* rteger = 10

i tagas orairoden TAPASHiods| it Strng
ercertLi

I
1

odeA LN _LANCornedion|

[DiscCapacty

lanA bw: Bandvidth lan del Dele

lpercentutiizaton : Integer = 20

[ooge - Hareiss)

(g
i)

[ieza0as oraihedeR AP AStiod]

[- 1
[fescpace. String =30

1
1
odeC il Hardliss] |:sedspace String = 70|

B v VideoPlayel]

5 v _VideoCheradersiiy]

eamgRAe rieger 0—‘
1 [rodeC_ LAN: LaNComectior] T
feeB_sc_ AuioCharacterstis|
[sempingrate rteger = 44
.\ ; f pinr =
1
lenC_de _Delay

\6B_po_ PidureCharacterslics
erizrialResduion Integer = 690|
eticalResalion: Integer = 430

T o i

0

Figure 47: Example environment where TeleSchool is to be run

The environment consists of tree nodes each having its own capabilities and status.

The environment specified is a rather simple one. More complex environment may be specified by adding more nodes and more capabilities and characteristics. Status of nodes may also be described, including which actors are currently installed on the nodes.

1.24 Running a play

Having specified an application and an environment it is time for action. The first thing that would happen if anyone wants to start running the application is the sending of a ServiceRequest requesting the play. Such a request is shown in Figure 48.

	108 <ServiceRequest rdf:about="http://tapas.org/msg01">

<sender>

<actor rdf:about="http://tapas.org/actorA">

<rolePlaying rdf:resource="http://tapas.org/roleR"/>

<nodeInstalling rdf:resource="http://nodeC.tapas.org"/>

</actor>

</sender>

<dateTime> 21/12/2003 GMT 15:02:00 </dateTime>

<playRequesting rdf:resource="http://tapas.org/TeleSchool_v1.0"/>

<environment> http://tapas.org/env/desktop </environment>

<preferredConfiguration>

<actor>

<rolePlaying rdf:resource="http://tapas.org/SchoolServer"/>

<nodeInstalling rdf:resource="http://nodeC.tapas.org"/>

</actor>

</preferredConfiguration>

<scale>

<scaledRole rdf:resource="http://tapas.org/SchoolClient">

<number> 10 </number>

</scaledRole>

</scale>

</ServiceRequest>

Figure 48: Example service request

The play TeleSchool version 1.0 is requested. The play is expected to have around ten SchoolClients, and the role SchoolServer is requested to run at nodeC. A desctop environment should be used.

This example service request requests the installation of the play TeleSchool version 1.0 for a desktop environment. It says that it is expected that the number of SchoolClients will be somewhere around ten. In addition it requests the SchoolServer to be installed on nodeC.

ServiceRequests are sent to the Configuration Manager where the proper actions will take place. Upon reception of this request the PlayRep will be searched for play configuration rules that match the request. In this case the play configuration rule specified in Figure 45 will be the one selected. This is because it is a rule for the requested play with the correct scale. And in this example no TeleSchool configuration already exists. Therefore the condition related to already existing configuration is fulfilled.

Studying the selected configuration rule one can see that several choices need to be made before a valid configuration has been created. First the nodes fulfilling the role specifications for the roles SchoolClient and SchoolServer must be created. Comparing the role specifications described in Figure 43 and Figure 44 with the environment specified in Figure 47 one finds that nodeB is the only node that can run the role SchoolClient since it is the only node containing a video player. However, that node does not have enough disc space and bandwidth to run any actor playing the role SchoolServer. Such an actor will need to be installed on nodeA or nodeC. Based on these findings one can make the decisions on where to locate the different roles. Criteria for making such decisions are specified in the configuration rules. They say that when selecting location for SchoolServers, nodes having the greatest amount of free space on the disc should be preferred. Comparing nodeA and nodeC one finds that nodeA should be selected. However, such a decision will not fulfil the request of the sender of the service request. Since this message specifies nodeC as the preferred location of the SchoolServer, nodeC will be chosen as the final location to ensure fulfilment of the last condition in the configuration rule. Regarding the role SchoolClient the configuration rules states that somewhere between one and ten actors should play this role, and that no more than two actors playing this role should run on the same node. Since only one node is able to play this role one or two SchoolClients should be installed. In this example, installing one actor playing this role is chosen.

Based on the discussion above a configuration is chosen where an actor playing the role SchoolServer is installed on nodeC and an actor playing the role SchoolClient is installed on nodeB. Figure 49 shows the resulting configuration plan. For illustration purposes the actor that is to play the role SchoolClient is a completely new actor, while the actor that is to play the role SchoolServer already exists, but is not currently playing any specific role. The configuration plan will be sent to the ServiceInstaller being responsible for implementing the plan.

	109 <configurationplan>

<configuredNode rdf:about="http://nodeB.tapas.org">

<configuredActor>

<actorStatus rdf:about="http://tapas.org/status/none"/>

<newRole rdf:about="http://tapas.org/SchoolClient"/>

</configuredActor>

</configuredNode>

<configuredNode rdf:about="http://nodeC.tapas.org">

<configuredActor rdf:about="http://tapas.org/actorB">

<actorStatus rdf:about="http://tapas.org/status/waiting"/>

<newRole rdf:about="http://tapas.org/SchoolServer"/>

</configuredActor>

</configuredNode>

<sender>

<actor rdf:about="http://tapas.org/actorA">

<rolePlaying rdf:resource="http://tapas.org/roleR"/>

<nodeInstalling rdf:resource="http://nodeC.tapas.org"/>

</actor>

</sender>

</configurationplan>

Figure 49: Example configuration plan

The configuration plan says that nodeB should install an actor playing the role SchoolClient, and that actorB currently installed on nodeC should play the role SchoolServer.

Now two actors are involved in the play performing according to their given manuscripts. This may include requesting new actors, performing role session actions and similar. However trouble may occur. Figure 50 shows a trouble report sent by the actor playing the role SchoolServer indicating that it is experiencing capability trouble. When this report is received by the Configuration Manager it will search PlayRep for related reconfiguration rules.

	110 <InsufficientCapabilityReport rdf:about="http://tapas.org/msg02">

<sender>

<Actor rdf:about="http://tapas.org/actorB">

 <rolePlaying rdf:resource="http://tapas.org/SchoolServer"/>

 <nodeInstalling rdf:resource="http://nodeC.tapas.org"/>

</Actor>

</sender>

<dateTime>21/11/2003 GMT 16:25:00</dateTime>

<insufficientCapabilityActor>

<Actor rdf:about="http://tapas.org/actorB">

 <rolePlaying rdf:resource="http://tapas.org/SchoolServer"/>

 <nodeInstalling rdf:resource="http://nodeC.tapas.org" />

 <operatingEnvironment rdf:resource="http://tapas.org/env/desctop"/>

</Actor>

</insufficientCapabilityActor>

</InsufficientCapabilityReport>

Figure 50: Example trouble report

This insufficient capability repors is sent by actorB because it is experiencing capability trouble.

In this case the Configuration Manager will find that the reconfiguration rule specified in Figure 46 applies. That rule describes a situation where an insufficient capability report specifies trouble for an actor playing the role SchoolServer, as is the case here. Then the actor shall be removed if another role is able to install the actor. A comparison between the environment described in Figure 47 and the role specification for the role SchoolServer specified in Figure 44 yield that nodeA can be chosen as a new location. Based on this it is decided to move the actor from nodeC to nodeA.

The relocation of the actor will be specified in a reconfiguration plan and sent to the Service Reconfigurator responsible for implementing the plan. The resulting reconfiguration plan is shown in Figure 51.

	111 <reconfigurationplan>

<reconfiguredNode rdf:about="http://nodeC.tapas.org">

<configuredActor rdf:about="http://tapas.org/actorB">

<actorStatus rdf:about="http://tapas.org/status/playing"/>

<reconfigurationAction rdf:about="http://tapas.org/relocation">

<newRole rdf:resource="http://tapas.org/SchoolServer"/>

<newNode rdf:resource="http://nodeA.tapas.org"/>

</reconfigurationAction>

</configuredActor>

</reconfiguredNode>

<sender>

<actor rdf:about="http://tapas.org/actorB">

<rolePlaying rdf:resource="http://tapas.org/SchoolServer"/>

<nodeInstalling rdf:resource="http://nodeC.tapas.org"/>

</actor>

</sender>

</reconfigurationplan>

Figure 51: Example reconfiguration plan

This reconfiguration plan specifies that actorB should be moved from nodeC to nodeA.

1.25 Summary

This example scenario shows how the models presented in section 3 may be used. Parts of a play have been described using the data models presented for manuscripts, role specifications, configuration rules and reconfiguration rules. Some guidelines for use have also been given. An environment consisting of nodes having capabilities and status has also been described. In addition an example scenario has been run using the play definitions and environment descriptions presented. This way the reader hopefully has got a greater understanding of how the different models are related, and how the information they contain is used in real time.

Capability Installation and Monitoring

Until now, representation of the information needed in a TAPAS system has been discussed. Models for representing capabilities and status have been introduced, together with models used for specification of requirements to capabilities and status. However, to be able to make good configuration decisions the configuration manager relies on getting access to updated information of this sort. Wrong or incomplete information may lead to configurations being impossible, or in most cases not optimal.

Different events may cause the need for updating of capability and status information. New nodes may join the TAPAS systems, new capabilities may be installed into existing nodes, or nodes may leave the system, or maybe stop functioning. In addition status of nodes may change during runtime caused by changing resource utilization. The number of actors and the types of actors running on a node may influence the demand for such resources. Changes in state may also occur.

One may take different approaches to solve this updating problem. One possible solution, as proposed in [1], is to have a monitor that listens to events that indicate changes in the system. Alternatively, the monitor may poll the nodes directly for information, or rely on the nodes to report events. One may also rely on someone manually updating the database when changes occur.

In this section the possible approaches that may be used to solve the updating problem will be introduced in more detail. Then these approaches will be discussed related to the events mentioned above causing a need for updates. Based on this discussion, some alternative solutions will be pointed out. The solutions provided should not be interpreted as recommendations, but more like proposals for further work.

1.26 Approaches to Monitoring

Above, several possible approaches to monitoring were mentioned. One of them was to have a monitor listening to events indicating changes in the system. Using this approach the monitor would work much like a network based intrusion detection system (IDS) [9] reading messages traversing the network. However, in stead of trying to look for signs on security attacks, it would try to look for signs on changes of status and capabilities. Using such an approach the location of monitors is becoming important. To be able to check as much of the messages as possible, the monitor should be placed so that it gets access to most of the network traffic. Maybe more than one monitor would be needed to get a total overview. Monitors working this way would need to be divided into two parts: a sensor that analyses the network traffic, and a management system that may act on the information, and that may be configured by personnel to change the behaviour of the monitor. [9]

As an alternative to the above approach based on listening to events, another approach may be taken that more actively involves the nodes that are to be monitored. Choosing this solution one would need agents that are able to collect information from one or more network elements and communicate this information to the manager responsible for providing this information to applications. This is illustrated in Figure 52. Choosing this approach, two different techniques may be used to retrieve information from the agents. One possibility is for the manager to poll the agents for information. Such a polling message may for instance be a request for special parameters or a search asking to report information that matches a given criteria. Another possibility is to let the agents be the one taking initiative to distribute information. In this case the agent may send periodic status reports, or send reports when significant events occur. These two approaches related to how agents and managers communicate may also be combined to get better robustness, reduce the amount of traffic or processing, or to get faster updates. What technique to choose depends on what characteristics is most important to the system. [24]

 [image: image43.png]Monitoring
application

Manager
function

Subnetwork
or Internet

Agent
function

Managed
objects

Figure 52: Recourses needed for monitoring objects

Monitor managers may use agent to monitor individual objects. Source: [24]

When using this approach to monitor faults some points need to be made. First, some faults may be hard to observe, and second, observations of faults may be attended with uncertainty. “Lack of response from a remote device may mean that the device is stuck or the network is partitioned, or congestion causes delays”[24]. Because of this, remote devices may be thought to be faulty without this being the case. To monitor faults several actions may be taken. Faults may be reported to managers, agents may respond to polling requests sent by managers, and a log of significant events and errors may be maintained. [24]

Using a manual approach to update capability and status information is also pointed out above as a possible solution. Such a solution would require less development effort. However, since this work is part of a research project working on dynamic PaP a more automatic approach would probably be preferred. Discussions on solutions based on this approach are included anyway to compare it to the more automatic approaches.

Monitors will need to run on physical components having a limited capacity. If the number of nodes in the system reaches some threshold value, the performance of the monitor may as a result be degraded. A final solution should therefore allow for more than one monitor to improve scalability. Adding monitors may also be desirable from a reliability point of view. [14]

The possible monitoring techniques described in this sections, and the points made, should be kept in mind during the more general discussion provided in section 5.2. The possible solutions discussed will need to have an implementation. This will involve creating components like the ones described here.

1.27 Monitoring the different update events

Having described the possible monitoring techniques in more detail, it is time to discuss how these techniques may be used for handling of the different events causing the need for monitoring. In this section the different events will first be handled separately, and then the discussion provided will work as a basis for suggesting some possible solutions to the overall problem. The discussion will be based on the framework presented in Figure 8, and the possible solutions will be described on a high level.

1.27.1 Installation of new node

When a new node joins the TAPAS system, one need to update the CSRep so that information on the existence of the node and the capabilities it provides are included in the database. Before a node may join the TAPAS system it must implement the support functionality of TAPAS. Currently this functionality needs to be installed manually. However, one may think of scenarios where nodes that already have this support functionality installed want to join a new TAPAS system. And in the future, possibly this functionality may be downloaded automatically.

Since the installation of the needed support functionality currently is done manually, one could just as well update the CSRep at the same time. This would not mean much extra work, but would cause a need to give all users of the system, or at least all users able to install a node, writing permissions to the CSRep. The users would also need to have knowledge of the offered capabilities of the node. Alternatively one may manually, while configuring the node, give away the address of the monitor. With this information the node may automatically send a message to the monitor informing of its existence and offered capabilities.

An alternative to this manual approach is to let the nodes obtain the address of the monitor automatically. This may be done in several ways. One possibility is letting the monitor publish broadcast messages at certain time intervals. The node joining the TAPAS system must then wait for such a message to be sent, extract the address and send a message to the monitor. Another possibility is to let the monitor listen for discovery messages from nodes. Such discovery messages could contain information of the address and capabilities of the node. Upon reception of such a message the monitor would then store this information in the CSRep and possibly send an acknowledgement back informing of its address. The last two options are illustrated in Figure 53. The first option is inspired by Apple’s rendezvous system [30], while the second option is inspired by the Jini discovery process [27].

In all the solutions presented so far the nodes are aware that monitoring takes place, and assist the monitor with information. However, the monitor may be able to keep the CSRep updated without relying on help from the nodes. When a new node is plugged into the system it will probably start sending some traffic. This traffic may be discovered by the monitor, thereby detecting the installation of a new node. Obtaining the node’s capabilities this way may, however, be more difficult. This information will probably never be sent on the network; instead it will be local to the node. A monitor searching through the packets sent will therefore not be able to extract such information.

From this discussion one may point out two possible solutions: Manually giving the node the address of the monitor, or letting the node find this address automatically in one of the ways illustrated. Manually updating the CSRep have some drawbacks relating to the knowledge and access needed, and just listening to events may not give all the information wanted. Of the two suggested solutions, which to choose depends on the requirements of the system. Manually obtaining the address is an easier solution, it needs little extra implementation work, and imposes no extra traffic in the network. However, such a solution makes it harder for nodes to join new TAPAS systems, and is not appropriate in environments where nodes switch systems often.

[image: image44.png]1 b a¥kes)

. brisdcasanitr_3

ki

TAPAS
system

ngitiosaatress caobitis)

=

Monitor

T iies)

e o

csm

cuemgiese

T —

O..
- B,
‘

g

s, apites) [

2 akror Sigesd)

TAPAS
system

.

2 ackrrior_ s

Monitor

3 uplzpote apatites)

ORI ————

1 donen e, capabities)

SEYE———

(=

Figure 53: Illustration of two possible ways for a node to automatically obtain the monitor’s address

In a) the new node listens for broadcast messages sent by the monitor. This way the monitor’s address is obtained. Upon reception of such a message the node sends a message to the monitor containing information on the address and capabilities of the new node. In b) the new node starts with sending a discovery message containing information on its address and its capabilities. The monitor listens for such messages. Upon reception of the message an acknowledgement is sent, possibly containing the address of the monitor.

1.27.2 Change in offered capabilities

Changes in a node’s capabilities occur when the node gets new hardware or software, and thereby new functionality. Changes also occur when functionality is removed. A special type of capability change is when a node is to be removed from the system. Thereby all capabilities are removed.

When a change in offered capabilities occurs it is important that the CSRep is updated to reflect the new situation. New capabilities need to get known so that they may be utilized by actors. Information on capabilities that has been removed also needs to get known so that no actors needing these capabilities will be instantiated on the corresponding node.

Changes in offered capabilities probably will not happen very often. Manually updating of the CSRep will therefore be possible in such situations. However, this solution suffers from the same disadvantages introduced in the former subsection: A lot of users will need access rights to the repository, and users will need to have information on what capabilities are offered at the node, what capabilities have been added and what capabilities have been removed. An easier approach, from a user’s point of view, would be to let the node itself automatically send this information to the monitor. This may be done using broadcasts, but a better approach would be to obtain the address of the monitor during node installation (see 5.2.1) and use this address to send the information directly to the monitor. This way less traffic is induced in the network. Another approach would be to send information on all capabilities at certain time intervals. Similarly, the monitor may poll all nodes regularly and ask for information on their provided capabilities. However, since changes in capabilities are assumed to occur seldom, many of the messages sent using this approach will probably contain no new information.

Obtaining information on changes in capabilities by listening to events will probably be just as difficult as obtaining offered capabilities this way (see 5.2.1). Using that approach will therefore not reveal all information needed. One of the other approaches should be chosen. Based on the above discussion the best solution would probably be to let the node automatically send an update to the monitor when changes occur.

1.27.3 Breakdown of a node

Breakdown of a node is different from removal of a node since a node that is breaking down will have no way to inform the monitor about the event. One must therefore rely on the monitor, the user or other nodes to detect this. One possibility is to update the database manually when the event is detected. However, the user detecting this will probably be the one using the node. To update the repository the user must therefore have physical access to the CSRep or to another node. This may not be the case. In addition not all nodes need to have users using them regularly. The time before a breakdown is discovered may therefore be long.

One other approach to solving this problem is relying on other nodes to discover the event. Probably the node will run actors that have role sessions to other actors on other nodes. These actors will then find that the actors can not be reached and send a message of type actor unreachable report (see 2.2.3). A monitor searching the network traffic for signs of capability events may detect this message. However, node breakdown is not the only event that may cause such a message to be sent. As an example, congestion in the network may cause the time before reaching an answer being long enough to conclude that communication has failed. Upon detection of an actor unreachable report the monitor must therefore in some way check the state of the node. This may be difficult to do without involving the node in some way. One possibility may be to decide that a node will be said to have had a breakdown after the creation of for instance three actor unreachable reports. However, this method is not fully reliable. If for instance congestion in the network has occurred, many actors may find that communication fails and send an actor unreachable report. And if the number of actor unreachable reports to be sent is set to high, an update will take to long. One solution solving many of these problems is to involve the node where the missing actor is to run. Upon detection of an actor unreachable report a polling message may be sent to the node running the actor. If this message is answered, everything may be said to be ok with this node, if not, one may conclude that the node has had a breakdown. This approach is illustrated in Figure 54. However, one still can not know for sure if a node breakdown is the reason one is getting no answer (see 5.1)

Instead of counting on other nodes to discover breakdowns, monitors may have timers telling when each node last sent a message to the monitor. Nodes may, either regularly or when changes occur, send messages containing updates on capabilities and status (see 5.2.2 and 5.2.4). If the time since the last update reaches a given limit a polling message may be sent to the node. If this message is answered, no action is taken. However, if no answer is obtained, the monitor may conclude that the node has had a breakdown and update the CSRep to reflect this situation. A similar approach may be used if a solution is chosen where the monitor regularly polls nodes for capability and status updates (see 5.2.2 and 5.2.4). If a polling message is not answered, the node is said to have had a breakdown.

[image: image45.png]2. Timeout

newnode Concludes that the actor is unreachatle

exstingnocte

3 aptrunreachatieRenort

TAPAS
system

4. Mnitr discovers
6. o) forUnreachatleReport

UnreachableRenor

9. gefhlode Confguration
Monitor CSRep Manager

7. Timeout

Concludesthat the node has had

a breakdown

T update

Figure 54: Illustration of how actor unreachable reports may be used to discover node breakdowns

When an actor finds that one of its communicating actors has become unavailable, it sends an a actor unreachable report. A monitor polling for events may discover this message. To check if the node running the actor is available the monitor sends a polling message to this node. If no answer is received the monitor concludes that the node has had a breakdown, and the CSRep is updated accordingly.

Variations on the possible solutions explained above may be made. If the monitor decides to send a polling message, and no answer is obtained, the monitor may decide to set the state of the node to unreachable and try to poll the node again. After the number of unanswered polling messages has reached a given limit, the node may be said to have had a breakdown. The reason for such an approach may be to reduce the uncertainty before the final update is made (see 5.1).

All solutions presented in this section should be possible, except from the manual approach. Which one is best depends on how updating of capabilities and status is done, since using a similar approach to the two problems probably will result in less development and implementation effort needed.

1.27.4 Status update

As pointed out in section 2.1 and 3.1.2 status information is information on the state of the system at a given time instant, and includes information on what actors are running, the state of nodes and a nodes capabilities, and information on resource utilization. This type of information will probably change quite often. Consequently, relying on manual update of such information may not be the best solution.

A monitor that listens for events will be able to get an overview of which actors are running, and where. Actors are created and given behaviour through the components service installer and service reconfigurator (2.2.5). By monitoring communication between these components and the nodes where actors are to install, the monitor will get all needed information on this event. If any actors should be plugged-in or plugged-out in any other way, such events always involve a director. If the director and the actors are situated at different nodes, all messages related to this will be available for the monitor to discover. One therefore does not need to involve the actors themselves to obtain this information. Information on operational state and resource utilization will however be harder to obtain. Such information will probably rarely be distributed via network, and will therefore not be available for monitoring using this approach. However, knowing which actors are running at each node, and what roles they are playing, one may check the role specifications of the roles, find their requirements to capabilities and status, and set the resource utilization based on this information. This would be much like reserving resources. Advantages of this approach are that actors that are allocated to nodes are assured they will get the capabilities required unless an error occurs. However, using this approach may lead to underutilization of a nodes resources, since an actor in most cases will not need to use all resources at all times. And since TAPAS have not stated specific real-time requirements, applications running using TAPAS will probably not suffer much if a node experiences that capabilities required is not available. In addition, information on states of nodes and capabilities will not be obtained using this approach.

Due to the limitations of event monitoring other approaches should be taken to solve the status updating problem. One possible solution is to let the node send status update messages whenever important changes in status occur. Important changes may be actor plug-in or plug-out, change in state of the node or its capabilities, and changes in resource utilization greater than a given limit. Letting nodes inform when changes occur, one makes sure updates are known immediately. However, if several changes occur close in time, this approach may lead to the sending of many status updates where maybe one could do. One variation of this approach therefore includes waiting a short time before sending a status update message to wait for more changes.

The problem stated above, referring to many status updates during small time intervals, may also be solved using another approach. In stead of letting nodes send status updates when special events take place, nodes could send status updates at regular time intervals. One disadvantage with this approach is that changes will not be known to the monitor immediately. However, the number of messages sent is limited. And since changes in status are thought to happen quite often, most messages will be thought to contain some new information. The problem with many superfluous messages introduced in section () is therefore less relevant in this problem domain.

In the solutions explained above the node is the one responsible for distributing updated information on its own state. Alternatively this responsibility may be placed on the monitor. The monitor may poll each node at regular intervals. Nodes will then send a status update message upon request. This solution is similar to the approach where the node sends updates at regular intervals. However, the number of messages is doubled.

Based on this discussion one may choose from three different approaches when trying to solve this problem:

· Nodes may send status reports when special events occur.

· Nodes may send status reports at regular intervals.

· A monitor may poll each node at regular intervals. Upon reception of such a message the node will send a status report.

Which one to choose depends on what qualities that are thought to be most important. The solutions may also be combined. One may for example choose to implement a solution where nodes send status reports at regular intervals. However, if important events occur status reports may be sent in-between ordinary status reports.

1.27.5 Possible solutions

For now, solutions have been discussed only related to one of the above stated problems. However, the solution selected for one problem has influence on the choice of solution for other problems. As an example, if one chooses to keep status updated by letting nodes send updates at certain time intervals, this may lead to a solution on the node breakdown problem where monitors poll nodes if status updates are not received during a given interval. This way one just needs to implement support for the agent solution described in section 5.1, not for monitoring network packets. In this section a few possible solutions to the overall updating problem will be pointed out.

Distributing changes in offered capabilities is a task similar to that of distributing status updates, the main difference being that status updates are thought to happen more frequently than changes in capabilities. However, one may include both of these information types in one message, a capability and status update. If this is chosen, the approach taken to distribute capability information should be similar to that of distributing status information. In the discussions above (see 5.2.2 and 5.2.4) three possible solutions for distribution of such information have been pointed out:

· Nodes may send reports when special events occur.

· Nodes may send reports at regular intervals.

· A monitor may poll each node at regular intervals.

Combining the two information types result in longer messages, however the total number of messages is reduced. This may therefore be a good solution.

Choosing this approach, one need to implement support for the manager-agent monitoring technology introduced in section 5.1. The agent will need to be able to collect information on the capabilities and status of a node. It will also need to have functionality for distributing this information to the manager. Based on the communication solution chosen either the manager or the agent, or maybe both, will need to listen for incoming messages.

In section 5.2.3 different ways to detect the breakdown of a node was discussed. One possible solution stated was to have the monitor listen for actor unreachable reports. However, this is the only problem where listening for events have been found to reveal enough information. Having this functionality implemented at the monitor just for the purpose of listening for one type of messages may not be worth the effort if other solutions exist. The two other solutions that have been pointed out make use of some sort of timer functionality. If a node has not been heard from during some time interval it is considered possibly down, and a polling message may be sent to confirm this. Alternatively, monitors poll nodes at regular intervals, and if a poll is not answered something is assumed to be wrong. These are in many ways easier solutions, compared to listening for events, when combined with the approach chosen for distribution of capability and status information. The agent needed at the client side will be implemented anyway, and there is no need for special sensor functionality and special locations of the monitors.

Based on the latest discussion three alternatives may be pointed out:

· Nodes send reports to the monitor when changes in capabilities or status occur. If a node breaks down the monitor will suspect this because nothing will be heard from the node during a given time interval. A polling message will be sent to the node, and if the message is not answered the node is assumed to be down.

· Nodes send capability and status reports to the monitor at regular intervals. If a node breaks down the monitor will suspect this because nothing will be heard from the node during a given time interval. A polling message will be sent to the node, and if the message is not answered the node is assumed to be down.

· At regular intervals the monitor polls each node for capability and status information. If a node breaks down the monitor will detect this when the node stops answering polling messages.

Which one to chose depends on what characteristics one finds most important. Advantages and disadvantages of the different approaches have been discussed above. One may also make combinations of these three approaches.

The three solutions stated all requires that the node knows that it is being monitored and knows the address of the monitor. This limits the alternative solutions for node installation. However, both the solutions recommended in 5.2.1 provide this address to the node. Any one of these may therefore be chosen. Which to choose depends on the requirements of the system. Probably, obtaining this address manually will bee a good enough solution. If this is not the case one of the two automatic approaches may be used.

To summarize, a solution is recommended that involves having an actor installed on each node responsible for gathering capability and status information and distributing this information to a monitor manager. The distribution of information may take place on the initiative of the agent, or upon request. The agent will know the address of the monitor from the installation procedure, either obtaining it manually or having used some automatic approach. Node breakdown will be detected by the lack of update messages. If one wants to reduce uncertainty related to breakdown, one may set the status of the node to unreachable some time before the node will be finally deleted. If the number of nodes in the system reaches a given limit, new monitors should be added to ensure performance is not suffering.

Parallel with this work, another approach has been made in solving the problems related to update. For more information on this approach the reader is referred to Appendix I. Here a comparison of the two approaches also can be found.

Discussion

In section 0 the goals of this work was stated:

1. To create data representations of the different data elements needed in the system. This includes capabilities and status, role specifications, configuration and reconfiguration rules, messages, plans and manuscripts. The representations should be human-readable and machine-comprehensible.

2. Handling of resource information should be discussed, i.e. how to keep status and capability information updated.

In this section the results presented so far will be discussed related to these two goals.

1.28 Data representation

Since data models already have been proposed for the data elements mentioned, the goal of the task was slightly changed to that of extending the existing models with new functionality. This has been done to some extent. Regarding manuscripts, the representation proposed has been extended with better support for error handling and decision making, together with greater freedom in specifying output messages, actions and data elements. The proposed model has also been used to describe role behaviour currently part of a java application, this way showing that it is able to meet the requirements of a real application. However, the model have not been tested, i.e. no full application has been described utilizing the model, and no computer tests have been done to see if the representation proposed work in an execution environment. The reason for this is mainly that testing such a model involves creating support for translating and executing manuscripts. An FSM-interpreter has already been created for the model already proposed. However, since this work has proposed changes and extensions to that model, the interpreter would need to be changed to be able to work with manuscripts described using the new approach.

Descriptions of configuration rules have also been extended to some extent. Proposals have been made that may describe new types of configuration conditions. These are just added to the already proposed model. No changes therefore need to be made in the selection engine, but its functionality may need to be extended to be able to handle the new types of constraints.

Regarding configuration rules, the discussion focuses on how to configure plays, and how to respond to service requests. However, no examples are provided regarding how to describe what should happen upon reception of service component requests. This includes where to install the actor, if it is possible to install the actor within the current play configuration, if the addition of one actor should cause other actors to be installed, and similar.

The extensions proposed for configuration rules are mostly described using UML. This language works well when communicating with humans, but machines will need other types of representations. The selection engine already developed for making configuration decisions use representations based on XML Equivalent Transformation (XET). The UML descriptions provided should therefore be translated into XET before any testing can be done. Information on XET may be found in [4].

Making extensions to configuration rules have resulted in some changes made related to role specifications and messages. However, except from these small changes, the models are similar to the models already proposed. No main changes have been made. In the same way, no big changes have been made to the descriptions of reconfiguration rules. More examples have been added, but these examples are based heavily on the already existing description of actor relocation actions.

Representations of plans, on the other hand, have got a new representation resulting from a discussion on what information is needed by service installers and service reconfigurators. However, no testing has been done revealing the relevance of the information included, i.e. if all information is needed, or if something should be added. This should be done before deciding on a model.

Regarding, capability and status descriptions no model is proposed, but a discussion provided on what information is needed and how this information may be structured. In its current form the results from this discussion can not be used directly. However, the ideas presented may be used to extend the current model based on CIM.

One of the requirements set to the data models were that they should provide both human-readable and machine-comprehensible descriptions of data. In this report, human-readability has been the main focus. Therefore UML has been used in great extent. However, not all models have been described fully in a machine-comprehensible way, although this would have been possible. Regarding human-readability, although the models described in UML and XML like ways, are human-readable, humans will need knowledge and training to understand the meaning of the models. This is much like learning a new language. One needs to know the words, and how the different words may be put together to provide meaning. The languages used are created with human-readability in mind, meaning that descriptions written in these languages will be possible to understand with an acceptable amount on effort.

To summarize, some of the models being a result of this work proposes extensions to the existing models resulting in more descriptive power. The models have, however, not been tested, and have only to some extent been tried on realistic examples. Some of the models also need to be further described for machines being able to comprehend their meaning.

1.29 Capability and Status Monitoring

In section 5 a discussion on how capability and status information may be kept updated is provided. The discussion provided is at a rather high level not suggesting any concrete solution to the problem. However, some recommendations are made. These recommendations may be used as ideas in further work on this subject.

Conclusion

This work proposes some extensions to the data models proposed in earlier work. One of the main extensions is adding support for fault handling and decision making into manuscripts. The types of conditions that may be described in play configuration rules have also been extended to include descriptions of environment, scale, and better support for handling of sets. These extensions have resulted in changes to other models. Configuration and reconfiguration plans have in some ways got a new representation based on a discussion of the information needed by service installers and service reconfigurators.

Regarding capabilities and status a discussion is provided on what information should be included in such descriptions and how it may be structured. However, the result of the discussion is not really a data model, but ideas that may be used to extend the current model. In the model proposed capabilities are integrated into plays by using role specifications. These specifications describe the individual role’s demand for resources. These specifications are again used in descriptions of configuration rules and reconfiguration rules. However, manuscripts have been chosen not to represent such information, in stead only behaviour descriptions will be provided here.

Using capability and status descriptions in configuration and reconfiguration rules involves using such information as a basis for decision making. To be able to make good decisions one therefore needs to rely on the information provided to be updated. This work proposes to have an agent installed at each node able to collect capability and status information and send this information to a monitor responsible for making this information available. The agent may send information upon request, when certain events occur, or at regular intervals. Combinations of these approaches are also possible. Installation of nodes and breakdown of nodes should also be handled. Installation of a node involves getting the address of the monitor. This may be done manually, or using a more automatic approach. Breakdown of nodes are detected as lack of messages from the node. A system may have one or more monitors depending on the number of nodes in the system.

Although many proposals are made in this work, none of the proposals have been tested. In addition most extensions made have not been fully specified, or tried out in on a real application example. And although many extensions are proposed, there probably exists many more possible extensions that could be made, and that may be useful. Based on these observations a list of future work is included:

· Study how the discussion of capabilities and status may be used to improve the current representation of this information.

· Translate the proposed extensions made in configuration rules, reconfiguration rules and role specifications into XET. Extend the functionality of the already created selection engine to being able to handle the extended descriptions. Run tests.

· Work on configuration rules that may specify responses to service component requests.

· Run tests using the plans proposed to check if the information contained is relevant and complete.

· Extend the current FSM-interpreter so that it can handle the changes made to manuscript representations. Describe all TeleSchool roles, alternatively the roles of another play, and run tests.

· Continue working on capability and status updating. Specify more low level solutions.

References

[1] Aagesen, F. A., Anatariya, C., Shiaa, M., M., Helvik, B. E. (2003). Dynamic Configuration of Plug-and-Play Systems.
[2] Aagesen, F. A., Anutariya, C., Shiaa, M. M., Helvik, B. E. (2002). Support Specification and Selection in TAPAS. IFIP WG6.7 Workshop and Eunice Summer School on Adaptable Networks and Teleservices, Trondheim – Norway. Available online: http://tapas.item.ntnu.no/publication/euniceCap2002.pdf [Accessed 27 November 2003]

[3] Aagesen, F. A., Helvik, B. E. Wuwongse, V., Meling, H., Bræk, R., Johansen, U. (1999). Towards a Plug and Play Architecture for Telecommunications. IFIP Fifth International Conference on Intelligence in Networks (SmartNet99), Bankok – Thailand. Available online: http://tapas.item.ntnu.no/publication/smartnet99.pdf [Accessed 27 November 2003]

[4] Anutariya, C., Wuwongse, V., Akama, K. (2003) XML Declarative Description with Negative Constraints. Proc. the International Semantic Web Foundations and Application Technology (SWFAT) Workshop, Nara, Japan. Available online: http://www.item.ntnu.no/~kay/papers/xddnegation-swfat-03.pdf [Accessed 27 November 2003]

[5] Anutariya, C., Wuwongse, V., Akama, K., Wattanapailin, V. (2001). Semantic Web modeling and Programming with XDD. Proc. Semantic Web Working Symposium (SWWS-1), Stanford university, CA. (Pages 161-180) Available online: http://www.item.ntnu.no/~kay/papers/xet-swws01.pdf [Accessed 27 November 2003]

[6] Anutariya, C. (2001). XML Declarative Description. Doctoral Dissertation, Computer Science and Information Management Program, Asian Institute of Technology, Thailand.
[7] Bray, J. (2003). What is RDF? XML.com. Available online: http://www.xml.com/pub/a/2001/01/24/rdf.html [Accessed 27 November 2003]

[8] Bræk, R., Haugen, Ø. (1993). Engineering Real Time Systems. Prentice Hall, ISBN 0-13-034448-6

[9] Cisco Systems. Intrusion Detection Planning Guide, Chapter1: Introduction. Available online: http://www.cisco.com/univercd/cc/td/doc/product/iaabu/idpg/intro.pdf [Accessed 27 November 2003]

[10] DMTF. CIM Tutorial. Available online: http://www.wbemsolutions.com/tutorials/CIM/ [Accessed 27 November 2003]

[11] DMTF (2002). Specification for the Representation of CIM in XML. Version 2.1, preliminary. Distributed Management Task Force. Available online: http://www.dmtf.org/standards/documents/WBEM/DSP201.html [Accessed 27 November 2003]

[12] DMTF Technical Committee (2003). The Common Information Model. Distributed Management Task Force Technical Note. Available online: http://www.dmtf.org/education/technote_CIM.pdf [Accessed 27 November 2003]

[13] DMTF Technical Commitee (2003). The Value of the Common Information Model(Why CIM?). Distributed Management Task Force Technical Note. Available online: http://www.dmtf.org/education/technote_WhyCIM.pdf [Accessed 27 November 2003]

[14] Ezhilchelvan, P., Khayyambashi, M.R.R., Morgan, G., Palmer, D. (2001).Measuring the cost of scalability and reliability for Internet-based, server-centered applications. Proceedings. Sixth International Workshop on Object-Oriented Real-Time Dependable Systems. (Pages: 59 -66)

[15] Fowler, M., Scott, K. (2000) UML Distilled. Second Edition. Addison-Wesley, ISBN 020165783

[16] Hofmeister, C., Purtilo, J. (1993). Dynamic Reconfiguration in Distributed Systems: Adapting Software Modules for Replacement. Proceedings the 13th International Conference on Distributed Computing Systems (Pages 101-110)

[17] Jiang, S. (2003). XML-based Dynamic Service Behaviour Representation.
[18] Johansen, U. Csurgay, P. (2001). Plug-and-play - Software design, implementation and use. Plug-and-Play Technical Report, Department of Telematics, NTNU, ISSN 1500-3868.

[19] Johansen, U. (2000). Dynamic Plug and Play - What is it, what are the adventages of using it? Presented at IT-PRO 2000, Sandefjord, Norway. Available online: http://tapas.item.ntnu.no/presentations/IT-pro-2000.pdf [Accessed 27 November 2003]

[20] Johansen, U., Aagesen, F. A., Helvik, B. E., Meling, H. (1999). Demonstrator – Requirements and functional description. Plug-and-Play Technical Report, Department of Telematics, NTNU, ISSN 1500-3868

[21] Johansen, U., Aagesen, F. A., Helvik, B. E., Bræk, R. (1999). Design Specification of the PaP Support Functionality. Plug-and-Play Technical Report, Department of Telematics, NTNU, ISSN 1500-3868.

[22] Kramer, J, Magee, J. (1990). The evolving philosophers problem: dynamic change management. IEEE Transactions on Sotfware Engineering, Volum 16 (Pages 1293-1306)

[23] Lasila, O., Swick, R. R. (1999). Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation. Available online: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ [Accessed 27 November 2003]

[24] Leduc, G. Network Monitoring. Presentation being part of course Ingénierie des systèmes informatiques répartis, Université de Liège.

[25] Manola, F., Miller, E. (2003) RDF Primer. W3C Working Draft. Available online: http://www.w3.org/TR/2003/WD-rdf-primer-20030905/ [Accessed 27 November 2003]

[26] Supadulchai, J. (2003). Tapas System Integration. TAPAS project internal working draft.

[27] Venners, B (1999). Objects, the Network, and Jini. JavaWorld. Available online: http://www.artima.com/jini/jiniology/intro.html [Accessed 27 Novamber 2003]

[28] Westerinen, A., Strassner, J. (2000). Common Information Model (CIM) Core Model, Version 2.4. Distributed Management Task Force White Paper. Available online: http://www.dmtf.org/standards/documents/CIM/DSP0111.pdf [Accessed 27 November 2003]

[29] Wuwongse, V., Anutariya, C., Akama, K., Nantajeewarawat, E. (2001). XML Declarative Description: A language for the Semantic Web. IEEE Intelligent Systems, Vol. 16, No. 3. (Pages: 54-65) Available online: http://www.item.ntnu.no/~kay/papers/semanticweb-ieee-01.pdf [Accessed 27 November 2003]

[30] Apple Rendezvous, website. Available online: http://www.apple.com/macosx/features/rendezvous/ [Accessed 27 November 2003]

[31] IBM Autonomic Computing, website. Available online: http://www.research.ibm.com/autonomic [Accessed 27 November 2003]

[32] TAPAS, website. Available online: http://tapas.item.ntnu.no [Accessed 27 November 2003]

Appendix A: TAPAS Layered Model

References: [21]

In the explanation of the Basic Architecture given in section 1 the PaP functionality was described without explaining how the PaP concepts are related to software and hardware specific concepts. Two main concepts of this type are threads and nodes. Figure 55 illustrates how actors are related to these two concepts. The concept of a thread maps directly to an operating system process or thread, and the concept of a node maps directly to a computer.

[image: image46.png]Node1

Node2

Figure 55: Illustration of how actors are related to nodes and threads

Several actors may run in a thread, and several threads may run on the same node. Actors can communicate with actors in the same thread, on the same node or on different nodes. The concept of a thread maps directly to an operating system process or thread, and the concept of a node maps directly to a computer.

Several actors may run in one thread. In the same way several threads may be run in one node. Actors may communicate with, or be related to, actors running in the same thread, or in different threads. Actors may also communicate with actors running on different nodes. To make this possible some support is needed. This is illustrated in Figure 56.

[image: image47.png]Node1

Director
Support

Node2

Opsys/network

Opsys/network

Figure 56: Illustration of PaP support functions needed

For actors to be able to run in a thread, some support functionality is needed to create actors, give them behaviour and to make it possible for actors to communicate with its environment. In the same way some support functionality is needed in each node for the node being able to run PaP software. A node also needs an operating system that provides some basic functionality, and a connection to a network making it possible to communicate with other nodes.

Figure 56 shows different types of support functionality. First Actor Support is included to give actors support for their basic functionality (see 1.3). ApplicationActors and DirectorActors may need different support. This is illustrated by naming the support provided for ApplicationActors and DirectorActors differently.

To be able to run the actor support functions some more support is needed. This type of support is named PaP Support in Figure 56. PaP Support supports communication between actors on different nodes and threads. It also has the functionality to perform start-up and initialization of actor support functionality.

Although not being a part of the PaP functionality, the operating system and network available is important for being able to realize this functionality. The basic functions provided by the operating system make it possible to implement the PaP specific functionality, and the network makes it possible to communicate with other nodes.

Figure 56 illustrates the support functionality needed in a rather informal way. In the following this functionality will be related to the layers of the TAPAS architecture. Figure 57 shows these layers.

[image: image48.png]Applications

Pab specific Layers

TAPAS layered model

NonPaP applications
inteficed 1 PiP spl.

MonPaP applications

!

P specific T wphcation
spplations (Actors)
PiP Extemvions Pab Extended PaP Extended
Management (PXM) Support (PXS)
& = A-
P PaP Director PaP
Busic Suppont (oton) ot

,;,,

PaP Actor Support (PAS) ‘

PP Static
Basic Support

3

PaP Node Execution Support (PNES) ‘

Node Infsstrsctun

Layer

3

PaP Communication Infrastructure (PCT) ‘

Figure 57: Layered model

The figure shows all layers relevant for the PaP functionality of TAPAS. Five layers are dealing with PaP, each of them having their own functionality. Non-PaP applications are allowed to interact with actors and use PaP functionality. The PaP functionality uses the infrastructure technology provided at the node (i.e. operating system, network, middleware). Source: [32]

The layered model consists of seven layers, five of them having functionality related to PaP. As the bottom layer of the model one can find the PaP Communication Infrastructure (PCI) layer consisting of an operating system, network communication functionality and possibly some distributed solution. Nothing in this layer is PaP specific, and may be based on standard solutions (i.e. UNIX, Windows, TCP/IP, CORBA, Java RMI). This layer corresponds to opsys/network in Figure 56.

On top of PCI one can find the PaP Node Execution Support (PNES) layer. This layer offers basic PaP support and corresponds to the support functionality named PaP Support in Figure 56. Every node running PaP software needs the functionality of this layer.

Going further up to the next layer one can find the PaP Actor Support (PAS) layer providing support functionality needed to run actors. This layer corresponds to Actor Support in Figure 56. Every thread running actors needs the functionality of this layer. As mentioned above, ApplicationActors and DirectorActors may have different requirements to the support functionality. If this is the case the PAS layer should be divided into two parts where one part provides support for ApplicationActors while the other part supports DirectorActors.

In addition to PAS the PaP Director is also part of the basic PaP support. A director is responsible for the management of repertoires, manuscripts and plays, and is thereby involved in the execution of almost all types of PaP support functionality. A DirectorActor is an instance of PaP Director.

On top of the basic PaP support one finds layers that are extensions of this basic support. These extensions are not yet implemented, but are meant to include functionality making the PaP service more robust, more QoS aware and able to provide resource control. PaP Extended Management (PXM) is the layer providing these services, while PaP Extended Support (PXS) is the layer making it possible for actors to utilise the extended functionality.

On top of the layers providing support functions one finds a layer named PaP applications. This layer represents the collection of ApplicationActors and is the topmost layer relating to PaP.

As shown in the layered model, non-PaP applications are allowed to interact with actors and to use PaP functionality supported by PAS.

Appendix B: Common Information Model

Common Information Model (CIM) “is a conceptual information model for describing managed entities, their composition, and relationships” [12]. It was first released by the distributed Management Task Force, DMTF, in April 1997. [12]

Goal

“In the past decade, there has been exponential growth in both the complexity and interdependence of products in the computing industry. This is due to rapid advances and growth of technology as well as the increased openness between products. […] Customers increasingly require and expect products and the companies supporting them to work together to provide a total solution to their needs. These trends have created a demand in many industries for support providers to access support information about related products.” [10] This evolution in the computing industry makes managing of the computer and network resources of businesses harder. “It is no longer sufficient to manage personal computers, servers, subnets, the network core, storage and software in isolation. These components all interoperate to provide connectivity and services.” [13]
Collecting the data needed for managing these resources is also a big task; and even bigger is the job of organizing this data. People may understand that OK, Operational and Working all mean that the component is at a good state, a machine, however, may have problems understanding this. [13]

CIM addresses these problems and aims to provide a “common way to represent the computing and networking elements that make up a business’ system, and the relationships between these elements” [13].

Components

References: [10]

CIM is a hierarchical structure based on object orientation. It can be divided in two main parts, the specification and the schemas. These will be explained shortly.

Specification

The specification specifies the syntax that is to be used, and the rules that apply. One important part of the specification is the CIM Meta Schema that formally defines the model; this includes terms like schema, class, method, property and association. The Managed Object Format, MOF, is also defined. This is the language used for representing and exchanging information. MOF has a textual format that is readable for both humans and machines.

In addition to MOF, UML and XML may also be used for representing information.

Schemas

The CIM Schema defines “a basic set of classes intended to establish a common framework” [28]. It consists of the core and common models, and includes the possibility to create extension schemas. The different types of schemas are explained in this section.

Core Model

The core model establishes a basic classification of the elements and association that are to be managed. The information included in this model should be applicable to all areas of management. From the core model the model may be expanded in many directions, addressing many different problem domains. [28]

The class hierarchy starts with an abstract class called ManagedElement which acts as a reference for associations that are to apply to all entities. This class subclasses into classes related to products, configurations and statistics, among others, and into a class called ManagedSystemElement. That class is used to represent systems, components of systems and any kinds of services. [28]

Common Model

The common model is a bit more specific than the core model. It concentrates on modelling information that are common to particular management areas, but are independent of implementation and technology. The intention is to provide a view of the management area that have enough details to be used as a basis for program design, and in some cases also implementation. Several common models exist, including models for applications, databases, events, networks, physical entities, policies and support. DMTF is also constantly working on new common models.

Extension Schema

Extension schemas may be used to represent technology-specific information. This makes it possible for developers to create their own proprietary models. This way the management area particular to a business may be covered.

Creating an extension schema means to make extension to common schemas. This may mean to add a property to an existing class, adding a new class or creating a new namespace and schema. In defining extensions it is expected that the developer operates within the constraints defined in the core model.

When a schema is to be designed or extended it is important to analyze the purpose of the schema. “A schema comes about because there is a need to model things that exist in the real world. So that others can understand us when we refer to these real things, we formalize them into statements in a language of some sort. […] [O]n its own, the schema is not meaningful. It acquires meaning only if someone is willing and able to interpret it.” [10] It is therefore important to provide enough detail to be useful, but at the same time make sure that the schema is not becoming overwhelmingly complex. One should be aware of the level of understanding of those that will use the schema.

XML representation

References: [11]

Since XML representation of CIM descriptions is used in this work, the notation used will be specified in this section.

When components like computers or printers are to be represented using XML they are referred to as instances using the tag <INSTANCE>. An instance is an element that is an instance of a CIM class. Instances may be described using properties, property arrays or property references. Properties are described using the tag <PROPERTY> and are used for representation of single CIM properties. A property contains a single <VALUE> element describing the value of the property. Property arrays, on the other hand. are described using the tag <PROPERTY.ARRAY> and are used for representation of CIM property types that contain array values. Such arrays are represented by the tag <VALUE.ARRAY> and contain value elements. If one want to link elements, property references should be used. These are described using the tag <PROPERTY.REFERENCE> . Property references contain value references represented by the tag <VALUE.REFERENCE>. Value references can be further specified by the tag <INSTANCENAME> that is used to define the location of an instance. If the class has a single key value, the tag <KEYVALUE> may be used to describe the instance unicely.

Benefits

References: [12]

CIM makes it possible to describe the exact semantics and behaviour of managed entities in a way that is readable for both humans and machines. It is also possible to extend the common classes to include any behaviour specific to the components. Since these extensions are derived from existing CIM classes, it helps to ensure that the semantics are maintained across vendors and integrators. This way it also becomes easier to discuss entities and get a common understanding of the overall management environment. It also becomes easier to share information between vendors.

CIM schemas may also be partitioned. One does not need to implement the complete schema, just the parts that relate to the particular management environment.

The operations defined are also independent of the protocol that is used. Currently only one protocol is defined, an XML-based protocol over HTTP. In the future other protocols will also be defined.

Appendix C: Resource Description Framework

Refrences: [7, 23, 25]

Resource Description Framework (RDF) is a language built for the web. The web is a really big place and it contains millions of things, all available for anyone, if one only knows the URL. And there lies the problem. How can one find things without first knowing the URL?

RDF is a language used for describing information about information. Such information is called metadata. In our everyday life we use metadata to for instance find telephone numbers in a phone book, or to find books in a library. If one wants to order a pizza one uses the Yellow Pages to find the pizza deliveries in the neighbourhood, or if one wants to borrow books on how to make pizzas one uses the library’s lookup service to search for books on that topic. Pizza is not the information one is really after. One wants to find the telephone number to a pizza delivery or the place where a book on pizza making is located. And if one is patient, one could call all telephone numbers in the area until a pizza delivery is reached, or search through the library one book at a time until a book on how to make pizzas is obtained. This would be a great waste of time, though. Therefore metadata is used associating lookup information to the information one is really after.

The same system could be used on the web. One could have information on all resources out there, and this information could be used to find anything one wants. But, unfortunately, there is very little metadata on the web. This is where RDF comes on stage. RDF “is a framework for describing and interchanging metadata”[7].

Basic concepts

RDF Statements

Metadata may be described in statements like: “The telephone number 12 34 56 78 leads to a pizza delivery”, or “One of the books on shelf 12 is on the topic how to make pizzas”. Common to these statements is they describe one special thing: “The telephone number 12 34 56 78”, or “One of the books on shelf 12”. The thing described are said to have properties: “leads to”, or “topic”. The properties have values: “pizza delivery”, or “how to make pizzas”. RDF represents metadata this way. The thing the statement describes is called the subject, the property of the subject is called the predicate, and the value of the property is called the object.

RDF Graphs

RDF uses graphs to represent statements. This type of graphs is illustrated in Figure 58. In such a graph the subject and the object of a statement is represented by nodes. Predicates are represented by arches directed from the subject node to the object node.

[image: image49.png]Preicate

Figure 58: Illustration of a general RDF graph

The subject and object of the statement is represented by nodes. The predicate of a statement is represented by an arch directed from the subject node to the object node.

The example statements above may be represented using an RDF graph. Figure 59 shows the statement “The telephone number 12 34 56 78 leads to a pizza delivery” represented in this way. The subject “telephone number 12 34 56 78” and the object “pizza delivery” is represented as nodes, and the predicate “leads to” is represented by an arch directed from the subject to the predicate.

[image: image50.png]Telephone number 1234 56 78

leadsto

pizza celivery

Figure 59: Simple example RDF graph

This RDF graph tells that the telephone number 12 34 56 78 leads to a pizza delivery.

Several statements may refer to the same subject. As an example the information described by the statement shown in Figure 59 is probably better represented using the two statements. “12 34 56 78 is a telephone number”, and “12 34 56 78 leads to a pizza delivery”. Statements may also be made about objects. The last statement may for example be changed to: “12 34 56 78 leads to Pizzario“, and another statement may be added saying “Pizzario is a pizza delivery”. The graph representation of this new combination of statements is shown in Figure 60.

[image: image51.png]12345878

leadsto

telephone number
pizza delvery

Figure 60: Example RDF graph with several statements

This graph tells that 12 34 56 78 is a telephone number that leads to Pizzario that is a pizza delivery. It contains three statements: “12 34 56 78 is a telephone number”, “12 34 56 78 leads to Pizzario”, and “Pizzario is a pizza delivery”.

URI References

Two of the example statements above says that “12 34 56 78 leads to Pizzario” and “Pizzario is a pizza delivery”. In Figure 60 Pizzario in the two statements is understood to be the same thing, but this is not necessarily true. There may exist several things, all referred to as Pizzario. There could be our pizza delivery, and maybe a book on pizzas or a special type of pizzas. To be able to specify without any possibility of confusion what entity that is described, URI references (URIrefs), rather than names, are used.

URIs, or Uniform Resource Identifiers, may be used to identify anything that needs to be referred. One type of URIs that is well known on the web is URLs, or Uniform Resource Locators. URLs may be used to address anything that have network locations, or uses other computer access mechanisms. URIs, however, may be used to address any type of things, like images, services, humans, abstract concepts, and even other statements. URIrefs are URIs that may include an optional fragment identifier at the end. An example URI is shown in Figure 61.

[image: image52.png]fragment iclentifier

ttp: s, example orgfindex htmisection2

—>

R

Figure 61: Example URI reference

A URI reference is a URI together with an optional fragment identifier.

One does not need special authority or permission to create URIs. Anyone is free to create URIs to refer to things, even things one does not own.

Using URIrefs the statements shown in Figure 60 may for instance be changed into the statements shown in Figure 62. This result in all subjects and predicates, and also some objects, getting identification that is more likely to be unique. The meaning of predicates may also be defined in order to obtain a more common understanding of the meaning of the statements.

[image: image53.png]fip:Ffwwrw. e xample.org/ umb er
12345678
it fwww exarple.orghtermsitype,
ity Fwrww exarmple.orgitypes/
telephone_nurber

ttp: A, example.orgiterms/custorner

it fwrww exarmple.orghte msiname it sxample orghermayps

ity orww exarmnple.orgitypes/
pizza_delivery

Pizzario

Figure 62: Example RDF graph using URI references

Subjects, predicates and objects may be URI references. Objects may also be literals, i.e. constant values. URI references are shown as ellipses while literals are shown as boxes. Nodes may also be blank nodes.

As shown in the figure objects may be URIrefs or literals, i.e. constant values. Nodes that are URIrefs are represented by ellipses, while nodes that are literals are represented by boxes. Nodes may also be blank nodes. This will often be the case for nodes which purpose is to provide necessary connectivity between other parts of the graph. In this figure the number 12 34 56 78 is connected to a blank node providing connectivity to nodes describing the customer connected via that number.

Vocabularies

“When we write a sentence in natural language we use words that are meant to convey a certain meaning. That meaning is crucial to understanding the statements and, in the case of applications of RDF, is crucial to establishing that the correct processing occurs as intended. It is crucial that both the writer and the reader of a statement understand the same meaning for the terms used” [23]. This section will discuss how the meaning of terms may be defined.

As mentioned above, URIrefs may be thought of as words. Vocabularies may then be explained as a collection of URIrefs, or words, that are intended for a special purpose. In the example shown in Figure 62 all terms used have been defined by an example organization called example.org. One may say that the organization has defined its own vocabulary that is intended to fulfil the organizations needs for describing things relevant to them. Often vocabularies are organized in a way so that URIrefs that are contained in the same vocabulary are formed by appending individual names to the end of a common URIref. This is also done by example.org. In one of the defined vocabularies all URIrefs starts with the prefix http://www.example.org/terms/. The individual terms gets their URI by adding their name to the prefix. As an example the term customer that is a part of this vocabulary gets its URI by adding customer to the prefix. This results in the URI http://www.example.org/terms/customer.

RDF has defined its own vocabularies. Any person and company are also free to do the same. RDF schema is a language created for describing such vocabularies, and it provides facilities to describe classes of things and properties of things and to indicate which classes and properties that are expected to be used together. However, searching the web, one is able to discover and begin using vocabularies already in use by others. This way one may obtain a shared understanding of those concepts.

Representation

As mentioned in section ”RDF Graphs” RDF statements may be represented using RDF graphs. There are however other opportunities. One common way of representing RDF statements is using XML. In this section the knowledge necessary to understand the RDF descriptions provided in this report is explained.

To explain how RDF is represented using XML an example description is used. This example description is taken from [25] and is shown in Figure 63. From this figure one can see that the firs line consists of an XML declaration that indicates that the following content is XML, and which version of XML has been used. Then line two starts the RDF specific part of the document. The element rdf:RDF specifies that the following content, until the tag </rdf:RDF> on line seven, is represented using RDF. On line two one can also find an XML namespace declaration. Such declarations are represented as xmlns attributes. This namespace declaration shown in line two specifies that all tags that are prefixed with rdf: are a part of the namespace identified by the URIref http://www.w3.org/1999/02/22-rdf-syntax-ns#. This URIref is used as a prefix for terms from the vocabularies defined by RDF. Another XML namespace dexlaration is shown in line three.

	1. <?xml version="1.0"?>

2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3. xmlns:exterms="http://www.example.org/terms/">

4. <rdf:Description rdf:about="http://www.example.org/index.html">

5. <exterms:creation-date>August 16, 1999</exterms:creation-date>

6. </rdf:Description>

7. </rdf:RDF>

Figure 63: Example RDF description

This example RDF description describes a statement where the subject is http://www.example.ortg/index.html, the predicate is http://www.example.org/terms/creation-date, d the object is August 16, 1999.

After line three one may start to write RDF statements. Statements may be thought of as descriptions about subjects of statements. This is reflected in the XML description. Line four until line five represents such a statement. It starts with an rdf:Description tag and continues with an rdf:about attribute identifying what resource the description is about, i.e. the subject of the RDF statement. After having identified the subject one may start specifying property elements. One property element is expressed in line 5. Here exterms:creation-date identifyes the predicate of the statement while the content of the property element, i.e. August 16, 1999, gives the object of the statements. In the example given in Figure 63 only one property is described, however, one is free to specify several properties for each subject. In the same way one is free to add more than one description to an RDF document.

Summary

RDF is a language for representing metadata. It describes such data in form of statements where the properties of subjects are described. RDF may be represented graphically, or by using XML.

Appendix D: XML Declarative Description

References: [6]

RDF is explained in Appendix C as a language for representing metadata. RDF has many strengths, but lacks the power to express axioms, conditions, constraints and similar. XML Declarative Description (XDD) aims to fill the need for more expressive power.

“XDD’s words and sentences are XML expressions and XML clauses, respectively.” [29] XML expressions represent facts, while XML clauses represent relationships, constraints and acioms. XML clauses are of the form

[image: image54.wmf]n

m

B

B

H

b

b

,...,

,

,...,

1

1

¬

,

where H is called the head of the clause, and the set
[image: image55.wmf]{

}

n

m

B

B

b

b

,...,

,

,...,

1

1

is the body of the clause. [2] The head of the clause is an XML expression that models the consequence, i.e. what will be the consequence of the conditions stated in the body. The body consists of XML expressions
[image: image56.wmf]{

}

m

B

B

,...,

1

 and XML constraints
[image: image57.wmf]{

}

n

b

b

,...,

1

. [2] An XDD description is a set of XML clauses.
In XDD XML expressions are allowed to carry variables. Variables may be of different types. These are shown in Table 4. All variables start with the prefix defining its type. The variable name follows immediately after this prefix. XML expressions that do not carry variables are called ground XML expressions, or XML elements, while those who carry variables are called non-ground XML expressions. In XDD every component of XML expressions may contain variables; this includes tag names, attribute names and values, attribute-value pairs, contents, sub-expressions, the expression itself, and some partial structures.

	Variable type
	Prefix
	Instantiation to

	Names (N-variables)
	$N:
	Element types or attribute names

	Strings (S-variables)
	$S:
	Strings

	Attribute-value-pairs (P-variables)
	$P:
	Sequences of zero or more attribute-value pairs

	XML expressions (E-variables)
	$E:
	Sequences of zero or more XML expressions

	Intermediate expressions (I-variables)
	$I:
	Parts of XML expressions

	Sets (Z-variables)
	$Z:
	Sets of XML expressions

Table 4: Variable types

The table gives an overview of the different types of variables used in XDD, shows the name prefix used to indicate the type of a variable, and gives a short explanation. The table is based on a similar table in [5].

Variables are instantiated using basic specializations. A specialization has the form (v,w) where v specifies the name of the variable that is to be specialized, and w specifies the value. This is shown in Figure 64. In the first step the variable $N:tag1 is renamed to $N:tag2 using a basic specialization, and in step two the variable $N:tag2 is instantiated to Name.

Specializations may take many forms. Two types of specializations have already been mentioned: Renaming of variables, and instantiation of variables. In addition variables of type P and E may be expanded into a sequence of variables of their respective types, and P-, E- or I variables may be removed. Expansion of an E-variable is shown in Figure 64. In step 3 the variable $E:e is expanded into the variables $E:e1 and $E:e2. These variables are instantiated in step 4 and 5.

To describe facts or conditions both XML expressions and XML constraints may be used. XML constraints are formulas of the type
[image: image58.wmf])

,...,

(

1

n

a

a

q

, where q is a constraint predicate, and
[image: image59.wmf]i

a

 is an XML expression. Ground constraints are constraints that have a predetermined truth or falsity. An example of such a constraint is
[image: image60.wmf])

,

(

2

1

a

a

GT

, which will be true if
[image: image61.wmf]1

a

 and
[image: image62.wmf]2

a

are of the form <Num>v</Num>, and the number specified in the first expression is greater than the one specified in the second. An example of a constraint of this type that is true, is the constraint GT(<Num>7</Num>,<Num>5</Num>), since 7 is greater than 5.

[image: image63.png]Non-ground XML expression a:

<rdf:Description abou 01">
<$N:tagi>Somchai P.</$N:tagl>

$E:e
</rdf:Description>

Variable renaming ¢;:

($N:tagl, $N:tag2)

'e01">
.</$N:tag2>

<rdf:Description abol
<$N:tag2>Somchai

$Eze
</rdf:Description>
@
Variable instantiation ¢,:

($N:tag2, Name)

<rdf:Description about="e01">
<Name>Somcha| P.</Name>

</rdf:] Dscripuon>

<rdf:Description about="e01">
<Name>Somchai P.</Name>
$Eiel $E:e2

</rdf:Description>

@ | Variable instantiation cy:
($E:el, <Position>
Leader
</Position>)

<rdf:Description about="e01">
<Name>Somchai P.</Name>
<Position>Leader</Position>
$E:e2

</rdf:Description>

@® | Variable instantiation cs:
($E:e2, <Salary>
80000
</Salary>)

Ground XML expression g:

<rdf:Description about="e01">
<Name>Somchai P.</Name>
<Position>Leader</Position>
<Salary>80000</Salary>

</rdf:Description>

Figure 64: Application of specializations

By applying basic specializations to a non-ground XML expression, one may yield a ground XML expression. Source: [5]

Now all the parts of an XML clause have been introduced, and it is time for an example. Figure 65 shows three XML clauses. If one takes a closer look at the first clause, R1, one sees that the body, or the condition part of the clause, describes an employee Y that has a boss X. The header of the clause, that states the consequence of the conditions described in the body, tells that if this is so, the boss X is the first level boss of the employee Y.

The clause R2 is a bit more complicated. The body of the clause describes two situations that should take place simultaneously. One condition stated is that there should be a situation where one boss X has a subordinate Y at the nth level, i.e. X is the nth level boss of Y. In addition there should be an employee Z that has Y as its direct boss. One is also told to add one to the number n and store the result in the variable $S:n1, i.e. one is added to the level at which Y is a subordinate of X. The head of the clause then states that if the conditions in the body evaluate to true, then X will as a consequence be a boss of Z at the (n1)th level, i.e. the level obtained by adding one to the level at which X is a boss of Y. To summarize, R2 states that if X is a boss of Y at the nth level, and Y is a direct boss of Z, then X is a boss of Z at the (n+1)th level.

The clause R3 takes the example even further, illustrating more features of XDD. The body of the clause gets an employee X from a database. Then it finds all employees that are subordinates of X at any level. The set of all subordinates are stored in the variable $Z:set. The number of employees contained in the set is counted, and stored in the variable $S:num. This number is evaluated to be greater than 3. At last the salary of X is multiplied by 2, and the result of the multiplication stored in the variable $S:bonus. One has then found employees that has more than three subordinates, and calculated a variable $S:bonus for each, giving it a value that is twice the salary of the employee. The header of the clause states that the consequence of having more than three subordinates is that one is a senior employee with a bonus having the value calculated in the body, i.e. the bonus is twice the salary of the employee. A list of all subordinates is also included in the description of such an employee.

[image: image64.png]Ry:

Ry

<EmpRelation boss=S:X subordinate=$S:Y level=1/>
« <rdf:Description about=$S:Y>
<rdf:type resource="Employee"/>
<e:Boss resource=$S:X/>
$E:emp
</rdf:Description>.

<EmpRelation boss=S:X subordinate=$S:Z level=$S:n1/>
< <EmpRelation boss=$! subordinate=$S:Y level=$S:n/>,
<rdf:Description about=$5:Z>
<rdf:type resource="Employee"/>
<e:Boss resource=$S:Y/> $Ezemp
</rdf:Description>,
Add(<Num>$S:n</Num>, <Addendum>1</Addendum>,
<Result>$S:n1</Result>).
<rdf:Description about=$S:X>
<rdfitype resource="SeniorEmployee"/>
<e:Bonus>$S:bonus</e:Bonus>
<e:Subordinate>

<rdf:Bag>$Z:set</rdf:Bag>
<[e:Subordinate>
<e:Salary>$S:sal</e:Salary> $E:emp
</rdf:Description>
« <rdf:Description about=$S:X>
<rdf:type resourc mployee"/>

<e:Salary>$S:sal</e:Salary> $E:emp
</rdf:Description>,
($Z1SeL, fcrfLi resource=$S:Y/>,<Emphelation boss=$SIX Sbordinate=sS:Y level=$Szany/>r
Lt 4 Ri. Rafy,
Count($Z:set, <Result>$S:num</Result>),
GT(<Num>$S:num</Num>, <Num>3</Num>),
Mul(<Num>$S:sal</Num>, <Multiplier>2</Multiplier>,
<Result>$S:bonus</Result>).

Figure 65: XDD example

The clause R1 states that if Y is an employee that has a direct boss X, then one can derive that X is the first level boss of Y. The clause R2 states that if X is the boss of Y at the nth level, and Y is the direct boss of another employee called Z, then Y is the (n+1)th boss of Z. The clause R3 states that if an employee X has more than 3 subordinates, then X is a senior employee, and will receive a double-salary bonus. A list of all subordinates will also be included in the description of X. Source: [5]

The usage of a Z-variable was illustrated in the example presented in Figure 65. The variable was set using a Set-of Function
[image: image65.wmf]b

a

f

,

 where a specifies the type of expressions that should be contained in the resulting set, and b specifies the condition for an expression to be a part of the set. The part following the Set-of Function specifies the place to look for expressions.

One important feature of XDD that has not yet been described is the possibility to describe negations. If one wants to represent a condition that should not take place, one may include the description of this condition inside brackets. This is shown in Figure 66. The clause represented tells that a department without senior staff is any department that is not a department with senior staff.

[image: image66.png]<DepartmentWithoutSeniorStaff rdf:about=$S:dept>
$S:dname

</DepartmentWithoutSeniorStaff>

<hr:Department rdf:about=

$E:deptProperties
</hr:Department>
[<hr:DepartmentWithSeniorStaff rdf.about=$S:dept>

$E:deptProperties
</hr:DepartmentWithSeniorStaff> ¢ M(XDB) 1.

Figure 66: Negation in XDD

The expression contained within brackets represents an expression that should not be true. The clause therefore states that a department without senior staff is a department that is not a department with senior staff.

Source: [4]

In TAPAS, when XDD models have been implemented the language XET has been used. More information on this language may be found in [4].
Appendix E: Discussion of capabilities and status

This appendix provides a discussion of what information should be contained in capability and status descriptions.

Discussion of Capabilities

Capabilities are descriptions of what nodes are able to do. Nodes are physical entities, and capabilities may be things like storage, processing resources, communication resources, data and equipment of different sorts. These should be described in sufficient detail.

Figure 67 shows a general description of capabilities. As explained in section 2.1 capabilities may be of different types and have certain characteristics. The different types are named data, resources and functions, where data is just ordinary data values while resources and functions may have other types of characteristics. In addition all capabilities may be described by arrangement and complexity.

[image: image67.png]Capabilty

L

Amrangement

Complesity

Fumnction

Resource

Data

05 Characteristic]

Figure 67: Capabilities in general

Capabilities can be classified by type, arrangement and complexity. The capability types functions and resources may also be described by QoS characteristics.

Since Figure 67 shows that all capabilities, or all capabilities of a certain type have certain common characteristics, these general capability types should be used as a basis for describing more specific capabilities. This way one gets a hierarchical view on capabilities, where capabilities lower in the hierarchy are special types of the more general capabilities further up, and extend their descriptions. Figure 68 shows such possible specializations.

In the same way as capabilities, QoS characteristics may be specialized using some sort of hierarchy. One possible way of doing this is shown in Figure 69. Here the total amount of characteristics is divided into characteristic types reflecting what type of resources or functions they are related to. This division is made because such functions are thought to often have certain common properties. Such a classification also makes it easier to see what properties are relevant to a given capability. However, different capability types may share similar QoS characteristics.

[image: image68.png]Function

Harddise

ufimedaProsentation] [Encryption peratingSystem| [Usenteraction]
VidooPlayer
Resource
Storage [ProcessingPower] [Communicationtesource] rardvarettities]
RAM Cache Modem [N Cannestion] [loppystation] CODrive
Data
PAddess Userdata Sesuritey
- Sting aie - g
fomirhiame : Sting| aigorm: Sting|
UserGrow. User
e S e g
ssemame : Sing
assord Sting
T Leete pate

Figure 68: Possible specialisations of the capability types functions, resources and data

The general types of capabilities, functions, resources and data, may be specified further into more specific capability types. Resources and functions will then be further described when related to QoS characteristics, while data capabilities get their contents specified directly in this model.

The main characteristic types specified may be specialized into more specific types of characteristics. This is shown in the figure. As an example, both bandwidth and delay are types of transmission characteristics. Transmission characteristics are again a type of QoS characteristics that are meant to relate to capabilities having transmission functionality. This would typically be modems or LAN connections if the capability types of Figure 68 are used. Such a relation is shown in Figure 70. Here modems and LAN connections are represented by the type communication resource of which both is a specialization. Other example relations are also shown.

[image: image69.png]oSCharacteristics|

[FtorageCharacterstis| fransmissionCharadteristios

DiscCapacity deoCharacterisics] | PictureCharacteristics [AudioCharacteristics Bandwian Dby

Size Tnieger reamngRate MrorfsariaResaifion Ifeger| [samplingrete Infeger| [vae [nieger| [average Infeger

it Sting [verticaR esoition : Ineger unit String | [min: Integer
mec Inieger
it Sting

1 ?—‘li
1 T 4 1

Figure 69: Possible QoS characteristics

QoS characteristics may be specialized into characteristic types reflecting the types of capabilities they relate to. These main types may then be specialized further.

[image: image70.png]VideoPlayer Storage. ommunicationR esource|
1 1 T 1
1 1 1 1
VideoCharacterisfics [DiscCapacity| Delay Bandwith
[treamingRe rteger [Size - Tteger averege - Iege| el Tnteger
funt : String min: Intger it Sting
L ma: Integer
.) it Siring
1 1
PictursCharsteristios [AudioCharacteristics

ForortalRresoudion Ineger| samplingRate - Tnteger]

veticalResoltion; Integer

Figure 70: Possible relations between capabilities and QoS characteristics

QoS characteristics will be related to capabilities to give additional information on the capabilities.

From this discussion one may see that usage of specialization has been made a big part of the capability description proposed. This is also a feature that may be used in CIM. Using specialization may help get the overview, and may make specification of new capabilities easier. When new types of capabilities are to be added one may use the characteristics already defined for similar types of capabilities, and just add what is special for the new type.

Discussion of Status

Status information describes the situation of the system at a given time instance. The status of the system depends on the status of the components constituting the system, this includes the nodes, the capabilities of the nodes, the actors running on nodes and similar. This is shown in Figure 71. One can see that nodes, actors and the capability types function and resourc have status information.

[image: image71.png]TAPASHode

ctor

Status

Capabilty

Funnction

Resowce

Figure 71: Status is information related to nodes, actors and capabilities

Status information is to describe a system at a given time instance. Describing a system includes describing the nodes and actors constituting the system. Nodes contain capabilities. The status of these should also be described because they influence the states of the nodes.

Status information may be of different types. The easiest type of such information is probably state information. Actors may be in different states depending on for instance if it is currently performing a manuscript, or if it is waiting for a new manuscript to be loaded. Resources and functions may have different error states. The same may apply to nodes. However, status may also be other types of information, for instance related to resource utilization. In Figure 72 some possible types of status information is shown. In addition all status descriptions is said to contain state information.

[image: image72.png]Status.

e Sng
MemoryStatus ommunicatonStatus| [Processorstatus | - [OperatingSystemstatus| [Actorstatus.

feespace Integer | [persertUtization menCodkSped| |-

serspacs Integes| [averageDelay oacPersertape | |-

Figure 72: Possible types of status information

Status information may be specified into types reflecting the types of instances it relates to.

From this discussion the description of status information uses the same approach as capability descriptions. Status information may be specialized into types relating to the type of instance it refers to. It will then be related to instances and capabilities in the same way as QoS characteristics.

Combining capability and status descriptions

From the discussion of capabilities and status in the above sections one may see that status descriptions and QoS characteristics do have something in common, i.e. they both relate to capabilities and are specialized into types reflecting which capability types they relate to. Based on this there would be much to gain from combining these types of information.

Figure 73 shows the topmost part of the model resulting from such a combination. Nodes and Actors still have status information. This status information would normally consist of a state. Other types of information could be added. Capabilities, however, are described by a combination of QoS characteristics and status. These are combined together in such a way that those QoS characteristics and status descriptions that describe the same type of property are grouped together.

[image: image73.png]1 [TAPASHode
g
1
. . [prrangement
Actor Status. Capabiiy | | !
1
.. i Compety
s
1
Fumcton Resouce Data

65 Characterisic and Status]

Figure 73: Overall relation of capabilities and status

All nodes and actors have status information. In addition the capability types function and resource have status descriptions that are combined with the descriptions of QoS characteristics.

Figure 74 shows some example combinations of QoS characteristics and status descriptions. If one compares this figure to the example QoS characteristics of Figure 69 and the example status descriptions shown in Figure 72 one can see that elements from both these figures have been included. For example a study of the type DiscCapacity of Figure 74 will reveal that the status information freespace and usedspace has been combined with information on size and unit contained in the characteristic descripton.

Compared to the already proposed model for describing capabilities and status (see 2.5.1) this new approach more based on the capability definitions and descriptions explained in section 2.1. All capabilities are explained by arrangement and complexity, and the capability types are used to partition capabilities into groups to be specified further. However, characteristics of capabilities and status of capabilities are described in a similar way. This may be confusing, however the alternative, to separate related characteristics and status description, was thought to reduce overview. To describe one property one would then need to find characteristics and status from different places of the data model. This way it would be easier to overlook important parameters, and thereby fail to include important information.

[image: image74.png]105 Characteristics and Status|

StorageCharacteristics| ransmissionCharacterisics|

!

DiscCapacity Bandwian Delay

Sz Trteger Vel Trteger average Ieger

it : String it String min: Ineger

oespace - Irteger persentUtiization| [max: Ineger

ussdspace: Irteger it String
averageMteasuredDelay - Integer|

Figure 74: Example combination of status information and QoS characteristics

One may see that the characteristics described contain both status information like used space and percent utilization together with more static information.

Although this model is not a CIM model, it may be represented in XML in a CIM way. This includes describing all nodes and capabilities as instances having properties. Relations between instances are described using property references. This was shown in 2.5.1 and is explained in more detail in Appendix B.

Appendix F: Description of Reconfiguration Rules

This appendix provides examples of reconfiguration rules that describe the different types of actions explained in section 2.5.4:

Actor Relocation

Since actor relocation is the only type of action that has been described before, a description of this type of action is introduced first. If one compares the model proposed in Figure 75 with the one introduced in section 2.5.3 one will find that they are almost similar. The only real difference is the inclusion on an environment for each actor. This is done to comply with the role specification description proposed in 3.2. In addition it is suggested that one may use a membership constraint to represent rules that may apply to more than one role. This way one does not have to write a rule for every role if they are handled in similar ways.

[image: image75.png]rolePlahing S reconRole Role
reconfiguinghdor E reconiactor adia] 1

e | . .
T

.
g e e ;

1

respenseTo

SrepoiD

5 roporlD - InsufidertCapahiltRepor]

insuficientCapabityador
1

1 [Eecnitclar ador]

1

1 | nodeinstaling loperatingEnrcnment

olePlayiny
i 5 1

iz Pl sl Thpan| (B Euementer]

4 1
actor padelnaliog S newhlode - PaPNode]
—l—m\e?\wm;
5 reconfRcle ok
, Sremnfoe fok
operatincEmironment S enEnirormertTopd
1

mermber($S: reconfRole, {http:itapas.orgiroled, Mt itapas.orgiroleBl)

Figure 75: Proposed description of an actor relocation rule

The head of the clause describes an actor relocation. The body of the clause tells that such an actor relocation should be a response to an insufficient capability report where the actor experiencing capability trouble should play either roleA or roleB. In addition some node should exist capable of running an actor playing the role.

The model proposed in Figure 75 for describing relocation actions has worked as a basis for specifying other types of actions. All relocation rules are a response to some type of trouble report. It may involve an actor and installed at a node playing a certain role, and in the case of a relocation action, a new node is described where the actor is going to move. The actor specified in the head of the clause should normally be the same actor described in the body of the clause as the actor experiencing trouble. This actor is contained in the report that causes the reconfiguration to take place. The role the actor is currently playing may be specified to be of a special type for the action to take place. This is a good thing because some roles normally will be more important than others. Different roles may therefore be handled different. Other types of conditions may also be specified. In the specification of the relocation action a condition is set that a node must exist that is capable of installing an actor running the specified role. Other conditions will be used in some of the examples following showing description of other types of rules.

Actor Initialisation

Figure 76 shows an example description of an initialisation rule. Compared to Figure 75 one can see that a new node is not specified. This is because the actor is not moved. In addition information on the node where the actor is currently installed is not included in the body. This is because an actor initialisation only installs the actor on the specified role. No action is taken on the old node. The node shown in the head of the clause therefore is the node where the actor is to be initiated. This node must fulfil the requirements for the role, as specified by the body.

[image: image76.png]folePlaning 5 reconfiole Role|

ooriniialdion] reconfouingAdor
]

1
U—nodelnaling e o conpiode: 74P ASHodk)
1

responseTo [gene
1

-—

5 reporlD - AdorInreashableRepor]
\reahabiesctor

1 Emconfidar ol

1
rolePlaying operatingE ndronment
1 1

5.0y ErvronmentTyge]

S reconfiol Role]

noceinstaling S recontiode Papliode]

‘I—W‘E%m;g reconfiole” Rok]

lbS.env._EnvronmertTue

ador

member(§S:recanfRole, {httpitapas.orgiroled, http:/itapas. orgiroleB))

Figure 76: Proposed description of an actor initialisation rule

The head of the clause describes an actor initialization. The body of the clause tells that such an actor initialization should be a response to an actor unreachable report where the actor being unreachable should play either roleA or roleB. In addition some node should exist capable of running an actor playing the role.

Actor Re-initialisation

Figure 77 describes a re-initialisation rule. This figure looks quite similar to Figure 76 describing an initialisation rule. The only difference is that a re-initialisation rule involves both termination and initialisation of the actor on the node where it is currently running. The node where the actor is currently installed is therefore specified in the body of the clause. This node should fulfil the requirements for the role, and is the same node as specified in the head of the clause as the node where the actor should be re-initialised.

[image: image77.png]AdorR sintilsation| teconfauringAdtor E recontéctor Actor]—rlePlal jSreconfRole - Role]

1 1 1 1
1 1 nodelnstaling 55 recontlode 12p AsHioe|
responseTo 1
Sre0oiD
1
-—
iSenorlD _ ActorveachatieRenor]
uveachabiesctor
! 1

1 REreconiedar ctor

1
rolePlaying 1 |nodeinstaling operatingEmironment
1 1 !

S reconfiale Role| [psreconlode T2P Asiioge| [Sienv. EnronmentTye

. 1
Er secrtoiog 55 oo PP
—\—m\e?\wm; S recontiols Roke]
1
speraruEnoen ey Fropsmetes
1

member($s: reconfRole, {hitp:ftapas.orgirole, http:itapas.orgiroleB})

Figure 77: Proposed description of an actor re-initialisation rule

The head of the clause describes an actor re-initialisation. The body of the clause tells that such an actor re-initialization should be a response to an actor unreachable report where the actor that can not be reached should play either roleA or roleB. In addition the node where the actor is currently installed should be capable of running an actor playing the role.

Actor Termination

Figure 78 shows the description of a termination action. When terminating an actor it is not important to know the role it is playing. This role is therefore not described in the head of the clause. The role of the actor may however be an important condition for doing the termination. It may therefore be included in the body of the clause, as done in this example. Since the actor is not to be instantiated there is no need to check for nodes that fulfil the role requirements. This is therefore not done in this example.

[image: image78.png]| teconfiounnatetor e vecontactor - Adtorl—Dodelnsaling (55 veconmiods | TAP ASHode |

1 [e 1

respenseTo 155 epotip

TS.re0orlD InsuficeniCapabiltyRepo]

InsuficentCapabiityactor

1 [EsecontidarAdol

rolePlaying A nodelrstaling
1 1

S reconfde Role] [Srecontlode TAPASHod]

member($S: reconfRole, {http:itapas.orgiroleA, http:itapas.orgiroleB})

Figure 78: Proposed description of an actor termination rule

The head of the clause describes an actor termination. The body of the clause tells that such an actor relocation should be a response to an insufficient capability report where the actor experiencing capability trouble should play either roleA or roleB.

No Action

Figure 79 describes a configuration rule saying that no action should take place. Here no actor is included in the head, because no information is needed on the actor if no action is to be taken that involves the actor. The body of the clause may however include conditions involving the actor. In this example the role of the actor, and the type of trouble report is what decides if no action is to be taken.

[image: image79.png]$5:actionlD : NoActon)

1 resonsal. $SreportD

-

IS.re0orD InsuficeniCapabiltyRepcr]

insuffcientCapabiitycor
T

1

oo

4 | rotepiaying

S reconfiole ok

mermber(§S: reconfRole, {http:itapas.orgirole, hitp: itapas.orgiroleB))

Figure 79: Proposed description of a no action rule

The head of the clause describes that no action should be taken. The body of the clause describes a situation where an insufficient capability report has been received where the actor experiencing capability trouble is playing either roleA or roleB.

Play Reconfiguration

The last type of reconfiguration action is play reconfiguration. A description of this type of action is given in Figure 80. This clause is a bit different from the clauses described above. The action involves a whole play, not just a single actor. The whole play configuration involved is therefore described in the head. The result of the reconfiguration will depend on the configuration rules defined for this play (see 3.3). The body of the clause will contain conditions of similar types as for the descriptions above. However a condition should be added stating that the actor experiencing trouble should be part of the play configuration specified in the head.

[image: image80.png]reconfiguringP s

PlayReconfourstion| E reconfPlay PlayConfuratin]

1 1
! T
responseTo e
1
-—
S resorlD AdorrveachableRenar]
uveachatiesctor
1 1
EreconthdrAdor
1
o | mepiing
i fagas o oo ok
E-reconPlay PlavConfaursion]
P ! roleRealsation
roleRedlisation | !
ERoEA SERalsEsa

(]

1

[recontactor_agal]

Figure 80: Proposed description of an actor play reconfiguration rule

The head of the clause describes that a play reconfiguration action should be taken. The body of the clause tells that such an action should be a response to an actor unreachable report where the actor experiencing capability trouble should play either roleA or roleB.

Summary

The clauses shown above are just examples. Other rules may be described. However, for each action type the head of the clause should have a similar form. What conditions specified in the body of the clause may however vary in different descriptions. Example conditions that have not been specified are conditions where the action is dependent on the sender of the message, the scale of the play configuration or the environment type. This may be specified in similar ways as the role dependencies shown in the examples.

Appendix G: TeleSchool implementation

References: [32]

An implementation of the TeleSchool application has been made. The Java classes that are a part of this implementation are shown in Figure 81.

[image: image81.png][SchoolRoles essiom

L—Lﬂmam,
olesObjectintestace)

RolesManagement]

[AoplicationactorTypel

[SchoaiClient choolUserinterface] choolServer] [SehooiR TLServer]

chooConfiguration] choolGraphicainerface] SchoolData

Figure 81: The implementation of TeleSchool represented by UML class diagrams

The roles SchoolClient, SchoolUserInterface, SchoolServer and SchoolRTLServer are all specialisations of the class ApplicationActorType1. This is the generic actor type for the TeleSchool application, and the class is a specialisation of the generic actor classes of the PaP support architecture. The application also contains several other classes that support these roles.

The classes SchoolClient, SchoolUserInterface, SchoolServer and SchoolRTLServer all correspond to the roles introduced in 4.1. These are role descriptions containing state machines telling how to respond to different role session actions. All these classes are specialisations of the class ApplicatonActor1 which again is a specialisation of the generic ApplicationActor defined in the PaP support architecture. Through this the application specific actors get access to the generic actor behaviour.

RolesManagement is a class used for management of RolesObjectInterfaces. A RolesObjectInterface is an interface between a role session object and its environment. SchoolRoleSession1 is a dummy object only made to illustrate an example of an implementation of this interface. These classes may therefore be said to be of little importance for the understanding of the implementation.

SchoolConfiguration is a class used in the implementation of the SchoolClient role, and defines how the School application may be configured. A configuration file may be used to specify the location of SchoolClient, SchoolServer and the SchoolRTLServer. If no configuration file is found a default configuration is used. This class may be extended to include more complex configuration information.

SchoolData is a class designed to serve as a configuration data administrator for the needs of the SchoolServer class. However, in principle it is a generic tool for extracting data from files where the data is of a specific format. In this application the class is used to extract data about which courses are available, which teacher that is responsible for a course, which students that attend the given courses, which lectures that belong to a course, and what user name and password that belongs to each other.

SchoolGraphicsInterface is the class implementing the graphical user interface presented to the managers, teachers and students. All user dialog windows used by the application is specified here. Actions are reported to the SchoolUserInterface which may read the result of operations using specific method calls defined for each window type.

Location of Play Repository Data

Section 2.2.2 introduces the concept PlayRep as a place to store information needed to describe plays and the roles constituting a play. Although the Dynamic Configuration Architecture where this concept is introduced has a different approach to creating PaP applications, some of the information stored in the PlayRep is also needed in the TeleSchool implementation. The information stored in a PlayRep includes play configuration rules, reconfiguration rules, role specifications and manuscripts.

To start with manuscripts; in the TeleSchool applications these are specified in the classes SchoolClient, SchoolUserInterface, SchoolServer and SchoolRTLServer as mentioned above. Each of these classes describes one specific role and includes the manuscript defined for that role. Manuscripts are represented as state machines represented in java. An example representation of a manuscript this way is shown the following section where an extract of the manuscript of the role SchoolClient is represented.

A role specification is a description of a role’s capability and status requirements. In TeleSchool this is not represented directly related to the role specification. However, the basic functionality allows the actor requesting an Actor plug-in to specify capability requirements for the role requested. In TeleSchool preferred location is normally specified when requesting an Actor plug-in, but only on one occasion is capability requirements specified. When an actor playing the SchoolRTLServer is requested a CapabilitySet is contained in the request specifying the school, course and lecture that need to be available. The implementation of this feature is explained in the next section.

Play configuration rules are rules that tell how roles may be combined into a play. They may specify how many actors of each type that may participate in a play, and they may specify restrictions on which actors may or may not be located at the same node. In TeleSchool such information is distributed. The class SchoolConfiguration could possibly contain more information of this type. Currently it only contains information on where the different actors should be located. Location may also be specified in Actor plug-in requests, as pointed out above. No information is found on how many actors of each type may participate in a play.

Reconfiguration rules are rules stating what may happen upon reception of trouble reports. In the Dynamic Configuration Architecture trouble reports may be of different types: Actor Unreachable Report, Insufficient Capability Report, and QoS Degradation Report. In TeleSchool there is no QoS control, and the roles do not have stated requirements to capabilities and status, consequently there is no need for QoS Degradation Reports and Insufficient Capability Reports. It is possible, however, that actors find that communicating actors become unavailable. In the TeleSchool implementation explored this is not found to be handled in any specific way.

Code Examples

In this section the code examples referred to in the section “Location of Play Repository Data” is explained.

Representation of Manuscripts

This section provides parts of the representation of the manuscript for the role SchoolClient in the TeleSchool application. This code is presented to illustrate how manuscripts using state machines are represented in this implementation of the application.

The code presented in this example is a part of the method stateTransition in class SchoolClient. This method has an input parameter of type ApplicationMessage that represents a message sent to this actor. For all states, except for the initial state, the reception of such a message is what triggers the stateTransition method to be run.

switch (state) {

 case stInitial:

 // Initial state transition - executed after actor creation

 // NOTE: ApplicationMessage (parameter am) do not exist when

 // this transition is executed.

 // Define configuration to be used by the application (i.e. School)

 configuration = new SchoolConfiguration(

 context.play.playLoc+context.play.playId+"/"+context.nodeProfile, context);

 // User interface to run at same Node and PAS, but with another identifier

 GAI uii = new GAI(context.self.getType(), context.self.getNode(),

 context.self.getPAS(), context.self.getName()+"_UI");

 request = new ActorPlugInReq(uii, new Role("SchoolUserInterface"));

 // Plug in the actor

 rr = actorPlugIn(request);

 // Keep returned role session - it contains the address of the co-operator

 userInterface = rr.roleSession;

 // Request the plugged in actor

 rr = RoleSessionAction(userInterface,

 new ApplicationMessage(new String("WindowNew"), new String[] {"Logon"}));

 // Set new next state (Should always be set when current state is initial state)

 state = stInitUserInterface;

 // Task finished ok

 break;

 case stInitUserInterface:

 // State: InitUserInterface - waiting for response from user interface actor

 if (am.messageType.compareTo("LogonEventInd") == 0) {

//Description of response to this type of request

//…

state = stPasswordVerify;

break;

} else if (am.messageType.compareTo("CancelEventInd") == 0) {

//Description of response to this type of request

//…

}

 case stPasswordVerify:

//…

}

As one may see from the code example the state of the actor is important for the result of running the stateTransition method. If the agent is in the state stInit, or the initial state, running this method will result in a configuration to be defined and a request for the plug-in of an actor playing the role SchoolUserInterface being sent. This corresponds to the behaviour defined in (TeleSchool, Functional design). The actor is requested to have a GAI, i.e. an ID or an address (BasicArchitecture, GAI), that says that the actor shall be located at the same PAS (BasicArchitecture, Layered Model) as the requestor. In the result of this request the id of the role session that may be used to communicate with this actor is included. This id is used to send a request to the actor for the creation of a logon window. After this is done a new state is set (stInitUserInterface),

If the agent is in state stInitUserInterface when this method is run another scenario will take place. Depending on the type of message that triggered the execution of the method some actions will be taken. This may include plug-in and plug-out of actors, different types of role session actions and similar. In the code example two possible messages is shown for this state: LogonEventInd and CancelEventInd. What actions that will take place depend on which of these messages are received.

The role SchoolClient has more states than shown in this example, and may also handle many different message types. Similar for all is that the actions taken depend on both the state and the type of message. Every state has its dedicated piece of code where the messages possible in this state are handled.

Representation of Capability Requirements

Capability requirements are specified by the actor issuing an Actor plug-in request. This piece of code comes from the class SchoolServer and shows the creation of a request for the plug-in of an actor playing the role SchoolRTLServer.

private RequestResult stateTransition(GAI sender, GAI receiver, ApplicationMessage am)

 throws Exception {

//…………….

else if (am.messageType.compareTo("RTLStartReq") == 0) {

//……………

request = new ActorPlugInReq(configuration.locationRTLServer(),

new Role("SchoolRTLServer"),

new CapabilitySet(new String[]{am.message[1]+"."+

am.message[2]+"."+am.message[3]}),

null);

 // Plug in the actor

rr = actorPlugIn(request);

// Necessary to check the result?

//…..

}

//……

}

The code example shows that this piece of code is a part of the method stateTransition where one of the parameters is an ApplicationMessage. If this message is of type RTLStartReq this code is executed.

The code creates a request for Actor plug-in that contains information on the location of the new actor, the role to be played and the capabilities required. Capabilities are described using the class CapabilitySet. CapabilitySets are properties attached to actors, and may also be used as requirements for doing plug-in of actors, as is done in this example. It may consist of zero or more capabilities, all represented as text strings. Capabilities may be specified as a dotted list of terms where each term represents a new level in the specification of the capability. An example of a capability described in this way is printer.postscript where printer specifies that the actor must be of type printer and postscript specifies that the printer must have postscript capabilities. To see what capabilities that are requested in this code example one may look at the creation of the RTLStartReq. This is found in the SchoolClient class, and the related piece of code looks like this:

rr = RoleSessionAction(server,

 new ApplicationMessage(new String("RTLStartReq"),

 // Parameters shall be taken from received signal

 new String[] {currentUser,currentSchool,currentCourse,

 currentLecture,currentTeacher,currentStudent}));

From this code one may see that the contents of the array referred to in the original example, and obtain that the CapabilitySet created specifies this capability: currentSchool.currentCourse.currentLecture. From this one possible conclusion is that the requested actor must have the specified school, course and lecture available.

Appendix H: Manuscript for the role SchoolClient

112 <manuscript>

<!--descripton of the manuscript for the role SchoolClient-->

<fsm name="SchoolClient">

<data>

<name> v_interface </name>

<type> RoleSession </type>

</data>

<data>

<name> v_server </name>

<type> RoleSession </type>

</data>

<data>

<name> v_currentSchool </name>

<type> String </type>

</data>

<data>

<name> v_currentUser </name>

<type> String </type>

</data>

<data>

<name> v_currentCourse </name>

<type> String </type>

</data>

<data>

<name> v_currentLecture </name>

<type> String </type>

</data>

<data>

<name> v_currentTeacher </name>

<type> String </type>

</data>

<data>

<name> v_currentStudent </name>

<type> String </type>

</data>

<init_state> stInit </init_state>

<!--Description of state stInit (initial state)-->

<state name="stInit">

<input msg="INITIAL_TRANSITION">

<!--Configuration is now specified by play

 configuration rules. No setConfiguration

 action is therefore specified in the

 manuscript... -->

<!--First action:-->

<!--Asks for an actor to play the role

 SchoolUserInterface-->

<action>

<meth_name> ActorPlugInReq </meth_name>

<param>

<name> role</name>

<value> SchoolUserInterface </value>

</param>

<param>

<name> location</name>

<!-- THIS refers to the same role as the node

 where this actor (SchoolClient) is installed

 -->

<value> THIS </value>

</param>

<store_return> v_interface </store_return>

</action>

<!--The output message is a request to the interface

 for showing a logon window -->

<output>

<msg type="WindowNew">

<param>

<name> windowType </name>

<value> Logon </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stInitUserInterface </next_state>

</input>

</state>

<state name="stInitUserInterface">

<input msg="LogonEventInd">

<action>

<meth_name> ActorPlugInReq </meth_name>

<param>

<name> role </name>

<value> SchoolServer </value>

</param>

<store_return> v_server </store_return>

<error>

<goto_errorstate>

 stInitUserInterfaceError </goto_errorstate>

<errormsg> SSPluginError </errormsg>

</error>

</action>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value </name>

<value> INPUT_MSG.school </value>

</param>

<store_result> v_currentSchool </store_result>

</action>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value </name>

<value> INPUT_MSG.user </value>

</param>

<store_result> v_currentUser </store_result>

</action>

<output>

<msg type="UserVerifyAccessReq">

<param>

<name> message </name>

<value> INPUT_MSG </value>

</param>

<dest> server </dest>

</msg>

</output>

<next_state> stPasswordIdentify </next_state>

</input>

<input msg="CancelEventInd">

<action>

<meth_name> ActorPlugOutReq </meth_name>

<param>

<name> actor </name>

<value> v_interface </value>

</param>

</action>

<next_state> stInitUserInterface </next_state>

</input>

<input msg="WindowMessageOk">

<next_state> stInitUserInterface </next_state>

</input>

<input msg="UNDEFINED">

</input>

</state>

<state name="stPasswordIdentify">

<input msg="UserVerifyAccesConf">

<output>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> Logon </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="WindowNew">

<param>

<name> WindowNew </name>

<value> WorkToDo </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stWaitWorkTypeSelect </next_state>

</input>

<input msg="UserVerifyAccessNak">

<action>

<meth_name> ActorPlugOutReq </meth_name>

<param>

<name> actor </name>

<value> v_server </value>

</param>

</action>

<output>

<msg type="WindowMessageReq">

<param>

<name> message </name>

<value> Access control failed. Wrong school,

113 user name or password </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stInitUserInterface </next_state>

</input>

<input msg="UNDEFINED">

</input>

</state>

<state name="stWaitWorkTypeSelect">

<input msg="WorkTypeEventInd">

<action>

<meth_name> conditionalJump </meth_name>

<param>

<name> variable </name>

<value> INPUT_MSG.type </value>

</param>

<param>

<name> value </name>

<value> CoursesAndLectures </value>

</param>

<param>

<name> gotoSubtrans </name>

<value> WorkType_CoursesAndLectures </value>

</param>

</action>

<action>

<meth_name> conditionalJump </meth_name>

<param>

<name> variable </name>

<value> INPUT_MSG.type </value>

</param>

<param>

<name> value </name>

<value> Terminate </value>

</param>

<param>

<name> gotoSubtrans </name>

<value> WorkType_Terminate </value>

</param>

</action>

<!--
The rest of the transition specified here will only

 take place if no of the work types specified in the

 above actions have been chosen-->

<next_state> stWaitWorkTypeSelect </next_state>

</input>

<input msg="CancelEventInd">

<action>

<meth_name> ActorPlugOutReq </meth_name>

<param>

<name> actor </name>

<value> v_server </value>

</param>

</action>

<output>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> WorkToDo </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="WindowNew">

<param>

<name> windowType </name>

<value> Logon </value>

</param>

<dest> v_interface </dest>

</msg>

<next_state> stInitUserInterface </next_state>

</output>

</input>

<input msg="UNDEFINED">

</input>

</state>

<state name="stWaitServiceType">

<input msg="RealTimeLectureEventInd">

<data>

<name> v_temp </name>

<type> boolean </type>

</data>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value</name>

<value> INPUT_MSG.course </value>

</param>

<store_return> v_currentCourse </store_return>

</action>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value</name>

<value> INPUT_MSG.lecture </value>

</param>

<store_return> v_currentLecture </store_return>

</action>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value</name>

<value> INPUT_MSG.teacher </value>

</param>

<store_return> v_currentTeacher </store_return>

</action>

<action>

<meth_name> setVariable </meth_name>

<param>

<name> value</name>

<value> INPUT_MSG.student </value>

</param>

<store_return> v_currentStudent </store_return>

</action>

<action>

<meth_name> bothSelected </meth_name>

<param>

<name> var1 </name>

<value> v_currentTeacher </value>

</param>

<param>

<name> var2 </name>

<value> v_currentStudent </value>

</param>

<store_return> v_temp </store_return>

</action>

<action>

<meth_name> conditionalJump </meth_name>

<param>

<name> variable </name>

<value> v_temp </value>

</param>

<param>

<name> value </name>

<value> true </value>

</param>

<param>

<name> gotoSubtrans </name>

<value> TeacherAndStudent </value>

</param>

</action>

<output>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> CoursesAndLectures </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="RTLStartReq">

<param>

<name> user </name>

<value> v_currentUser </value>

</param>

<param>

<name> school </name>

<value> v_currentSchol </value>

</param>

<param>

<name> course </name>

<value> v_currentCourse </value>

</param>

<param>

<name> lecture </name>

<value> v_currentLecture </value>

</param>

<param>

<name> teacher </name>

<value> v_currentTeacher </value>

</param>

<param>

<name> student </name>

<value> v_currentStudent </value>

</param>

<dest> v_server </dest>

</msg>

</output>

<next_state> stWaitForServer </next_state>

</input>

<input msg="CancelEventInd">

<output>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> CoursesAndLectures </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="WindowNew">

<param>

<name> windowType </name>

<value> WorkToDo </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stWaitWorkTypeSelect </next_state>

</input>

<input msg="UNDEFINED">

</input>

</state>

<state name="stWaitForServer">

<input msg="RTLStartCnf">

<output>

<msg type="ServiceStartInd">

<param>

<name> service </name>

<value> RealTimeLecture </value>

</param>

<param>

<!--Not able to find out the meaning of this

 param...-->

<name> messagaparam </name>

<value> INIT_MSG.param </value>

</param>

<param>

<name> teacher </name>

<value>v_currentTeacher </value>

</param>

<param>

<name> school </name>

<value> v_currentSchool </value>

</param>

<param>

<name> course </name>

<value> v_currentCourse </value>

</param>

<param>

<name> lecture </name>

<value> v_currentLecture </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stActiveService </next_state>

</input>

</state>

<state name="stActiveService">

<input msg="RTLStartPerformEventInd">

<!--Actions have not been defined-->

<next_state> stActiveService </next_state>

</input>

<input msg="RTLContinuePerformEventInd">

<!--Actions have not been defined-->

<next_state> stActiveService </next_state>

</input>

<input msg="RTLStopPerformEventInd">

<!--Actions have not been defined-->

<next_state> stActiveService </next_state>

</input>

<input msg="RTLTerminateEventInd">

<output>

<msg type="RTLTerminateInd">

<dest> v_server </dest>

</msg>

<msg type="ServiceTerminateInd">

<dest> v_interface </dest>

</msg>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> RealTimeLecture </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="WindowNew">

<param>

<name> windowType </name>

<value> WorkToDo </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stWaitWorkTypeSelect </next_state>

</input>

<input msg="UNDEFINED">

</input>

</state>

<subtransition name="WorkType_CoursesAndLectures">

<output>

<msg type="WindowClose">

<param>

<name> windowType </name>

<value> WorkToDo </value>

</param>

<dest> v_interface </dest>

</msg>

<msg type="WindowNew">

<param>

<name> windowType </name>

<value> CoursesAndLectures </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stWaitServiceType"</next_state>

</subtransition>

<subtransition name="WorkType_Terminate">

<action>

<meth_name> ActorPlugOutReq </meth_name>

<param>

<name> actor </name>

<value> v_server </value>

</param>

</action>

<action>

<meth_name> ActorPlugOutReq </meth_name>

<param>

<name> actor </name>

<value> v_interface </value>

</param>

</action>

</subtransition>

<subtransition name="TeacherAndStudent">

<output>

<msg type="WindowMessageReq">

<param>

<name> message </name>

<value> Exactly one of Teacher or Student must

 be selected </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stWaitServiceType </next_state>

</subtransition>

<errorstate name="stInitUserInterfaceError">

<errorinput type="SSPluginError">

<output>

<msg type="WindowMessageReq">

<param>

<name> message </name>

<value> Failed to start common School Server

 </value>

</param>

<dest> v_interface </dest>

</msg>

</output>

<next_state> stInitUserInterface </next_state>

</errorinput>

</errorstate>

</fsm>

</manuscript>

Appendix I:
Alternative solution for update of capability and status information

References: [26]

Parallel to the work presented in this report (section 5), another approach has been taken to provide a solution to the updating problem presented. This work is presented in [26]. All information in this subsection is based on the information provided there.

The proposed solution in [26] introduces two new elements to the TAPAS architecture. The first element is called CapabilityAgent (CAgent), while the second element is called a watchdog server. These elements are shown in Figure 82. As may be seen in this figure, CAgents are installed on nodes. This installation happens before the node is plugged into a TAPAS system. During installation a watchdog configuration file is provided to the CAgent listing all possible watchdog servers. The CAgent will then send a NodePlugin request to one of the servers, resulting in the reception of a NodePluginManuscript containing information necessary for plug in.

[image: image82.png]Web Service Message:

Web Service Message

Waichdog

Figure 82: CapabilityAgents communicates with watchdog servers

CapabilityAgents and WatchdogServers commnicate information related to node plug-in and capabilities.

As shown in Figure 83, the watchdog server is a combination of CSEMon, CSRep and CM from section 2.2. This combination is made to reduce network traffic, thereby making it easier to distribute watchdogs in the network. The CSEMon part of the watchdog server is responsible for monitoring the registered nodes and updates its own repository at regular times. The algorithm to use for this purpose has not yet been decided. However, the CAgent plays an important role in making this possible, having functionality for collecting capability and status information from nodes and for sending these messages to the watchdog server using some XML protocol.

[image: image83.png]Capabily & Status
Monior (CSMon)

Capabilty & Status.
Reposiory
(CSRep)

Configuration
Manager (CM)

Watchdog Server

Figure 83: Watchdog server

Watchdog servers are combined capability and status monitors, capability and status repository and configuration managers.

For CAgents being able to extract essential information from node it needs to be implemented using native code. However, this solution makes it impossible to use the same implementation of CAgents for different nodes. Therefore a compromise solution is recommended that splits the CAgent into two parts: Capability Driver and Communication API. This is shown in Figure 84. Using this solution the Communication API part of the CAgent may be reused.

[image: image84.png]Node

‘Capabilty Agent

Figure 84: CapabilityAgent

CapabilityAgents are divided into two parts, a capability driver and an communication API. This is done to provide better support for reuse of implementations.

The solution proposed is based on having several watchdog servers for each domain, one of them being the master watchdog. This master will be used by the director to take care of the whole domain. However, the responsibility for handling the individual nodes will be delegated to other watchdog server. In this way each server gets responsibility for a smaller more manageable group, thereby improving scalability. This is shown in Figure 85.

[image: image85.png]Domain hitp:/fapes.org

——m—

Wastar Waichdog

i Tdoma T apas org

Watchdog.
I

Node | [Node

D Taomanz @pas frg

Watchiog

i idomaing tapas org

R

Node.

Nodo] [Teds

Figure 85: A TAPAS domain

A domain is controlled by a master watchdog. This watchdog delegates responsibility for monitoring individual nodes to other watchdogs.

Watchdog servers may be of different types. The types master watchdog and sub-domain watchdog has already been introduced. However, one may also have intelligent watchdogs and fault-tolerance and load-balancing watchdogs. Intelligent watchdogs are watchdogs that may help other watchdogs on jobs requiring special capabilities, like special software, extra processing units or particular knowledge, among other things. Fault-tolerance and load-balancing watchdogs, on the other hand, may be used to ensure availability and increase scalability in the domain.

To summarize, scalability of the monitoring functionality is playing an important role in the new architecture, introducing a hierarchy of cooperating watchdog servers. CAgents installed on nodes communicate with these watchdog servers to register nodes, and to distribute information on the node’s capabilities and status.

Comparison of the two approaches

Although the level of the two approaches differs to some extent, the solutions proposed have many similar characteristics. Both approaches propose the use of an agent situated on the node. This agent should be capable of collecting capability and status information from the node and distributing this to some central unit. The solution proposed in [26] does not discuss the algorithm to be used for such distribution. This is however discussed on a high level in this work proposing to use polling, regular updates or a more event driven approach. Which to chose, or which combination to chose is not recommended further. However all approaches are possible to implement in the framework proposed in [26]. This also refers to the error handling procedures recommended.

Relating to installation of nodes the two approaches also seem to come to the same conclusions. In [26] the node that is to join a TAPAS system is required to first install a CAgent and obtain a list of all possible watchdog servers. This is in a way similar to the manual approach proposed in section 5.2.5 where the address of the monitor was to be given to the node manually. However, providing this information in a list the same list may be used for all nodes, requiring less manual intervention. Such lists may for instance be downloaded from a website automatically, making this a better approach when related to dynamic configuration.

The main differences of the two approaches are related to the level of discussion. In the work presented by this report the discussion of the problem is rather high level. Overall solutions are discussed without giving guidance to how these solutions should be implemented. This way one may get an overview of the problem and the possible solutions available. This may then be used to develop more low level solutions later. The approach taken in [26] is quite different. The different components needed, and to some extent their implementation, are discussed without discussing the overall problem. Therefore the two approaches may be said to supplement each other. Combined they provide both high-level and low-level aspects and discuss both the overall problem and how the problem may be solved by implementation.

[image: image86][image: image87][image: image88]
� HYPERLINK "http://PrinterX.PaP.org" ��http://PrinterX.PaP.org� : CIM_Printer

DeviceID = http://PrinterX.PaP.org

Availability = "Running/Full Power"

DetectedErrorState = "Low Toner"

Capabilities = ["Duplex printing", "Black and White Printing", "Color Printing"]

HorizontalResolution = 1200

VerticalResolution = 1200

CharSetsSupported = ["utf-8", "us-ascii", "iso-8859-1"]

MarkingTechnology = "Laser"

$S:nodeX : CIM_Printer

DeviceID = $S:deviceID

DetectedErrorState = $S:errorState

Capabilities = ["Duplex printing", "Black and White Printing", $E:otherCapabilities]

HorizontalResolution = $S:horizontal

VerticalResolution = $S:vertical

MarkingTechnology = "Laser"

PrintingSpeed = $S:speed

$E:printerProperties

Body of the clause

[$S:horizontal >= 1200],

[$S:vertical >= 1200],

[$S:speed >= 25],

notMember($S:errorState, {"No Paper", "No Toner", 	� "Door Open", "Jammed", "Service Requested"})

(B)

(C)

(A) Head of the clause

http://PaP.org/DocMaster : Role

rolePlaying

nodeInstalling

: Actor

$S:nodeX : CIM_Printer

nodeInstalling

: Actor

rolePlaying

roleRealisation

 SelectInstance(<Preference>�					<PROPERTY NAME="MarkingTechnology">�						<VALUE>Laser</VALUE>�					</PROPERTY>�				</Preference>, �				$E:GraphicMasterSet, �				$E:GraphicMaster),

(C)

(F)

: PlayConfiguration

http://PaP.org/IPM_1.0 : Play

playVersion

nodeInstalling

$E:DocMasterSet

roleRealisation

roleRealisation

http://PaP.org/IPMManager : Role

: Actor

rolePlaying

$S:IPM_node

nodeInstalling

$E:DocMasterSet : XDD_SetOf

http://PaP.org/DocMaster : Role

: Actor

rolePlaying

$S:DM_node

nodeInstalling

setMember

$E:GraphicMasterSet : XDD_SetOf

http://PaP.org/GraphicMaster : Role

: Actor

rolePlaying

$S:GM_node

setMember

(A)

(D)

(E)

$E:GraphicMaster

http://PaP.org/IPMManager : Role

$S:IPM_node

$E:requestAttributes

: ServiceRequest

playRequesting

http://PaP.org/IPM_1.0 : Play

(B)

$S:actorA : Actor

rolePlaying

reconfiguringActor

: ActorRelocation

$S:reportID

responseTo

nodeInstalling

relocationTo

http://PaP.org/IPMManager : Role

$S:actorA: Actor

rolePlaying

$S:node

nodeInstalling

http://PaP.org/IPMManager : Role

$S:node

$E:reportAttributes

$S:reportID : InsufficientCapabilityReport

insufficientCapabilityActor

http://PaP.org/IPMManager : Role

: Actor

rolePlaying

$S:newNode

nodeInstalling

(A)

(B)

(C)

PAGE
XIII

_1128847210.unknown

_1128847562.unknown

_1128847926.unknown

_1131195022.bin

_1131288813.bin

_1131293395.bin

_1131288687.bin

_1129986439.bin

_1130839841.unknown

_1128847860.unknown

_1128847874.unknown

_1128847588.unknown

_1128847263.unknown

_1128847313.unknown

_1128847233.unknown

_1128158665.bin

_1128158689.bin

_1124540521.vsd
�

ApplicationActor 1�

ApplicationActor 2�

C�

DirectorActor 1�

A�

B�

1: Create actor�

2: Actor plug-in�

3: Create actor�

