NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL ENGINEERING

Developing Role Figure Model based on UML Specification

Master Thesis
Fred Inge Henden

Spring 2004

II

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL
ENGINEERING

MASTER’S THESIS
Student's name: Fred Inge Henden
Area: Telematics
Title: Developing Role Figure Model based on UML specification

Description:

An UML specification for the TAPAS platform shall be produced. The specification shall give an overall
description of the system and serve as a template for application development. A generic role figure
specification template, which includes Class Diagram, State Diagram, Sequence Diagram etc., shall
be provided. The role figure specification shall be translated into an XML-based manuscript and
executed on the TAPAS support platform. A set of rules, guidelines and templates for role figure
specification shall be specified for the design phase and will replace the vague Application
Programming Interface available in plain text and Java method definitions.

Further, code generation from UML role figure specification to XML manuscript and Java code is to be
performed, using a UML modeling tool. To experiment with the overall work, a forward engineering
process shall be applied, starting from requirement analysis and specification, and ending with code
generation and testing of the functionality. The application example shall be based on moving actors,
which is conceptually referred to as Role Figure Mobility.

Start date: 20 January 2004
Deadline: 15 June 2004

Submission date:

Department: Department of Telematics
Supervisor: Mazen Malek Shiaa

Trondheim, 27 February 2004

Finn Arve Aagesen
Professor

II

Preface

This report is the result my master thesis at the Norwegian University of Technology and
Science. The work with this thesis was carried out at the Department of Telematics during the
spring semester of 2004 and has been a part of the TAPAS research project.

The thesis was suggested by my supervisor Mazen Malek Shiaa and the academic responsible
has been professor Finn Arve Haagensen. I would like to thank them both for their advices
and comments on my work.

I would also especially like to thank Mazen Malec Shiaa for always being available for

questions during this semester. His advices and guidance is appreciated has been very
valuable to me.

Trondheim, 21th of June 2004

Fred Inge Henden

II

Table of Contents

PREFACE I
TABLE OF CONTENTS I
FIGURE LIST VI
TABLE LIST VIII_Toc75509673
ABSTRACT IX
1 INTRODUCTION 1
1.1 THE TAPAS PROJECT ..ttt sttt st s 1
1.2 MODELLING OF TAPAS ..ot s 1

1.3 OUTLINE OF THE THESISceiitiitiitiiiiiiiiiieieteste ittt st st s 2

2 TAPAS CONCEPT AND ARCHITECTURE 3
2.1 THE THEATRE METAPHORceoiutiitiiiiteeiteeite ettt esite ettt esteeebteesbeesbteestesbteebteeabaeeseeenbaeenseesbeeenseesanee 3
2.2 TAPAS ARCHITECTURESutteutteutteuteettesteestteteetestesmeesseessteseanseeneesseesseenseeseensesneesneesseanseenseenseeneesseans 3
2.2.1 TAPAS DASIC QFCRITECIUFEc.eveeeeieeieeeii ettt ettt ettt e et e et e e taeenaeeeaaenanee s 4

2.2.2 TAPAS mobility handling architeCture.................ccoccuueeiieiieiiieeeeeeee ettt 6

23 TAPAS SUPPORT SYSTEMS IMPLEMENTED IN JAVAccciiiiiiniiniiniiniieiietetetentesie sttt sne e 8
2.3.1 The original layered design model..................c.ccccoviiiiiiiiiiiiiiiiiiiice e 8

2.3.2 The layered design model for MICrOTAPASccccceeveiiiiiicieiieeeeeeee et 9

2.4 EXAMPLE APPLICATIONS......ooitiiiitiitiniteiieitetete sttt sttt ettt sbesas sttt sbesas b s s st eaesnesae v e 11
2.5 SUMMARY ..ottt et a e e b et a e s 11

3 UML MODELLING 12
3.1 INTRODUCTION TO UML ..ot 12
311 The UML GIAGIAMSc...ccueeeeieeieeeeee ettt ettt et e st e nneenees 13

3.1.2 Modelling of dynamic BERAVIUOTccooouiiiiiieiiee ettt 18

3013 UML 2.0 .ottt ettt a ettt et et e nteeaen 18

3.2 UML MODELLING TOOLS....c.ceuttteitteiteteeutentententestestesueettestesaesaessessesaeeseestensensessensesaeesesueensessensensensessenne 19
32,1 MOdEIlING OOIS fEATUFES........c..ociiiiieiieeee ettt 19

3.2.2 Selecting a Modelling 10Occcocuiiiiiiiiiiiee ettt 20

33 THE RATIONAL ROSE REAL-TIME MODELLING TOOL........cccuerieiiniiriiiieiienieieieniesieeneeneeneeseesnesnesaeene e 21
3.3 1 ReAI-TIME fEATUFESc.occveeeeeeeiiecieeieee ettt ettt ettt be et eseesbaense s 21

3.3.2 Standard UML fEQUUTEsc..cccoccuevuiiiieiieieeieeit ettt et sie st sseese e ssseessesseensees 21

34 METHODOLOGY ...vitiiieiieiiteite sttt e er ettt s be e b s ae et sae s e b sas b st e s e s sa e b e sasenens 23
3.4.1 The use case driven APPTOACHcccccciviiiiriiiiiiiiieieeee ettt 23

3.4.2 THe URIfIEd PFOCESSccueuieiiiiiiiiiiiiteieee ettt ettt 24

3.5 SUMMARY ..ttt ettt ettt et e et et e et s te e et e se e e et e et anteemeees e e s e enseenseanseemeeemeeeaeeeseenseenseenseenseeneeaneenseennes 25

4 TAPAS MODELS 26
4.1 MODEL OF THE TAPAS SUPPORT PLATFORM.........ceettiitietiateeeesueesueenteenseeneeeneesseesseensesseseesneesaeenseenes 26
4.1.1 US@ CASOSccueeeeeeeeee et ettt ettt et ettt et e et e et e et e e bt e e st e e taeeateeensaeeabeeentaeetseennreeenas 26

4.1.2 ClaSS dIQQEAMS ..ottt ettt ettt 29

O B B D 77 8 3 7= PR SRSPS 32

414 SeGUENCE AIAGIAMS...........cc.occoveieeiieeiieeieeie ettt ettt ereese e s e enbeetseeseesseesses 33

4.1.5 REVEFSE @IINEEFINGeeeeee ettt ettt e s e ettt ettt et e et eanteeetaeensteensaeenseesnseesnsee s 38

4.1.6 Components and deplOYIENL..................cccceoueiiiiiiiiiiiiitiiit ettt 38

4.2 THE MICROTAPAS MODELoouiiiiiiiiiiiiiiiitiiiicee e s 39
4.2.1 USE CSES ..ottt e et e e e et e e e et e e e b e e e e et e e e et e e e et e e e earaaeans 39

4.2.2 ClaSS AIQQIAMS ..ottt ettt ettt ettt et n 40

4.2.3 SeqGUENCE AIAGIAMS...........cc.oeeeiieieeeieeee ettt ettt ettt et n et s 42

4.2.4 REVOFSE @NGINEEFING ...ttt ettt ettt et et ettt et e et e st e e s 43

4.2.5 Components and deplOYIent.................ccccuiviioiiiiiiiieiiee et 43

43 MODEL OF THE TELE SCHOOL APPLICATIONctiiutiuieiieiteuieienteniesteeseeieennesesesuesaessesueensessennensensensenne 44

II

4.3.1 US@ CASOSceeeeeeeeee ettt ettt ettt ettt et e et e et e et e et e e bt e e taeeateeeasaeenbeeensaeetreennreennas 44

4.3.2 ClASS AIAQUAMS..........c.ooeveeieeieeeee ettt ettt be st ettt e st e be e enbeeseeeseeses 44

4.3.3 SeGUENCE AIAGIAMS...........ccooccoveeieiieeiieeieee ettt ettt se et e et e eseesbeebees 45

434 SEALE UAGFAMS...........ccoooeveeieeieeeeee ettt ettt et b e e b e st eeteeseesseenbeeaseensenseeses 47

4.3.5 ReVerse eNGINEEIINGccccccieiuiiiuiiiiniiiiii ettt ettt ettt e 48

4.3.6 Components and deplOYIENL..................cccceoueiiiiiiiiiiiitiiite ettt 48

4.4 SUMMARY ..ottt et b e sh bt a e s 49

5 ROLE FIGURE MODEL TEMPLATE 50
5.1 SPECIFICATION OF REQUIREMENTScccitiiiuutiieiteeieeiiteeeeeeeeseeiaseereeeesessssssssseessssssnssssseessssssssssseeesssssnnnes 50
5.1.1 FUNCHONAL FEQUIFEMEIILSc.eieeieee ettt ettt ettt et eneeene e e enees 50

5.1.2 NOR-fURCIIONAL FEGUIFEIMENLS...........c.eeeeeeeeee ettt enee 51

5.2 SPECIFYING THE ROLE FIGURES........ccuiitiiiiiiiiiieiiieientiee ettt sttt st s 51
5.2.1 Finding the ROIE FIQUFES...........ccccccuiiiiieiiiii ettt ettt 51

5.2.2 The ApplicationRoleFigure template CLASScccoeiieiiiiiiiiiiieeeie et 52

53 DESCRIPTION OF THE FUNCTIONALITY ..vvvvttteeeeiiutirreeeeeeaionrrseeeesesssnsnsseseessssssssssessesesasssssseseesssssssnssesens 56
54 BEHAVIOUR SPECIFICATIONcuuiiiiiiiiiuieiteiteieste st st ettt et st b sae st et e e s e saesae b sae s eaesnesaeene e 56
5.4.1 The ApplicationRoleFigure State MACHINEccccoiviiiriiiiiiiiiieiieeeee e 56

5.4.2 The Role Figure SUPPOTt CLASSESccccciiiiiiiieiiieieeiieeee sttt 60

5.5 BUILDING AND DEPLOYING THE APPLICATIONccoiiuiiiiiiiiiiiieiiie ittt s 60
5.6 WORKFLOWutitiittetieiteitetesteste sttt ettt et e be st sheeat et et et et sa bt ebeeae et et enae st e ebesueeueemeenaensentenbesuesunens 60
5.7 SUMMARY .ttt sttt ettt sttt st ettt e et b e sa e bt e et eat et et e b e st e bt s bt eaeeatens et et enbeseeebeeaeen 61

6 AN APPLICATION BASED ON ROLE FIGURE MOBILITY 62
6.1 THE PATIENTRECORDS APPLICATIONctiiiiiiintieiteitententententesteesesseestessesnensessessesaeeseeseensensensensessennes 62
6.1.1 ReqUIrements SPECIfICALIONc.ccuiueeueiuieeee ettt ettt ettt ettt see e aeeneenees 63

6.1.2 Specifying the Role Figures and SUPPOFE CLASSEScoccueecueeieiiieiiiieieeeieesie e eee e 64

6.1.3 Description Of the fURCIHIONAIILYc.cccveeiiciiieieieeii ettt ees 65

6.1.4 BeRAVIOUF SPECIIICALION.ccveeeieieeiieeieeiieeteeeie ettt ettt ettt esaaestaesreesseenseense e 71

6.1.5 PatientRecordSUI DERAVIOUFccc.ooovueeieiieieeeiie e et 73

6.1.6 Implementation of the APPIICALION.ccccceciiciiiiiiiiiieeee e e 73

6.1.7 Deployment of the SOfiWaAre COMPONENLScccceeieeiiiiiniiiiit ettt 77

0.1.8 SCHEEI SROLS.........ccevveeieeeeee ettt ettt e et ettt e ettt e eab e baeenbee s 78

0.1.9 SUIIATY ..o ettt ettt ettt ettt ettt ettt eae e et ae et e 79

7 TEST AND VERIFICATION 80
7.1 TEST ENVIRONMENTooutiitiiiitinttettetteitetenteste st ste et oot et eaesae st ebesaeessessesaesesaesbesaeebeeseensensenaennesaeenes 80
7.1.1 Installation and CONIGUIATION.ccceieiiai ittt 80

7.2 TESTS AND RESULTS ...uteuteuiiientinteettetteitetetestes e st et et eas et esaestesaeebesaeestessesaensestesbesaeebeeseensensenaennesaeenes 81
7.2.1 The Tele School application on the basic TAPAS support platform................cccoeevvveevveneannnne. 81

7.2.2 The PatientRecords application on MicroTAPAS platformc..cccooeevieviiceiieenieneeeenene 82

7.3 TEST METHODOLOGYcvtiuiiuiiiiitietteiteie ettt sttt ettt st ae st ese et ss e b e b sae et e aesnesae v e 82
7.4 SUMMARY ..ottt sttt a e st a e e s n e &3

8 DISCUSSION 84
8.1 EXPERIENCES WITH THE MODELLING TOOL......coitiiiiiiiiiiiiieiiiienieiie ettt s s 84
8.2 EVALUATION OF THE TEMPLATE AND DEVELOPMENT PROCESS......c..cetrteuteietenieniinienieeneeneeneenseneennenne 84
8.3 ENHANCEMENTS AND FURTHER WORK.......cectiriintintiruiniieitentetententesteeueeseensesensensesaessesueeneensensensensensenne 85
8.3.1 ADPPLICALION MESSAZESc.eeeeeeeeeeeee ettt ettt ettt ettt e 85

8.3.2 TOWAFAS UML2.0) ..ottt ettt e et e b e e e sb e e sabeeeaseestbeennsaenesaennseens 85

8.3.3 Code generation from StAte diGZIAMSc..cooouiiieeiiieeeeee ettt neenes 85

8.3.4 XML and behaviour SPECIfICALIONc..cc.cceeeeeieeiesieeieeieeiee s ese et eae e sae s esseeasessaesees 85

9 CONCLUSION 86
REFERENCES 87
APPENDIX A: SOURCE CODE FOR THE PATIENTRECORDS ROLE FIGURES 89
APPENDIX B: XML DESCRIPTION FOR THE PATIENTRECORDSCLIENT 96
APPENDIX C: PATIENRECORDS SEQUENCE DIAGRAMS 100

vV

APPENDIX D: CD 100

Figure

FIGURE 2-1:

FIGURE 2-2:

FIGURE 2-3:

FIGURE 2-4:

FIGURE 2-5 :
FIGURE 2-6 :
FIGURE 2-7
FIGURE 3-1
FIGURE 3-2 :
FIGURE 3-3 :
FIGURE 3-4 :
FIGURE 3-5
FIGURE 3-6 :
FIGURE 3-7 :
FIGURE 3-8 :
FIGURE 3-9 :
FIGURE 3-10
FIGURE 4-1
FIGURE 4-2 :
FIGURE 4-7 :
FIGURE 4-8 :
FIGURE 4-9 :
FIGURE 4-10
FIGURE 4-11
FIGURE4-3 :
FIGURE4-4 :
FIGURE 4-5 :
FIGURE 4-6 :
FIGURE 4-7
FIGURE 4-8
FIGURE 4-10
FIGURE 4-11
FIGURE 4-12
FIGURE 4-9 :

FIGURE 4-13 :
FIGURE 4-14 :
FIGURE 4-15 :
FIGURE 4-16 :
FIGURE4-17 :
FIGURE 4-18 :

FIGURE 4-19
FIGURE 5-1
FIGURE 5-2 :
FIGURE 5-3 :
FIGURE 5-4 :
FIGURE 5-5 :
FIGURE 5-6 :
FIGURE 5-7 :
FIGURE 6-1

FIGURE 6-2:
FIGURE 6-3 :
FIGURE 6-4 :
FIGURE 6-5 :
FIGURE 6-6 :
FIGURE 6-7 :

: MICROTAPAS LAYERED DESIGN MODEL - ARCHITECTURE
T USE CASE DIAGRAMovvvieieteeeeeeeeeeeeeeeeeeeeseeesaeesesesssesssssssssssesssssasssssssssssssssssssssssssesssssssssssssessssssnsnnnnes

: ACTIVITY DIAGRAM

: USE CASES FOR THE PATIENTRECORDS APPLICATION

List

THE THEATRE METAPHOR CONCEPT USED IN TAPAS ...
OBJECT MODEL OF THE TAPAS BASIC ARCHITECTURE

TAPAS SYSTEM EXAMPLEvvvvieiiiiiiitiieieeeeeeeiiiteeeeeeeeeeeisseeeeeeeeestassseeseeeeestssreseeeeeeesssreseseseeesissrseeeeens

MOBILITY CONCEPTS IN TAPAS ...t e e et eeeeean
OBJECT MODEL OF THE TAPAS MOBILITY HANDLING ARCHITECTUREuuuuuu e 7
TAPAS LAYERED DESIGN MODEL - ARCHITECTUREouvvvevieeiiiinneeenennn.

CLASS DIAGRAM ...ttt e e ettt e e e e et e e e e e s eeaaataeeeeseeesataaeeeeeesesestaaseeeeessansaaeesesesssennnrannees
(0)23) 20l D) V€] 27N Y PRSP RERRRRR
STATE DIAGRAM

SEQUENCE DIAGRAMccouvvieiinieeeeeetteeeeeteeeeeeaeeeeeeaaeeesesaeeesansseessesseessessessensaesssssseessasaneesenneeesaseeesans
COLLABORATION DIAGRAMuuviiiiiuieieeiteeeeeeteeeeeeeeeeesseeeseesaseeseteeesantaeessesasesseseeessnssesessnneessnaeeess
COMPONENT DIAGRAMuttviiiieeeieeiitreeeeeeeeeeiiareeeeeeeeestaseseeeeeeeetsrsseeeeeeeetsresesaseeasessssseeeeeeninrrrseaeeens
DEPLOYMENT DIAGRAM
: THE USE CASE DRIVEN APPROACH

: USE CASES FOR THE TAPAS SUPPORT PLATFORMcceeiiiiiuniieieeeeeeiinieeeeeeeeesineeeeeeesesssnnssseeeesessnnns

THE ACTORPLUGIN PROCEDUREuuvtiiiiiieieiiiiiieeeeeeeeeiiteeeeeeeeeeataeeeeaeeeeeensssseeeeeeeaessssesseeseeesnsaeeens
CLASS DIAGRAM FOR THE TAPAS SUPPORT ENTITIEScoceoiuiieeiiiieeeeieeeeeeieeeeeeiaeeeeeaeeeeeeaneeeeeaneeeas
CLASS DIAGRAM FOR THE ACTOR IN TAPAS ..o e
CLASS DIAGRAM SHOWING THE ACTOR RELATIONSccciuiiiiiitiieeieiiieeeeteeeeeetaeeeeeaeeeeeaeeeeeaseeeeeaneneas
: CLASS DIAGRAM OF DIRECTOR]uviiiiiiiiiiiiiiccciiiee ettt e et e e etaeeeeivaeeeeaaseseenanaeeearaaaenns
TDATA TYPES ..ottt ettt e e ettt e e e tb e e e tteee e eatae e e e tbaeeaantseeeaaaaaeeetbaeeeantbeeeeasaeeeaaraaeanns
SEQUENCE DIAGRAM FOR SEND ACTORPLUGINREQ........cccoiiiiiiiiiiiiiiiieieeeeee et
SEQUENCE DIAGRAM FOR REQUEST TO ACTORcceetiurereeeeeeeiiirrrreeeeeeeeeiisrreeeeeeeesiinsseesseeeessinsseseeeeens
SEQUENCE DIAGRAM FOR REGISTER ACTORceeieeieeiurrereeeeeeeiirureeeeeeeeeeisnrseeeeeeeeesssssesseseessinssesseeees
SEQUENCE DIAGRAM FOR CREATE NEW ACTOR.........ccceruiiieriurieeiirieeessreeessseeessereesessssesessssseessseeeanns

: COMPONENTS OF THE BASIC TAPAS PLATFORMcuvvtiiiiiiiiieiieieeeeeeeciieeeeeeeeesennaeeeeeesessesnaeseeeseessinnns
: MOBILITY USE CASES IN MICROTAPAS ...ttt e e e

: CLASS DIAGRAM FOR MICROPNES AND ITS SUPPORTING CLASSESuuvvviiiiieiiiiiieieeeeeeeeeinneeeeeeens 40
: CLASS DIAGRAM FOR THE MICROACTORcceeiieiiieiieeeieeeeeeeitieeeeeeeeeeeaaeeeeeeeeesnataeseeesesesssnnseeseesens
: MOBILITY EXTENSIONS FOR MICROTAPAS ...ttt ee e
SEQUENCE DIAGRAM FOR THE USE CASE ACTORIMOVE........ccoovuiiiiieeieeiiiieeeeeeeeeeeieeeeeeeeeeesiaaeeeseee e
COMPONENT DIAGRAM FOR MICROTAPAS ...t
USE CASE DIAGRAM FOR THE TELE SCHOOL APPLICATIONuuuuuuteeeee s
CLASS DIAGRAM FOR THE TELE SCHOOL APPLICATIONuuuuuueeeeeeeee e
SEQUENCE DIAGRAM FOR THE TELE SCHOOL APPLICATION....
STATE DIAGRAM FOR THE TELE SCHOOL APPLICATIONcuuuvtuvertrerereeerereeeeesesesssssesesesssssessseseserenee.
COMPONENT DIAGRAM FOR THE TELE SCHOOL APPLICATION
: DEPLOYMENT DIAGRAM FOR THE TELE SCHOOL APPLICATIONcccotieruueiieeeeeeeiiieieeeeeeeeeennneeneeeens

: TEMPLATE CLASSES FOR THE ROLE FIGURE.........ccuuttitiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeesesssssssssesesesssssssennnnes

TEMPLATE CLASS FOR THE MICROTAPAS PLATFORM
TEMPLATE CLASSES FOR THE ROLE FIGURE TO BE USED WITH MOBILITY EXTENSIONS
TEMPLATE FOR THE ROLE FIGURE STATE DIAGRAMcuviiiiiiiieeiieeeeeeieeeeeeeeeeeeeeeeeeeeeeessnaeessnnneeeas
TEMPLATE STATE DIAGRAM FOR MOBILITYuvvviiiiiiieeiitieeeeeereeeeteeeeenseeeseeseseesenseesssnssesessnneessnnneess
MAPPING FROM STATE DIAGRAM TO CODEuuvviiiiiieeeeitieeeeeeeeeeeieeeeeeteeeeeesseessaeeessnssesessnneessnnneess
MAPPING OF STATE DIAGRAM TO XML MANUSCRIPT

CLASS DIAGRAM FOR THE PATIENTRECORDS APPLICATIONcuuvuvuurverreeereeeeesesesssssessssssssessssssrssssenen
LOG ON SEQUENCE FOR PATIENTRECORDScvviiiiiiiiiiitiee ettt eeeevaee e e e e eeavvaeeee e
SEQUENCE DIAGRAM FOR SELECT PATIENTcvveiiiiiiiieieieeeeeeeeieeteeeeeeseesinnseeeeeesesssnnasseeesssssnnnnnseeseessas
SEQUENCE DIAGRAM FOR OPEN RECORD
SEQUENCE DIAGRAM FOR CREATION OF NEW RECORD
SEQUENCE DIAGRAM FOR ADD NEW NOTE ...uvvviiiiiiiiiiiieeeeeeeeeeiiiteeeeeseeesiaseeeeeseeesssasseeesssssnsnnseeseesss

FIGURE 6-8 : SEQUENCE DIAGRAM FOR ADDING A NEW PATIENTcuvvviiiiiieiiiiiiirieeeeeeeeiieeeeeeeeeesnasneeeesesssnnnnneeseesens 69

FIGURE 6-9 : SEQUENCE DIAGRAM FOR MOVE TERMINALcccceiiiiiiuirieeeeeeeiiireeeeeeeeeeiisreeeeeeeeesissrereeeseeesnsneseseees 70
FIGURE 6-10 : STATE DIAGRAM FOR THE PATIENTRECORDSCLIENTcccciitiitttiieeeeeeeiitreeeeeeeeeeinreeeeeseeennsnereeeeens 71
FIGURE 6-11 : STATE DIAGRAM FOR THE PATIENTRECORDSSERVER CLASS ...cceeiviiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 72
FIGURE 6-12 : STATE DIAGRAM FOR PATIENTRECORDSULcccooiiiiiiiiiiiiieeeciieee e 73
FIGURE 6-13 : CLASS DIAGRAM FOR PATIENTRECORDSCLIENT.......uuuviiiiiieiiiiiirrieeeeeeeeiitnreeeeeeeeesnnreeeeeseeeennnseeseeens 74
FIGURE 6-14 : THE PATIENTRECORDSUI CLASSES ...ooiiiiiiiitiriieee e e ettt eeeetave e e eeeettaeeeeeeeeeeanareeeeeeeeesnrnraeaeeens 75
FIGURE 6-15 : THE PATIENTRECORDSSERVER CLASSiouutttiiiiiiiiiieeeteeeeeeeiieeeeeeeeesesssssseeesesssssssseeessssssssnnsseesesss 76
FIGURE 6-16 : COMPONENT DIAGRAM FOR THE PATIENTRECORDS APPLICATIONuuvviiiieeeeieiiiieeeeeeeeeeineeeeeeens 77
FIGURE 6-17 : DEPLOYMENT OF THE PATIENTRECORDS APPLICATIONcoooiuuviieeieeiiiiieeeeeeeeeeennereeeeeseeennnnneeeeeesns 77
FIGURE 6-18 : SCREEN SHOT FROM THE PATIENTRECORD APPLICATIONcuvvvviiiiieiiiiieeeeeeeeeeeieeeeeeeseeennnneeeeeeens 78
FIGURE 7-1 : TEST ENVIRONMENTiiutittiieeeiiiiiieeeeeeeeeieiteeeeeeeeseeaaaeeeeeesseessassessessesssaaseeseesssasssreseeessessssseseeeses 80

VII

Table List

TABLE 4-1 : ROLE FIGURES IN THE TELE SCHOOL APPLICATION

TABLE 7-1 : TEST CASES FOR THE TAPAS BASIC SUPPORT PLATFORM AND THE TELE SCHOOL APPLICATION
TABLE 7-2 : TEST CASES FOR THE PATIENTRECORDS APPLICATIONccooiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeel

VIII

Abstract

Telecommunication systems increase in complexity. The complexity and the inefficiency in
the development process, installation and maintenance of the systems represent a major
challenge in the future. An approach to face this challenge is to develop systems that are able
to configure themselves in different environments and that supports dynamic introduction of
new and distributed services.

TAPAS (Telematics Architecture for Plug and Play System) is a research project at the
institute for telematics at NTNU. The project vision is to develop architecture concept for
Plug-and-Play telecommunication equipment and services. The TAPAS concept is based on a
theatre metaphor where actors play roles. An actor in TAPAS is a software entity responsible
for providing and executing functionality. An actor constitutes a role figure by behaving
according to a manuscript defining the behaviour of a particular role in a play. The TAPAS
architecture requires a support system for software development, deployment, execution and
management. The basic support system is currently implemented in Java and is based on Java
RMI. A downsized version called MicroTAPAS is developed to support TAPAS for wireless
devices with limited resources. Some example services are also developed for demonstration
purposes.

The demands on short time-to-market from an idea is evolving to a complete service is
available on the market is growing stronger, and the services are getting more complex. It is
therefore important to be able to develop and introduce new services rapidly. The TAPAS
architecture provides concepts which support dynamic introduction of new services.
However, the existing support platforms and their APIs require extended knowledge of the
system, to be able to develop new applications. In this thesis a template for application
development on the TAPAS support platforms is created based on UML. UML models of the
basic TAPAS support platform and the MicroTAPAS platform are created and a model of the
Tele School example application is made. The platform models serve as an overall description
of the system and are used to develop a template for application development. The template
consists of a set of UML diagrams to describe a platform independent role figure model. This
model is mapped to a UML class diagram specification which is used to generate Java code in
the Rational Rose Real-Time modelling tool. A role figure specification in the representation
language XML can also be obtained by a translation procedure from the role figure model.

The result of the thesis work is an application development environment for TAPAS based on
UML and Java, where the complete modeling and implementation can be made using an
UML modeling tool. Maintenance updates and further development of the TAPAS support
platform can also be done in an efficient way by changing the model and generating new
code. Experimentation with the overall work is done by developing an example application
which is based on moving actors, conceptually referred to as Role Figure Mobility. The
application is based on the electronic patient journal that is used in hospitals. It is developed
to demonstrate how the concept of Role Figure Mobility can be used to make an application
more flexible, and save time and effort for the people using it in their daily routines.

IX

1 Introduction

Development of distributed systems and tele services is a complex and often time consuming
task. Telecom systems are becoming more complex and heterogeneous. Qualified personnel
are the critical factor for development, installation and deployment, as well as operation and
maintenance of tele service software. The question of how to cope with this challenging
situation in the future has been the motivation behind the TAPAS research project.

1.1 The TAPAS project

TAPAS (Telematics Architecture for Plug and Play System) is a research project at the
institute for telematics at NTNU. The project vision is to develop architecture concept for
Plug-and-Play telecommunication equipment and services [1]. TAPAS aims at developing an
architecture for network-based service systems with:

A): flexibility and adaptability,
B): robustness and survivability,
and C): QoS awareness and resource control.

The goal is to enhance the flexibility, efficiency and simplicity of system installation,
deployment, operation, management and maintenance by enabling dynamic configuration of
network components and network-based service functionality.

Another objective is to gain experiences and knowledge by implementing those various
features, both for demonstrating the implementation possibility and for validating the feature
applicability. The project has emphasis on PhD and Master degree education and scientific
results meant for publication.

1.2 Modelling of TAPAS

Developing a model for a software system before its construction is increasingly regarded as a
necessary activity in information systems development. Good models are essential for the
communication among members of the project teams and to assure that the system is possible
to implement. Modelling activities have been a cornerstone in many traditional software
methodologies for decades. As the complexity of systems increase, so does the importance of
good modelling techniques. There are many additional factors of a project's success, but
having a rigorous modelling language standard is one essential factor.

The use of object-oriented modelling in analysis and design started to become popular in the
late eighties, producing a large number of languages and approaches. UML has taken a
leading position in the area of object-oriented development partly through the standardisation
of the language within the Object Management Group (OMG).

In this thesis UML shall be used to model the TAPAS support platforms and to model new
applications in TAPAS. It shall be investigated if use of UML is an appropriate way to create

a development process for the TAPAS applications, and the result of this work will be one of
the steps towards a well established development process.

1.3 Outline of the thesis

Chapter 2 of this thesis gives an introduction to TAPAS and its concepts and architecture, and
is intended for the reader that is new to TAPAS. The next chapter describes the basic concepts
of UML with focus on the possibilities of modelling behaviour. A short introduction to object
oriented methodology is also given. If the reader is familiar with UML and object-orientation
this chapter may be skipped.

Chapter 4 describes how UML models are made for the TAPAS basic platform, the
MicroTAPAS platform and the Tele School application respectively. These chapters present
the models at a high level of abstraction and more detailed models can be found on the CD
following this thesis.

Chapter 5 presents a template for application development on the TAPAS platform which is
based on the models provided in the previous chapters.

In chapter 6 an example application is developed using the template provided and chapter 7
describes the testing which was carried out during the work with this thesis.

The last chapters include a discussion on the solutions chosen in this thesis and work to be
done in the future and at the end the results are summarized in a conclusion of the thesis.

2 TAPAS concept and architecture

2.1 The theatre metaphor

TAPAS as a concept, is based on the theatre metaphor where actors perform roles according
to predefined manuscripts, and a director manages their performance. Figure 2-1 shows the
components in the theatre metaphor.

In TAPAS, actors are software components residing on different nodes in the network,
representing the functionality that is executed at the node. The roles are modelled as extended
finite state machines. A director is an actor with supervisory status and represents a domain,
which is a set of nodes managed by a single director. TAPAS views service systems as
predefined plays that consist of manuscripts defining roles. An essential part of the concept is
that it shall be possible to plug generic actors into the system. The generic actors will then
receive a manuscript which defines the actor’s behaviour in the play that it will play a part in.

Theatre metaphor Concepts

A metaphor for concepts and functionality
Theatre: definition.

Repertoire: The set of Plays that may be
perfarmed at the thaatre.

ﬁ,—f—[Play: Defines a set of related functionality.

/ Director role figure : The manager of plays,
2 and supervisor for role figures, constituted
by an actor .

Role figures : The performers of plays.
Constituted by actors playing roles.

-
' _
LS
Capability: A unique set of properties of an
actor at the stage where he is playing.
\—{ Role session: A dialogue between two role figures.
_~— | Manuscript; The assigned bahavior, i.e. the defined
A | role of a role figure, constituted by an an actor.
-

Figure 2-1: The Theatre metaphor concept used in TAPAS

2.2 TAPAS architectures

TAPAS consists of four main architectures - the basic architecture, the mobility handling
architecture, the dynamic configuration architecture and the adaptive service architecture [1].
Each of these architectures has different focus, and is aimed to solve specific issues related to
handle the dynamic and adaptive nature of a plug-and-play networking system. These
architectures require a support system for software development, deployment execution and
management. Also, generic user functionality is required, to enable the flexibility features of

the system. This support system is called the TAPAS platform. A brief overview of the basic
architecture and the mobility architecture is given in the following sections, while these are
the two architectures of interest in this thesis. More information on the dynamic configuration
architecture and the adaptive service architecture can be found on the TAPAS project
homepage http://tapas.item.ntnu.no.

2.2.1 TAPAS basic architecture

The TAPAS basic architecture is founded on the theatre metaphor. Generic actors in the
nodes have the possibility to play different roles specified in corresponding manuscripts.
Nodes can be network components and terminals. Actors are software units that can be
executed on the nodes in the network. The roles are modelled as Extended Finite State
Machines. Directors are specialised actors that manage actors in a domain and have a base of
installed manuscripts and repertoires. The object model in Figure 2-2 illustrates the basic
architecture.

ServiceSystem PETr— Flay Manuscript
I o > ot Ty
can| be f
’ Rl
SenviceComponent =
AT desgribas_super
i i phsmian_of
RoleFigura / N Y

is_redized by Capability [

Director Mﬁnplicatlnnﬁ:}laﬁqure |
| i Dehieves_atoording e ™,

e

Actor

Domain

Status — has

Figure 2-2: Object model of the TAPAS basic architecture

Actors constitute role figures that behave according to a role. An actor playing a particular
role in a play is referred to as an ApplicationRoleFigure. The behaviour is defined by the
role’s corresponding manuscript. The roles have different requirements on capabilities and
status of the node that the actor executes on. A role figure is realised in an executing
environment and utilises the capabilities offered on a node. Role sessions are projections of
an actor’s behaviour when interacting with other actors. Nodes are part of a domain, which is
managed by a director. The complete service system is defined by a play and consists of
service components. A service component is realised by a role figure.

An actor’s possibility to play different roles depends on the capabilities that the role requires
and the capabilities offered by the node where the actor executes. Capabilities are the ability
or power to do something. The actor will utilise these capabilities when executing on the

node. Capabilities can be hardware properties like processing, storage, display and
transmission resources (e.g. CPU, hard disk, screen resolution, bandwidth), extra equipment

(e.g. printers) and software properties like data (e.g. user identification and authentication)
and functions (e.g. different versions of platform).

The support functionality of the basic architecture is realised by a set of procedures:
PlayPlugln, PlayChangesPlugln, PlayPlugOut, ActorPlugln, ActorPlugOut,
ActorBehaviourPlugln, ActorChangeBehaviour, ActorBehaviourPlugOut,
RoleSessionAction, ChangeActorCapabilities and Subscribe. These procedures are needed to
provide the basic set of functionality given in the basic architecture.

Node 1 Node2 Node 3 (Web-Server) Noded
AFEM1
AEEMI AFEM2 M cipts AEEMI AFEM2
Al ﬁ E and T APAS Ad ﬂ
L | . it L
PAS PAS PAS wpo PAS PAS
S¥sEm
weh -server
l PNES FNES _ PNES H
| l |
PCI PCI PCI PCI
Af Actor noi, Di Directornoi, 8 Plug-and-Play Boot _ _
AEEMI Actor Environment and Execution Module na i D static available

PNES: Plug-and-Play Mode Execution Support
PAS: Plugrand-Play Actor Support

e DDmamic available
PCE Plug-and-Flay Communication Infrastructure

Figure 2-3: TAPAS system example

The structure of the support functionality is given by the illustration in Figure 2-3. This
example shows actors executing on different nodes in a communication network. Each node
has communication infrastructure support (PCI) that enables network communication between
the nodes. PNES has to be present in every node that should be able to run TAPAS software.
PNES is loaded by a static available bootstrap code that downloads the necessary code from
the web server. PNES controls the execution of TAPAS software on a node, and routes
requests between actors present at the node where PNES runs or other nodes. AEEM
corresponds to a process or thread that executes a collection of actors with associated PAS. At

the web server the manuscripts of roles and the basic support system is available and will be
downloaded when needed.

2.2.2 TAPAS mobility handling architecture

The mobility handling architecture is an extension of the basic architecture and adds a new
layer of functionality handling mobility functions. Mobility is an important aspect of dynamic
and adaptive networking, and is needed for flexible service execution. The architecture is the
basis of all functionality related to flexibility in personal, terminal and actor movement.

In TAPAS, four mobility features are supported: user, user session, terminal and actor
mobility [1]. A user has user sessions and subscribed services that must be able to move along
with the user as it changes access points. The user gets access to the network through a
terminal. The terminal should be able to move in the network and still be able to access
services and applications. Actors are instantiated functionality at a node that should be able to
move along with its role sessions, state and variables. The illustration in Figure 2-4 shows the
mobility concepts in TAPAS, and its relations.

| Usar Terminal Aichitactung |
_ [|
- - - - - -y ‘
e Personal M] User
/ & content ' Representation

SYAYNYS

\ R
. ;
B £
u &
)) - ’ ‘ . ﬂ

T User Terminal
Interface Intarface User Session

Figure 2-4: Mobility concepts in TAPAS

A user is represented by its personal content and can be related to a terminal through a user
interface. The user can be identified by a username. The terminal interface can be identified
by a network address and relates to a user representation that identifies the user in the system.
A user may interact with the system, or services, within a defined user session. The double
interface between the user and the system, with the terminal in the middle, enables a flexible
way of representing users and terminals independently from each other.

Manuseript

UserSessionBase| Flay
> is_defiped by
LseifrofleBase ServiceComponent| yses Capability | reouires Role
control i Usas
coptdts is_realized_ty
rs
Diractor ApplicationRoleFiguire behaves accordng_to
- _[:""- Tesminal
rmEnages
constitube]
ma 5 —|
offers Actor
Domain | exacutes | Dode .
e is |at
ma%gas : l
User |-—
MobilihvManaaer | manages |Mobilitydgent || Userdgent
—
handles
handles

Figure 2-5 : Object model of the TAPAS mobility handling architecture

The TAPAS basic architecture is extended with emphasis on mobility, shown in Figure 2-5.
In user session base, all user session information used by actors is stored. In user profile base,
the information about users is stored. This information contains the user configurations and
service subscriptions. The director of a domain controls both user profile base and user
session base. In a domain, there is also one mobility manager. This object is responsible of
managing actors and terminals mobility. Mobility agents that run in terminals aid this
management and update the location-related information. A user agent manages user
interactions with its home domain, and visitor agent manages user interactions with its visitor
domain. The visitor agent is necessary because the user profile for a user is present in the
user’s home domain, but not in the visitor domain. A login agent enables controlled user
access to services in the system.

2.3 TAPAS support systems implemented in Java

Two prototypes which implement the TAPAS support platform have been developed. In
addition to the original TAPAS platform a downsized version is developed for wireless
devices with limited resources [7]. The new and optimized version is called MicroTAPAS and
it is based on the original TAPAS platform prototype, which means that no significant
changes are made to the basic support functionality. New functionality is however added for
mobility support. The platform has adopted two of the concepts in the mobility handling
architecture; actor mobility and terminal mobility. The next two sections briefly describe the
layered architectures of the two platforms.

2.3.1 The original layered design model

Figure 2-6 shows the layered design model for the basic TAPAS platform. Each layer in the
model contains different support functionality, and a description of the different layers from
[8] is summarized as follows:

¢ Plug and Play communication infrastructure (PCI): PCI uses Java RMI and
‘rmregistry’ for communication between nodes which constitutes a TAPAS domain.

¢ Plug and Play node execution support (PNES): This layer makes it possible to run
TAPAS on a node and facilitates routing of communication between nodes.

¢ Plug and Play actor support (PAS): Makes it possible to create and execute actors
within an operating system process. Additional functionality is routing between actors
and PNES instances. Each PAS instance is a separate Java Virtual Machine (JVM)
instance.

e Director: The director is responsible for management of plays, manuscripts and actors
in its domain and communicates with other actors.

¢ Plug and Play extended management (PXM): Support of extended services not
required for TAPAS basic support, but to satisfy specified operational properties and
requirements.

¢ Plug and Play extended support (PXS): Required for the applications to utilize PXM
functionality.

¢ Plug and Play applications: The collection of application actors. Instances
created/moved by using ActorPlugln/ActorPlugOut support functions. Interfaces PAS.

e Non Plug and Play applications: Functionality not defined according to
ApplicationActor requirements, but is allowed to communicate with actors, and to
utilize TAPAS support functionality.

Mon-TAPAS applications
interfaced to TAPAS | Mon- PaP applications |

g e A+
E _
= TAPAS specific
;:t applications PaP applications
(Actors)
TAPAS t_
extensions PaP Extended PaP Extended
g Management (PXM) Support (PXS)
& A
P Il L e e e S
B | TAPAS
g’f- dynamic basic | Director {Actor) |
o support _____’_____ —_—— e e e e
& Y J Y
| PaP Actor Support (PAS) |
TAPAS static ¢
basic support | PaP Mode Execution Support (PNES) I

Infrastructure layer -
| PaP Communication Infrastructure (PCI) I

Figure 2-6 : TAPAS layered design model - architecture

2.3.2 The layered design model for MicroTAPAS

Figure 2-7 shows the layered architecture of the MicroTAPAS platform as presented in [7].
The major change in this architecture from the one shown in Figure 2-6 is that the PAS and
PNES layers are merged into one PNES layer. Another important modification from the
original design model that is not visible is that Java/RMI communication is replaced by plain
socket communication in the PCI layer.

Applications

PaF specific layers

Mon-TAPAS applications

interfaced to TAPAS applications

TaPAS

exlensions

TAPAS

dynamic basic

support

TAPAS static
hasic support

Infrastructure layer |

TAPAS specific
applications

| MNon- PaP applications |

(Actors)

PaP Extended
Management (PXM)

PaP Extended
Support (PRS)

PaP Communication Infrastructure (PCI) |

Figure 2-7 : MicroTAPAS layered design model - architecture

10

2.4 Example applications

A few example applications are developed to demonstrate use of the TAPAS platform. APIs
and executable code for the Tele School and The Watcher application can be found at
http://tapas.item.ntnu.no. The Tele School application is used to make a first time UML
model for a TAPAS application and is described in section 4.3

2.5 Summary

This chapter has given an introduction to the concepts and architecture of TAPAS. The
TAPAS concept is based on the theatre metaphor, where actors play roles in a play, managed
by a director. An actor behaving according to a given manuscript, defining the functional
behaviour of a role in a play, is referred to as a role figure. TAPAS consists of four main
architectures - the basic architecture, the mobility handling architecture, the dynamic
configuration architecture and the adaptive service architecture [1]. An overview of the two
architectures that will be used in this thesis, the basic architecture and mobility handling
architecture, have been given. Two prototypes for TAPAS support platforms exist. The
TAPAS basic support platform is based on the basic architecture. MicroTAPAS is a
downsized version of the basic support platform, which are developed to execute on small
wireless devices. MicroTAPAS also realize two of the concepts of the mobility handling
architecture; role figure mobility and terminal mobility.

11

http://tapas.item.ntnu.no/

3 UML modelling

The Unified Modelling Language has quickly become the de-facto standard for building
Object-Oriented software, and a range of CASE tools which supports UML modelling are
available at the market today. This chapter will give a quick introduction to UML and its
concepts. Then the features of the available modelling tools will be investigated before the
modelling tool used in this thesis work will be described.

3.1 Introduction to UML

The OMG specification [5] states:

"The Unified Modelling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a system's blueprints, including conceptual
things such as business processes and system functions as well as concrete things such
as programming language statements, database schemas, and reusable software
components."

UML defines the notation and semantics for the following domains:

- The User Interaction or Use Case Model - describes the boundary and interaction between
the system and users. This model corresponds in some respects to a requirements model.

- The Interaction or Collaboration Model - describes how objects in the system will
interact with each other to get work done.

- The State or Dynamic Model - State charts describe the states or conditions that classes
assume over time. Activity graphs describe the workflows the system will implement.

- The Logical or Class Model - describes the classes and objects that will make up the
system.

- The Physical Component Model - describes the software (and sometimes hardware
components) that make up the system.

- The Physical Deployment Model - describes the physical architecture and the deployment
of components on that hardware architecture.

UML provides several types of diagrams that, when used within a given methodology,
increase the ease of understanding an application under development. UML defines a
complete object-oriented notation. It does not specify a methodology to be used, and is hence
referred to as a methodology independent notation. The UML diagrams offer a good
introduction to the language and the principles behind it.

12

3.1.1 The UML diagrams

The underlying premise of UML is that all the different elements of a system can not be
entirely captured by one diagram alone. UML provides a number of diagrams as a mechanism
for entering model elements into the model and showing overlapping sets of models elements
and their relationships. UML does not specify what diagrams should be created or what they
should contain, only what they can contain and the the rules for connecting the elements. The
diagrams in UML are [5]:

o Use case diagram: The use case diagram is used to identify the primary elements and
processes that form the system. The primary elements are termed as "actors" and the
processes are called "use cases." The use case diagram shows which actors interact
with each use case. An example of a use case diagram is shown in Figure 3-1 below.
The use case diagram can also show relations among use cases. The ‘extends’
relationship describes an alternative option under a certain use case. The ‘uses’
relationship shows that another use case is needed by a particular use case to perform
a task.

>

UseCasel

G >—@D

UseCase2 UseCase3

Actor
extends %

>

UseCase4

Figure 3-1 : Use case diagram

e Class diagram: The class diagram is used to refine the use case diagram and define a
detailed design of the system. The class diagram classifies the actors defined in the use
case diagram into a set of interrelated classes. Each class in the class diagram may be
capable of providing certain functionalities. These functionalities provided by the
class are termed "methods" of the class. Apart from this, each class may have certain
"attributes" that uniquely identify the class. Figure 3-2 shows an example of a class
diagram. The dependency relationship is used between class2 and class3 is a weak
association and indicates some sort of dependency between the classes. In this case the
relationship is /as and the cardinality is added to indicate that one instance of class2
has one or more instances of class3. The generalization relationship is used between
classl and class2, which means that class2 inherits the attributes and operations of
class1. Composition is used between class2 and class4 and class5. This indicates that
class4 and class5 is parts of ‘the whole’ class2.

13

Class1

Exattribute
%operation()
Class2 Class3
' 1 has 0.*
Epattribute —— —— —— >@;;attribute
%operation() Woperation()

Class4 Class5

Figure 3-2 : Class diagram

Object diagram: The object diagram is a special kind of class diagram. An object is
an instance of a class. This essentially means that an object represents the state of a
class at a given point of time while the system is running. The object diagram captures
the state of different classes in the system and their relationships or associations at a
given point of time. Figure 3-3 below shows how the relationship between class2 and
class3 from the class diagram in Figure 3-2 can be specified in more detail for certain
instances of the classes. The objects are specified with name of the instance and the
type, i.e. the class name.

/ class2R1 / class3R1
: Class2 : Class3

Figure 3-3 : Object diagram

State diagram: A state diagram, as the name suggests, represents the different states
that objects in the system undergo during their life cycle. Objects in the system change
states in response to events. In addition to this, a state diagram also captures the
transition of the object's state from an initial state to a final state in response to events
affecting the system. Figure 3-4 shows an example on a state diagram. The arrows
between the states indicate the event which caused the transition to a new state. The
diagram also contains a decision point CP1 which can be either true or false, and a
transition to a new state is executed depending on the result. State3 in the diagram is
special compared to the other states in the way that it has a small symbol indicating
that it has sub states. This means that state3 has its own state diagram describing its
sub states. The point Finall in Figure 3-4 is a termination point for this state diagram.

14

Figure 3-4 : State diagram

Activity diagram: The process flows in the system are captured in the activity
diagram. Similar to a state diagram, an activity diagram also consists of activities,
actions, transitions, initial and final states, and guard conditions. In Figure 3-5 an
example of a UML activity diagram is shown. Branches and forks are used to describe
alternative and parallel flows respectively.

fork
activity2
branch

activity4

merge

join }; i‘

Figure 3-5 : Activity diagram

15

Sequence diagram: A sequence diagram represents the interaction between different
objects in the system. The important aspect of a sequence diagram is that it is time-
ordered. This means that the exact sequence of the interactions between the objects is
represented step by step. Figure 3-6 shows a simple sequence diagram. As can be seen
in the figure message flow between instances can be synchronous or asynchronous.
Transaction number 1 is an asynchronous message passed between two objects, while
transaction number 2 describes a synchronous method call. It is also possible to
describe the state of the instances and actions to be taken as a result of message
reception.

class1 class2

1
|
1: Asynchronous message'
|
|
|

]
‘

2: Synchronous message
|
l
|
: local action|
|
|

j‘ Asynchronous rnessagé

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| 2.1: response

Figure 3-6 : Sequence diagram

Collaboration diagram: A collaboration diagram groups together the interactions
between different objects. The interactions are listed as numbered interactions that
help to trace the sequence of the interactions. The collaboration diagram helps to
identify all the possible interactions that each object has with other objects. Figure 3-7
shows how interactions between the objects are described with arrows. The sequence
is numbered, but does not specify time like the sequence diagram.

1. request1
/ class1R1 - / class2R 1
:Classl1 : Class2
2. request4
4. reques&(AequestZ
/ class3R1
:Class3

Figure 3-7 : Collaboration diagram

16

Component diagram: The component diagram represents the high-level parts that
make up the system. This diagram depicts, at a high level, what components form part
of the system and how they are interrelated. A component diagram depicts the
components culled after the system has undergone the development or construction
phase. As can be seen in the example in Figure 3-8 the diagram shows the
organization of the physical software components in a system. The dotted line shows
that component1 and component2 depends on component3 in this system.

component1=
|
L ;i
component3

—===
I
component2—1

Figure 3-8 : Component diagram

Deployment diagram: The deployment diagram captures the configuration of the
runtime elements of the application. This diagram is by far most useful when a system
is built and ready to be deployed. Figure 3-9 shows how the deployment diagram is
used to describe how the software components are deployed on different nodes.

node1

node2

component1

component4
component2

component5

component3

Figure 3-9 : Deployment diagram

17

3.1.2 Modelling of dynamic behaviuor

UML has its background from the enterprise applications. In these applications data base
modelling has been important and UML contains well defined mechanisms for modelling of
static data. Demand and support for formal modelling of dynamic behaviour is however
lacking in UML. Telecom companies have for example used SDL[10] to develope theire
complex real-time systems, which makes it possible to make a functional model of the system
to be used for formal analysis, code generation and verification.

3.1.3 UML 2.0

The new version of UML is called UML2.0 and was standardized in June 2003. It provides
some major improvements over UML 1.4, and has due to strong participation from the major
telecommunication companies like Ericsson, Motorola and Simens taken a big step towards
SDL. Due to the elements taken from SDL some significant improvements are made in the
support of behaviour modelling. [11] summarizes the major improvements in UML2.0 by the
following bullets:

e New concepts for describing the internal architectural structure of Classes, Components
and Collaborations by means of Part, Connector and Port.

e Introduction of inheritance of behaviour in state machines and encapsulation of sub
machines through use of entry and exit points.

e An improved encapsulation of components through complex ports with protocol state
machines that can “control” interaction with the environment.

e Improvements of actions and activities and the use of flow semantics instead of state
machines.

e Interactions are improved with better architectural and control concepts such as
composition, references, exceptions, loops and alternatives. Interaction Overview
Diagrams also gives better overview.

e The new concepts; Part, Connector and Port are introduced to increase the architectural
support and makes it possible to describe a class behaviour as a collaboration of behaviour
of the internal instances of the class.

State machines in UML2.0 are used to model discrete behaviour triggered by events such as
signals, timeouts, operation calls and change in values. The triggers cause a transition if the
trigger is specified for the current state of the state machine. State machines can also be used
to express the protocol through a port. The two different kinds of state machines are referred
to as behavioural state machines and protocol state machines. In UML1.4 there were no
limitations on how to enter and exit composite states. In UML2.0 entry and exit points are
named points that are placed in the frame of the state machine. Another important new feature
of UML is that behaviour can be inherited and specialized.

18

3.2 UML modelling tools

A range of CASE tools supporting UML are available, offering various features to the
designer of the UML models.

3.2.1 Modelling tools features

The primary use of a UML tool is to enable the user to draw diagrams and create a model.
However, more features can be expected from the CASE tools supporting UML available on
the market today. Below is a summary of some common UML tool features:

o« UML diagram support: The UML tool should support all the nine diagrams that
make up UML.

o Forward engineering: The characteristic of automating the generation of source code
is called forward engineering. Tools which support forward engineering are able to
create source code from the classes with the methods stubbed out. This stub code can
be filled with actual code by the developer.

o Reverse engineering: Reverse engineering is exactly the opposite of forward
engineering. In reverse engineering, the UML tool loads all the files of the
application/system, identifies dependencies between the various classes, and
reconstructs the entire application structure along with all the relationships between
the classes. Reverse engineering is a feature normally provided by sophisticated and
high-end UML tools.

e Round-trip engineering: An important rule in software design is that no design
remains unchanged. This is as true for small systems as it is for large systems. It
becomes very difficult to keep the design of the system updated with the changes in
the source code. The round-trip engineering feature enables the UML tool to
synchronize the model with the changes in the application code.

e Documentation: A UML tool must necessarily provide some way for the designer to
document design decisions in the diagrams by using simple things such as annotations
or comments. In addition to this, the UML tool should support the generation of
reports/listings of the different design elements of the diagram.

e Version control: Configuration management is an integral part in the building of
software systems. Considering that the design of a system is a very important artefact
of the software lifecycle, maintaining versions and baselines of the system design is a
desirable feature to have in UML tools.

o Collaborative modelling environment: A collaborative design effort needs to be
properly synchronized by the UML tool. Some UML tools provide support for a
collaborative modelling environment with capability to compare different versions
designs for differences or even merge different versions of a design.

o Integration with popular Integrated Development Environments (IDE): This
feature would enable the UML tool to be updated with the changes in the source code
made in the IDE.

e Test script generation: In addition to generating stub code, the tool also generates
test scripts that can be used for testing how the generated class functions.

19

3.2.2 Selecting a modelling tool

Many factors may have an influence when selecting a modelling tool. Some tools are open
source and some tools require rather expensive licenses, not automatically implying that they
are any better than the ones which are free of charge. An important issue when selecting the
tool is how it will integrate with other tools and that code for the desired programming
language can be generated.

As stated in section 3.1.3 UML2.0 introduces many enhancements for modelling of
behaviour. However, very few tools on the market are jet supporting the new version of UML.
At the time of writing Telelogic G2 claims to be the only modelling tool to fully support
UML2.0, but the tool does not yet support generation of Java code (version 2.2).

Since the TAPAS platforms are implemented in Java, code generation to Java is regarded an

essential feature and a tool supporting this feature will be preferred. Hence, a modelling tool
from Rational Software is chosen which supports generation of Java code and UML1.4.

20

3.3 The Rational Rose Real-Time modelling tool

The Rational Software Company has played a significant role in the development of UML.
Their CASE tool Rational Rose is one of the best known UML tools and comes in several
editions. Rational Rose Real-Time is a modelling tool tailored to meet the demands of real
time systems. In the following sections the features offered by this tool will be described.

3.3.1 Real-Time features

In addition to supporting the core UML constructs, Rational Rose Real-Time uses some of the
extensibility features of UML to define some new constructs which is specialized for real-
time system development. The new constructs allow code generation of elements which uses
services provided in a Service Library such as concurrent state machines, message passing
and timing services. These are services that most real time systems must implement. Adding
of these services allows the designer to concentrate on the system design instead of e.g.
concurrency issues.

So, how does these new constructs fit with modelling of TAPAS? Since TAPAS model actors
their behaviour as state machines which communicates by message exchange, it looks like
using these features will be a good idea. Modelling the TAPAS applications as independent
and concurrent state machines in this tool would be very quick and code generation features
for these state machines are very good. However, some of the TAPAS concepts are not easily
adoptable to these constructs. The first problem is that additional classes are generated for the
service library which handles scheduling of tasks, message passing etc. One of the reasons for
the good code generation features in this tool is that a support system for the real time
modelling is included in the model. In TAPAS this would result in quite large overhead in the
code representing the manuscripts. The real time is based on running of one state machine in a
separate thread and TAPAS has its own organization of threads and scheduling. Clearly, these
two support systems are not easily integrated. Another argument for not using the real time
constructs is that they are not standardized, but are special features added to UML 1.4 by
Rational Rose. It is not a good idea to depend on a particular tool when developing the
TAPAS models.

Due to the results of the discussion above the real time features of the tool is not used in this
thesis. Instead, the standard UML features of the tool are used. The next chapter describes the
standard features of the Rational Rose Real-Time tool.

3.3.2 Standard UML features

Section 3.2.1 summarizes some of the features which can be expected by the UML modelling
tools. The diagrams supported by the Rational Rose Real-Time modelling tool are listed
below:

e use case diagrams

e class diagrams
e state diagrams

21

collaboration diagrams
sequence diagrams
component diagrams
deployment diagrams

Of these diagrams, the class diagrams are essential to create an executable model. As can be
seen activity and object diagrams are not supported by this tool.

Further, forward engineering and reverse engineering, are supported for the standard UML
constructs as well as for the real-time extensions.

22

3.4 Methodology

A methodology formally defines the process that is used to gather requirements, analyze
them, and design an application. As mentioned UML does not specify a methodology, which
means that UML provides constructs to be used during the development, but it does not say
anything about how the work shall be done. There are many methodologies for software
development, each differing from the other in some way. Selecting a methodology for a
project very much depends on what type of application is to be developed. Some
methodologies are developed to be used for small embedded systems, with high demands for
safety, while others are best suited for large scale business applications. Some methodologies
support a large number of developers while others are best suited for a small team or just a
single person.

When selecting a methodology, it must usually be customized to fit the organization adopting
it. Some processes are quite heavy and does not apply well to small organizations. In this
case, customizing may mean picking what is needed from the original process. Some very
large companies may even need to extend the original process to meet their development
requirements. However, most processes are founded on some basic ideas for software
development. A basis for many object-oriented development processes are the use case driven
approach [12].

3.4.1 The use case driven approach

In the book Object-Oriented Software Engineering — a use case driven approach [12] an
object-oriented development process is described. This book is by many considered a classic
and was the first book to put forth the idea that the customer's requirements, as expressed
within use cases, should be the most important driving force in software development. The
process described goes from the requirements documentation to a finished and maintainable
software product and is referred to as the use case driven approach. Use case driven means
that the use case defined are the basis for the entire development process. This is illustrated in
Figure 3-10 below.

Use Cases

Y2

specified by realized by implemented by tested by

Analysis Design Implementation Test

Figure 3-10 : The use case driven approach

23

The four phases specified are: Analysis, design, implementation and test. As can be seen the
use cases are input to all phases of the development process:

e Analysis - is intended for defining the requirements and the relationships between the
required functions of the system. Use cases are further specified to find the analysis
classes to realize the use cases.

e Design - takes the models and preparations of the Analysis phase and applies them in
terms of the actual environment where the computer program will run. In the design
phase, the use cases are realized by classes of the programming language chosen.

¢ Implementation — the classes from the design phase are implemented.

e Test — the implementation is tested according to the specified use cases.

3.4.2 The Unified Process

After creating UML as a single complete notation for describing object models, the creators
of UML turned their focus to the development process. The process described in [12] does not
address issues as project management and development tools. A new process called the
Unified Process was developed to address these issues and to introduce a more complete
methodology. The Unified Process is actually more like a generic process framework that
developers can customize by adding and removing activities based on the particular needs and
available resources for a project.

One of the key aspects of the Unified Process is the use case driven approach described in the
previous section. The key aspects of the process are:

e Use case driven
e Architecture centric
e [terative and incremental

The Unified Process specifies that the architecture of the system being built, as the
fundamental foundation on which that system will rest [14], must sit at the heart of the project
team's efforts to shape the system, and also that architecture, in conjunction with the use
cases, must drive the exploration of all aspects of the system.

The third fundamental aspect of the Unified Process is its iterative and incremental nature
[14]. An iteration is a mini-project that results in a version of the system that will be released
internally or externally. This version is supposed to offer incremental improvement over the
previous version, which is why the result of an iteration is called an increment.

One well known process which is an example of a specialized version of the Unified Process
that adds elements to the generic framework is the Rational Unified Process (RUP). Some
links to object-oriented processes can be found at the OMG recourse page:
http://www.uml.org/

24

3.5 Summary

This chapter has briefly described UML. Since one of the main objectives in this thesis is to
develop a specification for the TAPAS role figure, main focus has been on description of
behaviour. The main features of UML2.0 have been described, which shows that UML2.0 has
been improved with respect to modelling behaviour. Some of the features to expect from the
CASE tools for UML are described and a description of the modelling tool which is used in
this thesis work was given. Finally, the use case driven approach and some processes for
object-oriented software development were introduced.

25

4 TAPAS models

This chapter describes how UML models are made for the TAPAS basic support platform, the
MicroTAPAS platform and the Tele School example application. The models will be used to
create a template for future development of TAPAS applications.

4.1 Model of the TAPAS support platform

The TAPAS support platform which provides the middleware functions in TAPAS is
developed in Java J2SE and communication is realized by Java RMI. Documentation of the
implementation is insufficient and only a textual API exists. The implementation of the
support system is quite complex and it is hard to figure out how it works by reading code and
APIs. In addition to complete the documentation of the system a complete model will also
make further development and changes to the platform easier to implement. In this chapter a
UML model is made for the TAPAS support platform.

4.1.1 Use cases

As described in section 3.1.1 the use case diagram is used to describe the requirements of the
system and the functionality that it provides. For the TAPAS support platform we start by
identifying the use cases. To make the use case diagrams, the functions that the platform
offers and the users of these functions needs to be found. The procedures needed to provide
the basic set of functionality given in the basic architecture are: PlayPlugln,
PlayChangesPlugln, PlayPlugOut, ActorPlugln, ActorPlugOut, ActorBehaviourPlugln,
ActorChangeBehaviour, ActorBehaviourPlugOut, RoleSessionAction,
ChangeActorCapabilities and Subscribe. The users of the procedures are: an actor in TAPAS,
the director or an instance outside TAPAS. An overview of the use cases for the support
platform is shown in Figure 4-1.

26

AKX AR

applicationRoleFigure ~ human user webServer directorl
e I O I
actorPlugln playChangesPlugln | | roleSessionAction
actorPlugOut actorBehaviourPlugln | | actorCapabilitics actorPlay
playPlugln actorBehaviourPlugOut || subscribeRequest common
I)
playPlugOut actorChangeBehaviour || subscribeCancel | | control functions

Figure 4-1 : Use cases for the TAPAS support platform

27

As can be seen in the figure, each TAPAS procedure is contained in one package and some
packages also contains common use cases and control functions (i.e. for communication with
the instance through a consol). A forth user of the system, the web server, is also specified.
The TAPAS platform uses a web server for storing of the code base and the available plays,
thus this is a passive external user of the system.

As an example Figure 4-2 shows the use cases which are needed to complete the actorPlugln
procedure. The use cases are described in the actorPlugln package. The actorPluglnReq use
case is composed of the use cases send actorPlugln and request to actor, which is a generic
use case for sending a request to another actor. The director performs the plugin of the actor
to the PNES which results in the creation of a new actor and downloading of the manuscript
from the web server.

x -

applicationRoleFigure actorPlugInReq

(from Use Case View) uses uses

@ @ X

send actorPluglnReq request to actor
(from Use Case View)

directorl

$
@
usey \] uses
@ D=

register actor create new actor

(from common)

webServer

(from Use Case View)

Figure 4-2 : The actorPlugln procedure

28

4.1.2 Class diagrams

Before looking into the use cases in more detail, a description of the static structure of the
implementation must be made. Figure 4-3 shows a class diagram for the classes used to
realise the PAS and PNES layers described in section 2.3.1. The PAS, PNES and
DebugServer classes implement objects in the TAPAS architecture that will communicate
with objects residing on other nodes. In the basic version of the support platform
communication is handled by Java RMI. The RMIServer class is a base class which inherits
the UnicastRemoteObject class and provides the functionality needed for RMI
communication. As can be seen in Figure 4-3 the PAS, PNES and DebugServer extend the
RMIServer class.

UnicastRemoteObject @ @)
(from server) 1 1
ActionListener Controllnterface
(from event)
RMIServer
O
PASInterface
® ——{ PAS PNES DebugS
e erver
Runnable e
(from lang) / 1 \1 \ \
has / \has O O
PR Y ! PNESInterface Debuglnterface

ActorManager ActorFactory

Figure 4-3 : Class diagram for the TAPAS support entities

The methods which are offered by PAS, PNES and DebugServer are specified in the
PASInterface, PNESInterface and Debuglnterface classes.

The next class diagram, shown in Figure 4-4, describes how the actor entity is realized. The
two types of actors that are defined are the ApplicationActor and the DirectorActor. An
ApplicationActor resides in one PAS which belongs to an instance of PNES, while one
DirectorActor controls the PAS. For the DirectorActor class an implementation called
Director]l is made which will be the director provided with the support platform. The
implementations of the ApplicationActor will be defined in the specific applications.

29

ActorContext

1 — — | Actor

1
1
BaseFrame 41 has \
O O

Controlinterface ActorInterface

ApplicationActor DirectorActor
\ 3
belongs to
1
PAS - Directorl
1 controls 1
|
belongs to \D
1
PNES

Figure 4-4 : Class diagram for the actor in TAPAS

Each actor is represented by a graphical interface which is implemented by the BaseFrame
class. The ActorContext class holds the actor’s context data, which are references to the
classes that the actor relates to.

The actor and the related classes are shown in Figure 4-5. As can be seen the actor plays a
part of a play and also keeps a reference to the play that it is currently a part of. The actor has
a collection of role sessions to other actors which it communicates with in the
RoleSessionCollection class and a CapabilitySet which describes the capabilities of the actor.

30

Role

plaY/17—* .
L g
Actor /*)
P 1\ plays Eole\ln | Y !
o 1 \has = Play
L/ has N 1
CapabilitySetl RoleSessionCollection

\1
cbgsits of
*

RoleSession

Figure 4-5 : Class diagram showing the actor relations

The director holds a ReportoireBase which contains the plays and the corresponding
manuscripts for the domain which the director manages. It also has a PlayingBase which
contains the playing actors in the domain. This is described in Figure 4-6 below.

Directorl

/1 N

has / \ has
1
L1 N
RepertoireBase PlayingBase

Figure 4-6 : Class diagram of director1

31

4.1.3 Data types

The most important data types used in the TAPAS basic support platform is shown in Figure

4-7.

GAI RequestPars ActorPluglnReq
&ptype : String gsender : GAL glocation : GAI
Esnode : String greceiver : GAI role : Role
Eraddress : String gapplicationMessage : ApplicationMessage &play : Play
Eopas : String grequestType :int &1qCaps : CapabilitySet
&yname : String &$ PlayPlugln : int =1 HrsCaps : Capability Set

&$ htRMIhandles : Hashtable
&3 initialized : boolean = false

ApplicationMessage

groleSessionld : String
messageType : String
gmessage : String[]

¢$ PlayChangesPlugln : int =2

93 PlayPlugQOut : int =3

&$ ActorPlugln : int =4

&8 ActorPlugOut : int =5

&% ActorBehaviourPlugln : int =6
&8 ActorChangeBehaviour : int =7
&$ ActorBehaviourPlugOut : int = 8
&8 ActorPlay :int=9

&% SubscribeRequest : int = 10

&% SubscribeReport : int =11

%ActorPlugInReq()
%ActorPlugInReq()

&% SubscribeCancel : int = 12

&8 RoleSessionAction : int =13

&8 ActorCapabilities : int = 14
&E$ RT : String[]

¢play : Play

%ApplicationMessage()
%ApplicationMessage()

RequestResult gactorPlugInReq : ActorPluginReq
&plugOutRoleSession : RoleSession
$$OK :int=0 &plugOutActor : GAIL
gresultType : int ¢apo :boolean
SSFAIL:int=1 gupgradePars : String]]

groleSession : RoleSession
gsubscribeRequest : SubscribeRequest
gsubscribeReport : String[]
gsubscribeCancel : String
geapOpType : int

gcapabilities : Capability Set

resCaps : Capability Set
gremoved : boolean
gresultCause : String
roleSession : RoleSession
subscribeldentifier : String

“%RequestResult()
%RequestResult()
%RequestResult()

%RequestPars|()

Figure 4-7 : Data types

The GAI (Global Address Identifier) class represent the location identifier of addressable
entities in TAPAS. The four addressable entity types are: PNES, PAS, Actor and
RoleSession. A GAI consists of several parts specific to the addressable type. A PNES
instance is identified by a PNES identifier value. A PAS instance is described by a PNES
identifier and a PAS identifier. Further, an actor instance also needs an actor identifier and a
RoleSession instance needs all these identifiers plus a RoleSession identifier. By using this
address scheme all entity instances can be uniquely identified in a global domain.

The RequestPars identifies the TAPAS request and the RequestResult contains the
RequestResult. The ActorPluginReq needs some data specific to this request and is thus
implemented as an own class. The ApplicationMessage class is the message format used for
communication between Role Figures.

32

4.1.4 Sequence diagrams

The use cases defined in the previous section can be described in more detail by sequence
diagrams. The use cases are realized by requests, where the input parameter is of the data type
RequestPars. The request returns a parameter of the type RequestResult, which either has the
value OK or FAIL. The chain of requests is broken whenever one of the requests fails and
FAIL is returned all the way back to the initiator of the first request, with information for
debugging purposes. The data types; RequestType and RequestResult were described in
section 4.1.3

Each use case has request chains which often consist of more than ten requests. Each use case
may then have quite a few scenarios where exceptional flows are executed. To model all these
possible sequences would provide a very large number of sequence diagrams and would not
give a good overview of the system. Sequence diagrams are therefore only made for the main
flows. When reading a diagram for a use case’s main flow, it will be quite obvious what
exceptional flows which may occur.

As an example the sequence diagrams for the use cases which are needed to complete the
actorPlugln procedure are described. Figure 4-8 shows the sequence diagram for the send
ActorPluginReq use case. As can be seen the new RoleSession started is added to the
ActorContext the common use case request to director is performed in the next step.

33

RoleFigure ApplicationActor ac.ActorContext

1: a¢ctorPlugIn(roleSessi

1.1: requestToActor(rp.requestType=actorPlugln)

described in
requestTo
Actor

|

|

|

|

|

|

|

|

|

:

:

|

l <
1 1.1.1: RequestResult. OK
|
|
|
|
|
|
|
|
|
|
|
|

1.2:rsc.addRoleSession(roleSession)

S T T
11.3: RequestResult. OKi

Figure 4-8 : Sequence diagram for send ActorPluginReq

The sequence diagram for the use case request to actor is shown in Figure 4-9. This is the
generic use case for a request to another actor. The actor to be requested in this case is the
director of the domain. The request is sent to the PAS instance which the actor belongs to. If
the requested actor resides in the same domain, the ActorManager is requested to get the
identifier of wanted actor. If the requested actor does not belong to this PAS the request is
forwarded to the correct PNES instance and then to the correct PAS instance within this
PNES. In this scenario the requested actor belongs to the same PAS.

34

ApplicationActor PAS Actor ActorManager

]]

1:requestToActor(rp) |

| |
1.1: syncRequestFromAgtor(rp)

|
1.1.1: STcRequestFrom}:’NES(rp)
|

|
1.1.1.1: actorGet(rp.receiver)
|

[

g.1.2.1: RequestResult. OK

1J1.1.3: RequestResult%.OK
1 |

El .2: RequestResult.OK

1.2:Re wgtResult.OK

444444444444444,@

Figure 4-9 : Sequence diagram for request to actor

Figure 4-10 shows the sequence diagram for actorPlugln. In this sequence the director actor
plugs the new actor into the PAS instance of its domain. The use case create actor, which is
shown in Figure 4-11, is used to load the correct class from the web server. When the actor is
loaded an instance is started and the actorPlugln procedure is completed.

35

pasl:PAS

director] :Director]

a:ApplicationActor

am:ActorManager

sc:SubscribeCollection

rb:ReportoireBase

1: actorEn:try(rp.requestType=9;10torPhlgIn)

|
1.1: registerEvent(request,sende}, location)

: < — — — — _—
1.3: syncRequestFromActor(rp.requestType=actorPlugln) ! !
| | |
1.3.1: syncRequestFromPNES (rp.request Type=actorPlugIn) :
1.3.1.1: actorPlugln(rp)
j .3.1.1.1: agtorCreate(rp ! ! !
described n ! |
pas.actorCreate | |
1.3.1.1.1.[l:]actor ; : ac:ActorContext
- 1.3.1.1.2; |

I | l:‘l I
| | |
1.3.1.1.3: init(ac) | | o
| |
1.3.1.1.3.1: : i :
| | |
1.3.1.1.4: actorPut(aqtor) : ! :
| ! I

|
PR Y -
I ! I

|
1.3.1.1.5: start() 1 o
! I
2 1.3.1.1.5.1: i i
! |

|
I3.1.1.6: RequestResult. OK ! :
< - | |
|
1.3.1.2: RequestResult. OK ! |
< C !
! |
! I
! |
! |
! I
! I
! I
! |
! I
! I
! |
! I
! |
! |
! |
! |
! |
! |
! I
! I
| |

1.3.2: RequestReSI%%.O K
|
1 .‘@ RequestResult.0

Figure 4-10 :

Sequence diagram for register actor

36

pas:PAS

|
|
|
| 1: actorCreate(rp)
l
|

|
I.1: createActor(actorPlay,dctorRole)

afActorFactory startPaP:StartPaP

PR

1.1.1.1: loadedClass
|

1.1.2: badedChss.n%WImtance()

1.1.1: Joader.fetchClass(url,className)

Figure 4-11 : Sequence diagram for create new actor

37

4.1.5 Reverse engineering

The model of the TAPAS support platform is based on the existing Java prototype, and is
completed by reverse engineering of the existing code. The concept of reverse engineering
was explained in section 3.2.1. The reverse engineering feature of the modelling tool is
actually synchronization of code from the generated files when all methods and attributes are
defined in the model. This means that the model is updated with the latest changes in code
within the methods from the generated files.

One effective approach to complete the model would then be to replace the generated files
with the existing source files of the prototype, and then use the synchronization function to
import the code into the model. This approach was however not successful. The
synchronization procedure failed with ‘build failed’ error and no additional information was
given. After a lot of time was spent on investigating the documentation and searching the
internet for tips on solving the problem, still without progress, a manual approach was taken.
The reverse engineering process to complete the model was performed manually by copying
the code to be reused from the prototype source files into the models code fields. This process
was quite time consuming, but successful. The final result is a complete model, from which
executable files can be built and tested on target nodes.

4.1.6 Components and deployment

Deployment and relation between the deployed components can be described by UML
component diagrams and deployment diagrams. Figure 4-12 shows the components for the
TAPAS basic support platform. The PaP component contains the code for the support
platform and is dependent on the externalJava component which contains the external Java
classes that the support platform uses.

<<RTJava <<RT]Java Externa

PaP — > externallava

Figure 4-12 : Components of the basic TAPAS platform

Deployment of the support platform software on the TAPAS nodes is dynamic in the way that
the software is downloaded from a web server when needed by the nodes. The platform can
run on all devices which have the Java J2SE runtime environment installed. Thus it does not
make sense to describe the deployment of the support platform using the deployment view in
the modelling tool, which focuses on exactly what processors and hardware the software
components are deployed on. It can however be useful to use the deployment diagrams to
describe some scenarios on what components of the TAPAS applications which are running
on the different TAPAS nodes. This will be discussed in the modelling of the applications
later on.

38

4.2 The MicroTAPAS model

To be able to run TAPAS on wireless devices with limited recourses a downsized version of
the basic TAPAS platform was developed and a prototype made in [7]. Later mobility support
for this platform was added [6]. This chapter will give a short description of the MicroTAPAS
platform and the supported mobility functions and describe how an UML model is made.

4.2.1 Use Cases

Use cases for the MicroTAPAS platform are quite similar to the use cases for the TAPAS
basic support platform, since the same TAPAS functions are implemented in this platform as
the previous one. In this section focus will be on the mobility functionality introduced in the
MicroTAPAS mobility extension package. The new use cases for mobility are summarized in

>

move t\
L @2

register actor enter command
apphcatlonRoleFlgure\ / human user

cancel actor registration

Figure 4-13.

>

move t\
e .

register actor enter command
apphcat10nRoleF1gure\ / human user

cancel actor registration

Figure 4-13 : Mobility use cases in MicroTAPAS

The move actor use case describes the actorMove procedure in the TAPAS mobility
architecture. The use cases register actor and cancel actor registration are used to register the
actor with the mobility manager at a new domain, and cancel the registration in the old
domain, when the terminal is moved.

39

4.2.2 Class diagrams

The MicroTAPAS support platform differs from the original TAPAS support platform in that
the PAS and PNES layers are merged into one PNES layer, and that sockets are used instead
of Java/RMI as communication between nodes. Figure 4-14 describes how the MicroPNES
class uses sockets to communicate with other instances of MicroPNES residing on other
nodes. The ComCenter class offers methods to send and receive requests from other nodes. A
ServerSocket instance is created to listen for incoming requests and create a socket when a
request is to be sent. The ConnectionHandler class is responsible for one connection while a
request is handled by the MicroPNES instance, so that the response can be returned to the

same socket from which the request was received.

O
QCOntrollnterface
MicroBase
@)
. Runnable
MicroActorManager -
< _ . (from lang)
1 has T MicroPNES
\
1 ‘ 1 @)
- 7 " has MicroPNESInterface
MicroActorFactory | | ‘uses
%createActor() VA
ComCenter .
~_ creates
| 4
1 ServerSocket
Thread | —
(Enwa lit) ‘ creates
ConnectionHandler

Figure 4-14 : Class diagram for MicroPNES and its supporting classes

40

The realization of the actor entity is in principal the same as for the original TAPAS support
platform. Figure 4-15 describes the realization of the MicroActor.

MicroActor | | has 1> MicroBaseFrame
ActorContext f has 1
MicroApplicationAct MicroDirectorActs ® ®
‘eroAppleationActor (roTrecioractor MicroActorInterface Controllnterface
MobilityApplicationActor MicroDirector]
(from mobility)
0 N /1
Runnable ontrols
om e \ belongs to /é
R Ny, /
Srun() A\ @
MicroPNES

Figure 4-15 : Class diagram for the MicroActor

The main classes of the mobility support functionality are shown in Figure 4-16. The two
main entities of the mobility extension are the MobilityAgent and MobilityManager [6].
These to classes contain some similar functionality which is put in the class
MobilitySupportActor. MobilityAgent]l and MobilityManager1 inherit this class, which is an
extension of the MicroActor class.

The MobilityManager and the MobilityAgent are responsible for handling of the mobility
related administration functions. Such functions are: keeping track of actors and terminals,
facilitate in ActorMove and TerminalMove operations and monitoring connection status of
the actors to the MobilityManager. Where the ActorMove and TerminalMove operations are
used to move the actor to a new location and move a terminal to a new domain [6].

41

MicroActor
(fom MicroT APAS)

A\O

O
MicroActorInterface Controllnterface
(from MicroT APAS) (from MicroT APAS)
MobilitySupportActor
MobilityAgent1 MobilityManager1

Figure 4-16 : Mobility extensions for MicroTAPAS

4.2.3 Sequence diagrams

An example of a sequence diagram for the use case actorMove is shown in Figure 4-17. This
diagram has a higher level of abstraction than the ones presented in the previous section,
which were on method level. This can be done because the procedures used are described in
details in the description of the basic support platform. Moving of the abstraction level
provides a better overview of the functionality.

42

applicationRoleFigure MobilityManager1

Directorl

Actor(old location)

12 ActorMove(newLocation),

2 ‘ l
2: ActorPluginReq(newLocation) !
| [|

‘ Actor (new location)

: ! 3: ActorPh

; | e =
3: ActorPlugOut(old Actor) 1 i

| | 4: ActorPlugOut.__ | |

| | = |

2: Createlnterface(aoltorlnterﬁlce) i 1

Figure 4-17 : Sequence diagram for the use case ActorMove

4.2.4 Reverse engineering

As for the TAPAS basic platform this model is completed with reverse engineering of code
from the Java implementation.

4.2.5 Components and deployment

The MicroTAPAS software component is dependent on the external Java functions in the
externalJava component as described in Figure 4-18.

g

<<RTJava

MicroTapas

>$

<<RTJava

externalJava

Figure 4-18 : Component diagram for MicroTAPAS

43

4.3 Model of the Tele School application

To learn how an application is built on top of the TAPAS support platform, a UML model of
the Tele School example application will be made. By modelling an existing application, the
type of diagrams best suited for modelling of a TAPAS application can be found. This model
will show how the role figures of the Tele School application best can be modelled, and will
be used to form a template for development of future role figure models. The template will
then be used in the development process of the TAPAS applications.

When the role figure model for the Tele School application is created, it can be used to learn
how the UML based role figure model can be translated to Java code and XML. A mapping
procedure will be defined for translation from the platform independent role figure model to a
UML model which can generate Java code. The following sections describe how the Tele
School application is modelled using the use case driven approach described in section 3.4.1.

4.3.1 Use cases

The application is a learning center which teachers and student can log on to and get access to
several services. The use cases that can be identified for the Tele School application is shown

in Figure 4-19.

Logon

S

Log off

Q\

Select work type
Student Teacher

Start service

i
-

Start Real-Time Lecture

Figure 4-19 : Use Case diagram for the Tele School application

4.3.2 Class diagrams

The Tele School play is realized by four actors playing four Roles. The SchoolClient and the
SchoolClientInterface actors represent the client which will be located on the user’s terminal
and the client’s user interface. The SchoolServer actor handles management of the users and
the ScoolRTLServer is a server used for the Real-Time Lecture service.

44

Role Description

ShoolRTLServer Provides functionality specific for real time lectures.

SchoolServer Defines the behaviour of the server for all clients running TeleSchool.

SchoolClient Defines the behaviour of for the users of the application i.e. students and
teachers.

SchoolUserInterface | Presents the user interface for the students and teachers.

Table 4-1 : Role Figures in the Tele School application

A description of the Roles in Tele School is summarized in Table 4-1. A high level class
diagram for the application can be found in Figure 4-20.

ApplicationActor

(from PaP)

1

ApplicationActorType1

AN

SchoolClient SchoolServer SchoolRTLServer SchoolUserinterface
\
N Yo N Pt :
SchoolUtil SchoolConfiguration SchoolGraphicsinterface

Figure 4-20 : Class diagram for the Tele School application

4.3.3 Sequence diagrams

The interactions between the actors in TAPAS are realized by asynchronous message
exchange. The ApplicationMessage class defines the message format and messages are sent in
RoleSessionAction requests to the TAPAS support platform, which handles all requests in a
separate thread of execution. Sequence diagrams can be used to describe how the actors
interact and what TAPAS support functions are executed. As an example of a sequence
diagram the use case Log on from Figure 4-19 is described in Figure 4-21. In this diagram the
calls to the TAPAS support functions are modelled as synchronous function calls while the
messages between the actors are modelled as asynchronous messages.

45

NonPaP Director

| |
1: ActorPlugin(SchoolClient) 1:
|

SchoolClient

1.1: heq uestResult.OK U
’é g

| |
2: ActorPlugin(SchoolClientinterface)
~ SchoolUserlInterface

2.1:

i
2.2: RequestResult.OK
| |

| 3: WindowNew(LogOn)

|
3.1: LogOnEventlnd(School,User,Password)

]

|
4: ActorPlugn(ScoolServer)

4.1:

|
|
|
|
|
l
|
| SchoolServer
|
|
|
|
|
|
|

|
|
|
5: UsprVerifyAccessReq(ScooI,Uéer,Passwdrd)
| |

| :]

|
|
0
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|

6: UserVerifyAccessConif
|
|
|
|

7: WindowClose(Logon)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |
| 1
| |
| 4.2: Requesth‘suIt.OK
! %< Requesty
|

|

|

|

|

|

|

|

|

|

|

|

:

| =
|

|

|

|

|

|

|

|

|

|

|

|

|

Figure 4-21 : Sequence diagram for the Tele School application

46

4.3.4 State diagrams

The behaviour of the Role Figures can be described by UML state diagrams. Figure 4-22
shows the behaviour of the SchoolClient Role Figure. The state diagrams in UML are state
oriented, which means that they are based on showing states and the actions which triggers a
transition to a new state.

-~

~

stInitial

ActorPlugln

Y

stInitUserInterface .
Continue

CancelEvent CancelEvent | AccessConfirmed

stWaitWorktypeSelect

WorkTypeEvent

stWaitServiceType
Terminate

RTLectureEvent J]

stActiveService

\ RTLStartPerform StopPerform ContinuePerform /

Figure 4-22 : State diagram for the Tele School application

47

4.3.5 Reverse engineering

As for the models described in the previous sections, the model of Tele School application is
completed using reverse engineering.

4.3.6 Components and deployment

A component diagram for the Tele School application is shown in Figure 4-23. The School
component depends on the PaP and externalJava components.

<<RTJava
S=
i
<<RTJava — ‘
::]:: School

<<RTlJava
externalJava

Figure 4-23 : Component diagram for the Tele School application

UML deployment diagrams, described in section 3.1.1, can be used to describe how the
application is intended to be deployed when the actors are distributed on the TAPAS nodes.
Figure 4-24 shows how the Tele School application may be deployed. The diagram shows
how the actors are distributed on the TAPAS nodes.

Desktop PC Server machine
SchoolUserInterface SchoolServer
SchoolClient] PaP
PaP

Server machine

SchoolRTLServer

PaP

Figure 4-24 : Deployment diagram for the Tele School application

48

4.4 Summary

In this chapter the UML models made for the basic TAPAS support platform, the
MicroTAPAS platform and the Tele School example application have been described. The
models made for the support platforms consist of use case diagrams, sequence diagrams, class
diagrams and component diagrams. In the model of the Tele School application state
diagrams are used to model the behaviour of the role figures and deployment diagrams are
used to describe how the actors are distributed on different nodes. The models are completed
by reverse engineering the code from the existing prototypes.

49

5 Role Figure model template

As the demand on short time to market is getting stronger for introduction of new services and
applications, the requirements for an effective and reliable development environment is
increasing. For the application developers to start using a platform like TAPAS and to
succeed in developing applications, the descriptions of how to use it must be good, and the
possibilities for rapid development must exist. Usually, there is no need to know all details on
what is going on ‘under the hood’ to develop successful applications. By introducing a
template which abstracts the details of the platform for the application developer, focus can be
held on the design of the application itself and not so much effort made to understand how the
platform works. UML is a modelling language that most software designers is familiar with
and will be used to model the applications. To provide a complete development environment
the modelling tool Rational Rose Real-Time is used. The features of the tool where described
in chapter 3.

In this chapter a template for application development in TAPAS is presented based on the
results of the previous chapters. Software Engineering is a wide topic and a wide range of
processes are described for the software development. It is not within the scope of this thesis
to develop or to integrate on of the extensive and well known processes available. The steps
for development of TAPAS applications presented in this chapter are based on the use case
driven approach described in section 3.4.1.

The following sections will propose some steps for developing applications on the TAPAS
platform using UML, based on a set of template diagrams for the design phase and design
patterns to be used when implementing the application in Java or XML.

5.1 Specification of requirements

The two following sections describe the specification of requirements for the TAPAS
application. The requirements are divided into functional and non functional requirements.

5.1.1 Functional requirements

The first step in the system development is to specify what the system shall be able to do. In
TAPAS the application running on top of the support platform is referred to as the play (see
section 2.1) and at this stage the play is specified. Usually some vague idea exists on what the
system shall do and who the potential users will be. By starting with the use case specification
the designer of the system will be able to specify the users, which in UML is denoted actors,
and the functionality of the system. This will include functional requirements only. The UML
diagrams are useful for communication among the designers and between the designers and
the users of the system. At this stage it is important to get a common understanding of the
system functionality.

The Use Case diagram shall be used to specify the functional requirements at a high level of
abstraction. The result is a high level description of the play.

50

5.1.2 Non-functional requirements

Usually, some non-functional requirements exit for the application. These requirements will
be depending on the implementation which at this stage is some steps ahead. However,
requirements need to be specified as early as possible in the process and non functional
requirements may be essential for the application. Examples on typical non functional
requirements are:

e Usability — requirements for the user interface etc.
e Performance — requirements for access time, system performance etc.
e Security — security functions required.

To specify the non functional requirements a textual description shall be given. How to fulfil
these requirements is not further describe in this template and some of them can only be
proved to be satisfied by testing on the target system. However, it is important that they are
kept in mind during the design and implementation phase, because it is important that the
decisions made in these steps are influenced by the non functional as well as the functional
requirements.

5.2 Specifying the Role Figures

In TAPAS the service will be realized by a set of Role Figures constituted by actors playing
certain roles. The next step in the development cycle will be to specify a set of Role Figures
to realize the play which was specified by the use cases in section 5.1.1. When the Role
Figures are found a class diagram is used to describe the Role Figures most important
attributes and the support classes that will be needed. At this stage the actual behaviour of the
Role Figure is not to be considered, just the main attributes and the other classes that it relates
to. The following sections describe the two steps of specifying the Role Figures. The first step
is to figure out which Role Figures we need and the second one is to specify them using a
class diagram.

5.2.1 Finding the Role Figures

The TAPAS platform is developed with grate flexibility in mind and it is up to the application
designer to decide how the play shall be realized. The Role Figures to be specified will be
able to run on all TAPAS nodes. TAPAS nodes may vary from powerful servers to small
wireless devices, which leave the designer of the application with possibilities for developing
a wide range of applications. At this step focus shall be on finding the actors needed to realize
the play.

It shall also be decided if the actors need some of the mobility features implemented in the
MicroTAPAS platform. The concept of terminal and role figure mobility is described in
section 2.2.2. When the actors are found and the support platform to be used is decided the
next step will be to describe the actors. To be able to start quickly and keep focus on the
application functionality, template classes are made which can be used when starting the static
design of the application.

51

5.2.2 The ApplicationRoleFigure template class

In section 2.2.1 the Role Figure, of the type to be used in an application, is referred to as the
ApplicationRoleFigure. For a description of how the ApplicationRoleFigure is realized the
Tele School application is a good example. In section 4.3.2 the class diagram for the Tele
School application shows how the ApplicationRoleFigures are realized by inheritance of the
actor class. In this example the ApplicationRoleFigures are not directly extensions of the actor
class but of the ApplicationActorl which is a special version of ApplicationActor with some
additional functionality. The ApplicationActor is then the type of actor which is used to
participate in the play. The other type of actor is the Director. The relationship between the
different kinds of actors can be seen in Figure 2-1 for the basic support platform and in Figure
4-15 for the MicroTAPAS platform.

To summarize, the ApplicationRoleFigure inherits the type of actor that is required for the
application. If the basic support platform is to be used the ApplicationActor class shall be
extended. If the MicroTAPAS platform is to be used the MicroApplicationActor needs to be
extended and if mobility functions are required the MobilityApplicationActor described in
Figure 4-16 shall be used.

The first template class to be made is the one for the basic support platform and is shown in
Figure 5-1. As can be seen in the figure the ApplicationRoleFigure inherits the TAPAS
functions from the ApplicationActor class which was described in section 2.2.1, and can use
these functions by calling its super class. The ApplicationRoleFigure probably need some
supporting classes as well. This may be classes to realize user interface, file access etc. The
support classes shall also be specified in this class diagram and is denoted
ApplicationRoleFigureSupportClass in the template below.

52

ApplicationActor

(from PaP)

% ApplicationActor()
Winit()
%applicationActorEntry()
#subscribeReport()
%requestToActor()
%playPlugin()
%playChangesPlugIn()
%playPlugOut()
%actorPlugin()
%actorBehaviourPlugin()
%actorChangeBehaviour()
%actorBehaviourPlugOut()
%actorPlugOut()
%actorPlay()
%subscribeRequest()
%subscribeCancel()
%RoleSessionAction()

%A ctorCapabilities ()
%control()

WactorEntry()
%anyOtherRequestType()

|

ApplicationRoleFigure

WstateTransition()
%application A ctorEntry()

) 1..*
has

Vo
ApplicationRoleFigureSupportClass

Figure 5-1 : Template classes for the Role Figure

As for the TAPAS basic support platform a template is made for the MicroTAPAS platform.
The template is shown in Figure 5-2 and is quite similar to the one in Figure 5-1. The reason
is that there is actually not any new functionality in this platform. The platform will however
enable TAPAS for small wireless devices which increases flexibility and may be the whole
idea that the application to be developed is founded upon.

53

MicroApplicationActor
(from MicroT APAS)

%s$ DEBUG : boolean = true
EvRP : Vector
&mrequestThread : Thread
&EsrequestThread Alive : boolean
EwaitForNotify : boolean

%MicroApplicationActor()
%init()
%application A ctorEntry()
%subscribeReport()
%requestToActor()
%playPlugln()
%playChangesPlugIn()
%playPlugOut()
%actorPlugln()
%actorBehaviourPlugIn()
%actorChangeBehaviour()
%actorBehaviourPlugOut()
%actorPlugOut()
%ActorPlay()
%subscribeRequest()
%subscribeCancel()
%RoleSessionA ction()
%A ctorCapabilities ()
%control()
%actorEntry()
%anyOtherRequestType()
%closeBF()
%actorChangeBehaviour()
%callActorChangeBehaviour()
%term()
%callActorChangeBehaviour()
%directorDiscovery()
%help()
%queueRequest()
%run()

@¥serveRequests ()

i

ApplicationRoleFigure

%stateTransition()

%ApplicationRoleFigure()

“%applicationActorEntry()
1

has

Vo
ApplicationRoleFigureSupportClass

Figure 5-2 : Template class for the MicroTAPAS platform

54

The last template is the one which is based on the mobility features added to MicroTAPAS.
The template described in Figure 5-3.

MobilityApplicationActor

(from mobility)

‘HpdoRegister : boolean = true
WisRegistered : boolean = false
&xema : CapsMonitorAgent
ExselectedStrategy : String

&xreqQueue : Vector

%Mobility ApplicationActor()

@init()

%mobility A ctorEntry/()

%createlnterface()

“%getinterface()

%getMAGAI()

%getMMGAIL()

%control()

“%applicationA ctorEntry()

%actorChangeBehaviour()

%actorChangeBehaviour()
actorRegister()
actorRegisterCancel()

%actorMove()

%sendCreatelnterface()
@#sendCreatelnterface()

%cleanUp()

Wterm()

%status()

%help()

7

ApplicationRoleFigure

“stateTransition()
%mobility A ctorEntry()
Ycreatelnterface()
“getinterface()
%ApplicationRoleFigure()
¥sendMessage()

/1 N 1..”‘S
/has {a 0.*

Ly N\
ApplicationRoleFigurelnterface ApplicationRoleFigureSupportClass

gstate

Figure 5-3 : Template classes for the Role Figure to be used with mobility extensions

As can be seen in the figure the ApplicationRoleFigure extends the MobilityApplicationActor
and inherits methods for the mobility functions such as actorMove() which is used in the

55

procedure of moving the Role Figure to a new terminal. In this template the
ApplicationRoleFigure also has the interface class ActorRoleFigurelnterface which is a class
containing data to be kept and used for recreation of the actor at a new location. Such data
may for example be the state of the Role Figure and other application specific data needed for
the recreation.

5.3 Description of the functionality

When the Role Figures are specified the next task will be to specify how they shall interact to
realize the complete service behaviour. The functionality is described by sequence diagrams
describing each use case. The sequence diagrams shall describe the main flow, alternative
flows and exceptional flows of the use case. Figure 4-21 shows the main flow of the use case
Log on for the Tele School application. The diagram only shows the exchange of application
messages and the TAPAS functions. It is a good idea to keep the abstraction at that level to
avoid getting to complex sequence diagrams. At this level the most important thing is to
describe the interactions between the actors.

5.4 Behaviour specification

When the classes to be used and the functionality are specified, the behaviour of the Role
Figures involved in the play is to be described.

5.4.1 The ApplicationRoleFigure state machine

In TAPAS behaviour of the actors are described as finite state machines. As for the model of
the Tele School application in section 4.3.4 the state diagram is the UML diagram best suited
for this purpose. First a state diagram is made for the Role Figure. Figure 5-4 shows the
template to be used for the state diagram of the ApplicationRoleFigure class.

4)

Initial

actorPlugln

applicationMessage

stNextState

- J

Figure 5-4 : Template for the Role Figure state diagram

56

The required behaviour for the Role Figure can be found be analysing the sequence diagrams
where the Role Figure is involved. By analysing the reaction on each message reception a
state diagram can be made, describing the complete behaviour. The diagrams in the tool used
in this thesis work does not show the messages sent in the state diagram which would give a
better overview, but the action taken on the message reception can be found in the model by
clicking on the arrow in the diagram. The window that appears also has a filed to describe the
action by text or to fill in the actual code.

State diagrams for the Role Figures using the mobility feature in MicroTAPAS can be made
on the template in Figure 5-5 below. Here a check is added to find out if this actor is moved
when it is plugged in. If it is moved it shall stay in the initial state and wait for the interface to
be created. The actorMove procedure is described in Figure 4-17.

4)

Initial

A
True actorPlugln
%

isMoved

False

applicationMessage

stNextState

_ J

Figure 5-5 : Template state diagram for mobility

5.4.1.1 Mapping from state diagram to Java code

Since a number of UML elements are supported by the object oriented languages, generation
of code is relatively straight-forward. Generation of code for the dynamic part of the UML
model to Java is not as easy as for the static part. As discussed in section 3.1.2, the main
problems are that UML does not have a unified diagram which describes behaviour. Another
problem is that the concepts from these diagrams are not supported by Java. To implement the
behaviour described in the state diagram, code must be written as for the other methods in a
traditional object oriented manner.

57

The method stateTransition in the ApplicationRoleFigure class is the method which
implements the behaviour of the Role Figure. The mapping of from the state diagram to a
code template is described in Figure 5-6. Each time a message is received in a
RoleSessionAction, the stateTransition method is called and the transition to be taken is
depending on the current state and the message type.

switch(ai.state {

case stinitial:
if(ActorContext.microPNES != null}
context.play.playLoc+context.play.playld, context);
\ initialRoleSession = (context.rsc.initialRoleSession());
m = new RequestResult(RequestResult.OK, "ActorPlugin was successful", pRP.ID);

Initial _
¥ if(pRP.isMoved X
stInitial /I Stay in this state, while waiting for createlnterface
ai.state = stinitial;
}else {

ai.state'= stinitialized;

Jelse{
m = new RequestResult(RequestResult.FAIL, "ParentPNES is null", pRP.ID);

break;

case stlnitialized:
if(pRP.requestType == RequestPars.RoleSessionAction){
appMsg = pRP.applicationMessage;
if(appMsg.messageType.compareTolgnoreCase("applicationMessage") == 0){

stNextState

ai.state = stNextState;
} else if(appMsg.messageType.compareTolgnoreCase("nextApplicationMessage") == 0

ai.state = stNextState;

break;

case stNextState:
if(pRP.requestType == RequestPars.RoleSessionAction
appMsg = pRP.applicationMessage;
if(appMsg.messageType.compareTolgnoreCase("applicationMessage") == 0)

ai.state = stAnotherState;
} else if (appMsg.messageType.compareTolgnoreCase("nextApplicationMessage") == 0)

ai.state.= stAnotherState;

break;

Figure 5-6 : Mapping from state diagram to code

58

5.4.1.2 Mapping of state diagram to XML manuscript

An approach to make XML descriptions of manuscripts is introduced in [9]. The XML
descriptions are as for the Java implementation based on finite state machines. Figure 5-3
describes how the UML state diagram can be mapped to the state description part of the XML

manuscript description.

actorPlugln
isMoved

N=B-CEN N W0 B A N S R

<init_state> stInit </init_state>

<!-Description of state stInit (initial state)—>
<state name=""stInitial">

<input msg="INITIAL_TRANSITION">

<!-First action:—
<action>

<!-Specification of action—>
</action>

<output>
<!-Specification of message sending—>
</output>
<next_state> stInitialized </next_state>
</input>
</state>

<!--Description of state stInitalized -—>
<state name=""stInitialized">
<input msg="applicationMessage' >

<action>
<!-Specification of action-—>
</action>

<output>
<!-Specification of message sending—>

<msg type=""NewOutputMsg''>
<param>
<name> name </name>
<value> value </value>
</param>
<dest> destination </dest>
</msg>
</output>

<next_state> stNextState </next_state>
</input>

<!-Description of state stNextState -—>
<state name=""stNextState'>

Figure 5-7 : Mapping of state diagram to XML manuscript

59

5.4.2 The Role Figure Support Classes

As mentioned in section 5.2.2, additional classes will probably be needed to realize the
functionality of the application. This may for example be classes used to realize graphical
interfaces etc. Methods in these classes will be called from the implemented state machine
and it is natural to fill in the code for these classes when mapping the state diagram for the
Role Figure to state machine code.

5.5 Building and deploying the application

When the implementation is completed the remaining steps of the development process is to
deploy the software components and test the application. In the description of the Tele School
application components diagrams and deployment diagrams where used to describe how the
software components where related and how the actors where distributed. In Rational Rose
Real-Time the component diagram is required when building the application to define the
external components needed. A component diagram is therefore required and needs to be a
part of the UML template.

As mentioned in section 4.3.6 the deployment diagram in the UML tool is intended to specify
the hardware used for deployment. For TAPAS this is not relevant since the deployment is
dynamic and not hardware dependent. The description of how the actors are distributed on
different kind of nodes is however helpful to describe the application and is also
recommended to be used.

The testing of the models developed in this thesis is described in chapter 7. As described for
the use case driven approach the test cases are selected to test the use cases of the application.

5.6 Workflow

The traditional way of software development has been to complete the each phase of the
development process before starting on the next phase, with the termination of the
development phases as milestones in the process. This way of working is referred to as the
waterfall model. Given the sophisticated software systems of today an iterative approach is
becoming increasingly popular, and is an important element of ‘modern’ methodologies like
the Unified Process described in section 3.4.2, the Rational Unified Process [16] and Extreme
programming (XP) [15]. This approach has some strong benefits compared to strongly
sequential development. First off all it allows for an increasing understanding of the problem
through successive refinement in increments, and to grow an effective solution over multiple
iterations. The iterative process will help clarify the risks in the development at an early stage.
This is essential when developing software for a new hardware platform, but is also very
convenient on well known platforms. The fact that something is working and that progress
can be demonstrated at an early stage is satisfying for both the developer and the customer.

During the development of the example application which is described in the next chapter an
iterative approach was taken to the steps described in this template. This has proved to be a
good approach even for a small project like the one in this example. When the designer is new
to a platform like the TAPAS support platform, which is probably the case, it is important to

60

get something to work as soon as possible. This will reveal any weaknesses in the design and
verify that the work is taking the correct path, through testing at an early stage.

The recommended work flow is therefore to complete the development for one (or more
logically connected) use case(s) at the time. When the system is up and running at the target
nodes with the first use case implemented, the process is repeated in iterations until the
application development is complete.

5.7 Summary

This chapter has introduced a simple development process for the development of TAPAS
applications. A summary of the steps in the development process and the different elements of
the provided template is given below:

e Analysis: In this phase functional and non-functional requirements are specified. The
functional requirements of the application are specified as use cases. The TAPAS
support platform is chosen. The result of this phase is a requirements model for the
application, which specifies what the application shall be capable of doing. In TAPAS
terms; the play is specified.

e Design: The steps for the design phase are:

1. The Role Figures which are going to realize the play are specified.
The specified use cases are described in detail by sequence diagrams. The
objects of the sequence diagrams are the Role Figures of the play and other
actors which have supporting roles, such as the Director and the
MobilityManager.

3. The behaviour of the Role Figures is specified by state diagrams.

The result of this phase is a complete design model. Specifying how the specified
use cases are realized. In TAPAS terms; how the play is going to be realized by a
set of Role Figures.
e Implementation: In this phase the design model developed in the previous step is
transferred to executable code. Mapping from state diagrams, describing the Role

Figure behaviour, to Java code or XML is done.

e Test: The specified use cases are tested on target nodes.

61

6 An application based on Role Figure Mobility

An application is developed to test the development process and the template introduced in
the previous chapter. The application is based on the concept of Role Figure Mobility. This
chapter describes how this application is developed using the template introduced in chapter
5. The support platform used is MicroTAPAS, since this is the platform currently supporting
the Role Figure Mobility.

6.1 The PatientRecords Application

The application developed in this example is intended for the health care service. Most
hospitals today have an electronic patient journal, which means that the patient data is stored
on a central unit and can be accessed from different work stations at the hospital. The next
step for an application like this, apart from developing the journal’s internal structure and user
interface, is to make it available from mobile terminals. This will enable the hospital
personnel to access the patient journal from i.e. a PDA in any situation and at any location
within the coverage of the wireless network. A nurse will for example be able to access the
journal at the patient’s rooms. However, when in the office or at another location where an PC
is available, working on the PC will be preferred due to the larger display, ease of entering
data and the extended processing power. It will then be convenient to move the application
from the PDA to the PC. When leaving the office we may need to move the application back
to the PDA. Moving the application between the terminals means that it is not necessary to
log off and close down the program and then start over again at a new terminal.

The concept of Role Figure Mobility implemented in MicroTAPAS will provide the
functionality to move a Role Figure from one terminal to another and recreate the Role Figure
at the new location. An electronic patient journal is of course an application which requires
strict security considerations. Also, data storage shall be safe and very reliable. This example
will not consider these issues and will be a strongly simplified version compared to what will
be used at a hospital. The intention of this example is to demonstrate the development of an
application using the template developed and the Role Figure Mobility concept. The concept
of Role Figure Mobility is explained in section 2.2.2.

62

6.1.1 Requirements specification

6.1.1.1 Functional requirements

As described in the template in section 5.1.1, the functional requirements are specified using a
use case diagram. The use cases for the PatientRecords can be seen in Figure 6-1.

ogon
Log off
SelectPatlent
Hospltal Persone]l
Open record
Add new note to a record
MoveChent New record
New patrent

Figure 6-1 : Use cases for the PatientRecords application

63

6.1.1.2 Non functional requirements

The non functional requirements for the application are summarized below:

e Usability — the client shall be easy and intuitive to use
e Performance — the access time towards the server shall be short and not delay the users

work.

e Design — the design shall be in the way that the new functionality easily can be added

to the application and that some parts, like the record data base can be replaced with

new technology.

6.1.2 Specifying the Role Figures and support classes

This application will be of the type client server. It is natural to let one Role Figure represent
the client, and one Role Figure represents the server. The client role figure will reside on the
terminal, which will be a PC or a PDA. The server Role Figure will probably run on the same
machine as the record database. To make the design flexible to future development, it is smart
to have an own actor for the user interface. The database shall also have a well defined
interface which will make it easy to update the data base solution or replace the data base with
an entire new one. Since the application requires the possibility of moving of one of the Role
Figures, the MicroTAPAS platform and the mobility features will be used. Figure 6-2 shows a

high level class diagram for the application.

MobilityApplicationActor

(from mobility)

PatientRecordsUI

PatientRecordsClient

PatientRecordsServer

Figure 6-2: Class diagram for the PatientRecords application

64

6.1.3 Description of the functionality

In this section the use cases are broken down into more detailed sequence diagrams. The
diagrams in this section shows how the use cases presented in section 6.1.1.1 is realized by
using the classes specified in section 6.1.2.

6.1.3.1 Logon and logoff

A sequence diagram showing the Logon sequence is shown in Figure 6-3.

NonPaP Director
\ \
1: ActorL‘" lugIn(P atientRecordsClient PatientRecordsClient
| 1.1
lf:Z< waquestResult.O% i:ll

|
2: ActorP lugIn(PatientRecordsUI),
; |

5 1: PatientRecordsUI

I
I

I

I

I

I_TI |
I

I

I

|

|

I

2.2: RequestResylt. OK

i 3: Logon(db,user,passworﬁ)

|
4: ActorPlugn(PatientRecordsServér)
L |

L | ! PatientRecordsServer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

L 4.1 !
4.2: RequestResult. OK i
—>

0

- —

i 5: Logon(db,user, password)
| ' 6: LogonCnf

|

| e
7: CloseWindow(ldgon)

|
8: nWindow rr‘lain)
Gpentindow(n

Figure 6-3 : Log on sequence for PatientRecords

65

6.1.3.2 Select patient

It shall be possible to select a patient from a list of patient. When the patient is selected, the
records available for this patient will be displayed in a list of records. The sequence executed
for selection of patient is shown in Figure 6-4.

PatientRecordsUI PatientRecordsClient PatientRecordsServer

1: SelectPateint(patient)

2: GetRecords(patient)

_3: PatientRecords(records)

L'_l
0

4: DisplayRecords(records),

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 6-4 : Sequence diagram for select patient

6.1.3.3 Open record

When a patient is selected, one of the records available can be selected from the list of records
and a new window will be opened for this record. The record is only open for reading and the
existing content can not be changed. To add information to the record, ‘add new note’ must be
selected from the pull down menu ‘File’. This sequence is described in section 6.1.3.5. The
sequence executed for selection of record is shown in Figure 6-5.

66

PatientRecordsUI PatientRecordsClient PatientRecordsServer

1: OpentRecord(record)

2: GetRecord(record)

3: RecordData(record)

4; OpenRecordWindow(record)

- _____da

I
|
|
|
|
|
l
&
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Figure 6-5 : Sequence diagram for open record

6.1.3.4 Create a new record

A new record can be created for the selected patient. Figure 6-6 shows the sequence for
creation of a new record.

PatientRecordsUI PatientRecordsClient PatientRecordsServer

1: NewRecord(recordData)

|
|
u l
|

2: CreateRecord(recordData)!

i

3: CreateRecordCnf

4: RecordCreated

T
|
|
! t
! |
! |
! |
|
w l
! 7
! |
|
w l
_\‘ i
|
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
| |
| |

Figure 6-6 : Sequence diagram for creation of new record

67

6.1.3.5 Add a new note to a record

When a record is open and a new note is to be added to this record, a new window shall be
opened where information can be edited. The window shall have an own filed for the
signature of the person adding the note to the record. The sequence for adding a note is
described in Figure 6-7.

PatientRecordsUI PatientRecordsClient PatientRecordsServer

1: AddNote(recordN ame,text)

2: UpdateRecord(recordNanﬂile,text)

]

|
|
l ‘
| |
' _3:UpdateRecordCnf{recordName)
] |
4: CloseNoteWindow(recor&lName)

J

Figure 6-7 : Sequence diagram for add new note

6.1.3.6 Register a new patient

It shall be possible to add a new patient to the database. Figure 6-8 shows a sequence diagram
for adding a new patient.

68

PAtientRecordsUI PatientsRecordClient PatientRecordsServer

| |
i : newPatient(patientData) 3 i

| LJ ‘

! |

|

|

|

|

|

|

|

|

|

| 2: registerPatient(patientDalta)

} 3: registerPatientCnf(patieﬂtList)
O |

4: dis:playPatientList(patientList)
]

Figure 6-8 : Sequence diagram for adding a new patient

69

6.1.3.7 Moving the client to a new terminal

As long as the user is logged on to the application it shall be possible to move the terminal
client to a new terminal by selecting the new terminal from a ‘pull down’ menu. The sequence
executed for the move of the terminal client is shown in Figure 6-9 below. As can be seen in
the diagram the ActorMove function from the MicroTAPAS mobility feature is used to
perform the moving of the client.

PatientRecordsUI PatientRecordsClient

1: MoveClient(location)

2: ActorMove(location)

‘ 2.1: RequestResult. OK

<4
=

3: MoveUserlInterface(location)
]

4: ActorMove(location ;
i (ocaton) X

1 14. 1: RequestResult. OK
%

X

Figure 6-9 : Sequence diagram for move terminal

70

6.1.4 Behaviour specification

This section describes the behaviour of the Role Figures specified in the previous section by
state diagrams.

6.1.4.1 PatientRecordsClient behaviour

The behaviour of the PatientRecordsClient is described in Figure 6-10. The events causing
transitions between states are mainly of the type ApplicationMessage, but the createlnterface
method is inherited from the MobilityApplicationActor class and is used to create the
interface for the actor when it has been moved. The actor move procedure is described in
Figure 4-17. In this case the Role Figure can only be moved to a new terminal when the state
is stLoggedOn, stWaitLogon or stWaitSelectPatient which is described in the state diagram.
When receiving an actorPlugln request, it will be checked if this actor is moved. If it is moved
the state will remain stlnitial until the createlnterface method is called by the old actor. When
createInterface is called, the Role Figure will be recreated at the new location.

exit

loggOff

% logonCnf

stLoggedOn

selectPatient v patlentRcords seletRcord paﬁentRecords

Figure 6-10 : State diagram for the PatientRecordsClient

71

6.1.4.2 PatientRecordsServer behaviour

The behaviour of the PatientRecordServer is described in Figure 6-11. Once the user is logged
on the state stServerActive is entered.

-

N
True \ v

© ‘ verifiedOK

; False

stServerActive

k getRecords addNote getPatientRecord)

Figure 6-11 : State diagram for the PatientRecordsServer class

72

6.1.5 PatientRecordsUl behaviour

The behaviour of PatientRecordsUI is described in Figure 6-12. As for the
PatientRecordsClient this class must be able to be moved to a new location. The behaviour of
the PatientRecordsClient is fairly simple and it basically does what is required in the
messages from the PatientRecordsClient regardless of the status on the graphical user
interface.

stInitialized

closeWindow u u u u

openLogonWindow openRecordWindow
\ openMainWindow /

Figure 6-12 : State diagram for PatientRecordsUI

6.1.6 Implementation of the application

The behaviour of the Role Figures is mapped to Java code following the procedure described
in section 5.4.1.1. The following sections describe the classes introduced in section 6.1.2 and
the supporting classes in more details. The complete generated code can be found in
Appendix A. The testing of the application is described in chapter 7.

73

6.1.6.1 The PatientRecordsClient class

The PatientRecordsClient class is described in Figure 6-13 below. This class represents the
client behaviour. It controls the user interface and is responsible for the communication
towards the server. As can be seen from the figure the data needed for recreation of the Role
Figure is kept in the interface class, PatientRecordsClientInterface.

PatientRecordsClient

Eginitiated : boolean = false

ai : PatientRecords ClientInterface
&8 stlnitial : int =0
&3 stinitialized : int = 1
E$ stLoggedOn : int =3
E$ stWaitPatientSelected : int =4
EpinitialRoleSession : RoleSession = null
EsbgColor : Color = new Color(130,165,124)
Eslow : LogOnWindow
Econfiguration : PatientRecords Configuration
Eserver : RoleSession PatientRecordsClientInterface
&S stWaitLogon :int =2

E$ stWaitRecordSelected : int =5 gstate :int=0

&8 stRecordSelected : int =6 B

&&$ stNoteOpen : int =7 %HospitalClientInterface()
EmainWindow : ClientMainWindow WtoString()

E5$ stPatientSelected : int = 8
EgrecordWindow : RecordWindow
Eptitle : String = "PatientRecords"
Epinfo : InfoWindow

{Eui : RoleSession

%PatientRecordsClient()
¥mobility A ctorEntry()
%stateTransition()
%getInterface()
%createlnterface()
%sendMessage()

Figure 6-13 : Class diagram for PatientRecordsClient

6.1.6.2 The PatientRecordsUI class

The PatientRecordsUI class is described in Figure 6-14. This class is responsible for the
graphical user interface. It controls the different windows used by the application. The
interface class PatientRecordsUIInreface keeps the data needed for reconstruction of the Role
Figure at a new location. This includes status on open windows and their content.

74

PatientRecordsUI

&ai : PatientRecords Ullnterface
Eglow : LogOnWindow

EzmainWindow : ClientMainWindow PatientRecordsUIInterface
>itle : String = "PatientRecords"
EbgColor : Color =new Color(130,165,124) Gstate :int
¢Sstinitial :int =0 &9 stlnitial : int =0
¢S stinitialized :int =1 &8 stinitialized : int = 1
%reﬁcord\grldow :RecordWindow gopenRecords : Hashtable = new Hashtable()
client : > geurrentRecord : Strin
Q}in@t@ated :boolean =false o gcurrentPatient : Stringg
&EynitialRoleSession : RoleSession @patientList : String]]
Sgetinterface() grecordList : String|[]
%createlnterface()
@mobility A ctorEntry()
%stateTransition() L
%closeAllWindows()
@recreateRecords () N ; —
WrecreateMain Window() \ S owns ClientMamWindow
%actionPerformed() owns
%sendMessage() \ ~ EsmenuBar : MenuBar
%recordClose() W &EpmFile : Menu
%confirmNote() - N &mExit : Menultem
%PatientRecordsUI() InfoWindow X EsmMoveClient : Menu
/ \ gpatientList : List
. &myPDA : Menultem
owns owns $InfoWindow() &myPC : Menultem
\L N &Exparent : PatientRecords Ul
) ; &ExpatientChoice : Choice
LogOnWindow RecordWindow ExlabelPatient : Label = new Label("Select patient:")
grecordList : List
&gparent : PatientRecords Ul EmExit : Menultem ExlabelRecord : Label =new Label(" Available records")
&1 : Label &menuBar : MenuBar ExpatientData : TextField
E12 : Label EgmFile : Menu - ExpatientDatalabel : Label =new Label(" Patient data:")
&13 : Label EmNewNote : Menultem &bSelect : Button
. £
tl: TextField textArea : TextArea gbSelectRecord : Button
&t2 : TextField Eparent : PatientRecords Ul
&t3 : TextField &&$ LF : String = "\r\n" %ClientMainWindow()
bOk : Button EgnoteWindow : NoteWindow %setRecords()
&bCancel : Button EgrecordName : String setPatients()
setSelected()
%LogOnWindow() %actionPerformed()
@raddLabel() %RecordWindow()
@raddTextField() %confirmNote()
@raddButton() %noteClosed()
@rgetlLogonData() %RecordWindow()
owns
V
NoteWindow
EmExit : Menultem
&ymenuBar : MenuBar
EgmFile : Menu
&mConfirm : Menultem
gtextArea : TextArea
Egparent : RecordWindow
EgsignatureField : TextField
@actionPerformed ()
#NoteWindow()

Figure 6-14 : The PatientRecordsUI classes

75

6.1.6.3 The PatientRecordsServer class

The PatientRecordServer class is described in Figure 6-15. This class is responsible for server
functionality of the application. It accesses the data base and communicates with the client.

PatientRecordsServer PatientRecordsDB
Einitiated : boolean = false ExbaseLocation : String
Etitle : String ="" &hospital : String
&S stlnitial : int =0 &&bin : java.io.BufferedReader
&ai : PatientRecordsServerlnterface &Eresult : String[]
&zbgColor : Color Excount : int
EginitialRoleSession : RoleSession = null &EzmaxCount : int
&8 stServerActive :int = 1 &zbout : BufferedWriter
&sdataBase : String
&Esconfiguration : PatientRecordsConfiguration ted t %PatientRecords DB()
&EscurrentRoleSession : RoleSession \Conn\ec edto %selectWhereGet()
&xhd : PatientRecords DB > @ropenFile()

i@rinitResult()
%mobilityA ctorEntry () i@raddResult()
%stateTransition() i@pfinalizeResult()
Ygetinterface() i@pstring Tokenize()
%createInterface() i@pgetindex()
%PatientRecords Server() id@ps earchCondition ()
%getFilesData()
%storeText()
. @ropenFile Write()
PatientRecordsServerInterface Yverify Access()
%getRecordData()
gstate :int=0 ®getRecords()
ontlJE%(adeClount : hit =0 l;updateRecord()
gstartlime : long = - openFileRemote()
gactionLog : Vector =new Vector() @getPatients()

gtextOutput : String =""
¢lastRSID : String =""

%PatientRecords ServerInterface()
%toString()

@)
PatientRecordsDBInterface

%updateRecord()
%getRecordData()
%verifyAccess()
%getRecords()

Figure 6-15 : The PatientRecordsServer class

76

6.1.7 Deployment of the software components

As described in section 5.5 UML provides diagrams to describe how software components are
organized and how they are deployed on the hardware. According to the template provided a
component diagram in Figure 6-16 describes the software components of the PatientRecords

<<RTlJava
MicroTapas
7

application.

<<RTJava
PatientRecords

|

—

— <<RTJava
externallava

Figure 6-16 : Component diagram for the PatientRecords application

In Figure 6-17 a deployment diagram for the application is shown. The diagram describes
what actors to be downloaded on the different types of TAPAS nodes. The PatientDB class is
also included in this diagram, despite not being an actor, because it is a significant element of

the application.

Desktop PC/PDA

Server machine

PatientRecordsClient

PatientRecordsUlI
MicroTAPAS

PatientRecordsServer|

MicroTAPAS

PatientDB

Figure 6-17 : Deployment of the PatientRecords application

77

6.1.8 Screen shots

<still missing : Here some screen shots will be shown>

2l Master2_fred - Microsoft Word
© Fil Rediger Wis Settinn Format Verktgy Tabel ¥indu Hislp Skriv sparsmél For hjslp - X

DEEdss SRV (2RY o-o- @HOEE S B 1w - G5

Eé Maormal - TimesMewRoman - 12 - F X O 7 7§g&§, = gg = E'!'&'.

- Markering av endelig visning RRTRAR Y R S R e R = v

B Alle oppferinger = My... .

E ! "‘1;"2:‘3":4‘1"5-1‘5”-7-:‘8-1:3-w-1‘u-|-11:w-12‘:-13-|;14-w-1ls‘|-_ ZI
SMNIMALY 18 SIVEn Of the tests Which Were eXecuted,

7.1 Test environment
Figure: skisse av testmiljset

7.1.1 Installation and configuration of TAPAS

7.1.2 Start up of the system

o omA

Side 63 Innd 4 74/81 Posision Li Kol FEG KORR UTY OVER Engelsk(sto B3

Figure 6-18 : Screen shot from the PatientRecord application

78

6.1.9 Summary

In this chapter an example application is developed using the process introduce in chapter 5.
The model is based on the role figure mobility feature provided with the MicroTAPAS
platform. The application is a version of an electronic patient journal used in health care
service, where the scenario is that the electronic patient journal client is moved seamlessly
between terminals, depending on what situation the user of the application currently is in. The
application is running on theMicroTAPAS platform, which also allows the role figures to be
moved to PDAs.

79

7 Test and verification

To verify that the models and the generated code work some tests are carried out. This chapter
describes the test environment used and the test cases executed.

7.1 Test environment

The network setup used for testing of the code generated from the models is shown in Figure
7-1. The test environment consists of a desktop computer and a PDA which are connected to a
LAN. The PDA is connected through a wireless LAN access point.

—
—
=

m
Hand held computer ~ /
Desktop computer V4R N

@ Ethernet

Access Point

Wireless LAN

Figure 7-1 : Test environment

The desktop computer is a PC running a Java Virtual Machine (JVM) in the Windows XP
operative system. The PDA runs J9, which is a virtual machine from IBM, on the Windows
CE operative system.

7.1.1 Installation and configuration

As described in chapter 2 the TAPAS plays and support platform are stored on a web server
and downloaded by the TAPAS nodes which are going to participate in a play when needed.
The deployment of the TAPAS code is also described in section 5.5. The TAPAS node
requires some boot software which will start up the TAPAS support platform on the node.

Installation and configuration of the TAPAS system is described on the TAPAS home page
[17]. MicroTAPAS is also documented in [7].

80

7.2 Tests and results

To verify that the models of the support platforms work probably the code generated from
them is tested using some of the existing and well tested applications. But first a visual
inspection of the generated code is done, comparing the code with the code that the models
are reverse engineered from. The following sections summarize the test cases executed for the
models in the test environment described in previous chapter.

7.2.1 The Tele School application on the basic TAPAS support platform

Table 7-1 below describes the test cases executed for the Tele School application running on
top of the basic support platform generated from the UML model. The test cases are selected
to test the use cases for the Tele School application in section 4.3.1.

Number | Test case Desired result Result

T-1.1 Log on Successful logon and opening of the work OK
to do window

T-1.2 Log off Successful logoff and closing of all open OK
windows

T-1.3 Select ‘Courses and Lectures’ A new window is opened with a list of OK
services.

T-1.4 Select Real-Time Lecture A new window is opened for the RLT OK

service service

Table 7-1 : Test Cases for the TAPAS basic support platform and the Tele School application

81

7.2.2 The PatientRecords application on MicroTAPAS platform

The test cases executed for the PatientRecords application is listed in Table 7-2. These tests
also serve as regression test for the generated MicroTAPAS support platform. These test cases
are selected to test the use cases presented in section 6.1.1.1.

Number | Test case Desired result Result

T-1.1 Log on Successful logon results in opening of the OK
main window.

T-1.2 Log off All windows are closed and the actors are OK
plugged out.

T-1.3 Select patient The records available for this patient are OK
displayed

T-1.4 Select record A new window is opened for the selected OK
record

T-1.5 Add new note A new window is opened for this record OK
where a new note can be added

T-1.6 Confirm a note The note window closes and the text in the OK

record window is updated. The record is
updated on the server.

T-1.7 Add a new record A new record is added to the patient’s list of | OK
records
T-1.8 Add a new patient A new patient is registered and displayed in | OK
the list of patients
T-1.9 Move the client from a PC to a All the active windows are closed. The OK
PDA actors are moved and the active windows

are reopened at the new location. The text
in the window shall be exactly the same as
at the old location.

T-1.10 Move the client from a PDA to a | The same result as the previous test case. OK
PC.

Table 7-2 : Test Cases for the PatientRecords application

7.3 Test methodology

Testing of software systems is a wide area and by some considered an own science. The tests
executed in this section are simple and not very extensive, yet not to be considered ineffective
for applications of this size and complexity. If the applications grow in complexity and the
number of different actors increase, a new approach to quality assurance probably have to be
made. Testing of large systems on target nodes tends to be expensive, especially if the code is
of poor quality at this stage. A new test strategy needs to be introduced to for the future
applications.

One common approach is to test the application on a unit level, which means that complete
tests are done for each class. Execution of tests at an early stage will reveal errors that would
be more costly to discover later on in the development process. To execute the tests, own code
can be developed or one of the test frame works available can be applied. One example of a
test framework for Java is JUnit which is open source [18].

82

7.4 Summary

This chapter has described the test environment and test cases executed for code generated
from the UML models developed. The use cases for the Tele School application are tested on
target nodes to verify that the code generated from the UML model is correct. These tests also
verify that the code generated from the basic support platform UML model is correct. The
same approach is taken for the PatientRecords application. This application is tested on the
code generated from the MicroTAPAS UML model.

83

8 Discussion

In this chapter the work carried out and the solutions that are chosen in this thesis will be
discussed related to the goals. Further, some proposals for further work are given.

8.1 Experiences with the modelling tool

One of the objectives with this thesis work was to increase the speed of developing TAPAS
applications through creation of a modelling environment. By introducing an UML modelling
tool, clearly some major improvements in the modelling process are gained. The modelling
tool used in this thesis work, Rational Rose Real-Time, has most of the features expected
from a sophisticated and well known tool. One of the major benefits is that the design,
implementation and deployment tasks of the applications can all be done in one tool. The
modelling tool links all the parts of the development together, making it easier to keep model
and implemented code updated as development proceeds. The code and the relationships in
the model will always be synchronized, and the designer is able to brows the model and have
a look at the detailed code by clicking the elements of interest. Further, building of the system
components is integrated in the tool and code is generated.

However, some code always needs to be written and when this phase is reached, the user is
reminded that the tool is made with focus on modelling. The editor has no extra features and
that may be a drawback compared to advanced editors and integrated development
environments (IDE).

8.2 Evaluation of the template and development process

One of the major benefits of the template provided is that a complete design model can be
developed, which is independent of the implementation. The idea is that much effort shall be
made to develop a complete and detailed design model. UML does as discussed earlier not
provide the possibilities for formal description of the functionality, but it is possible to
develop detailed and standalone design models. This is also in principal the case for the
models of the TAPAS support platforms. It should be stated that for the design model to be
independent it has to be detailed and consistent, not leaving any issues to be misinterpreted.

By developing a good design model, the implementation part of the development process is
straight forward using the mapping procedure to Java or XML, which are used in this thesis.
The model is flexible for the choice of implementation and new mapping schemas to other
languages will be easy to introduce. However, the solution which is most promising for the
future is mapping to XML, while this will provide completely platform independent
manuscripts.

The benefits of a good process and design rules can first be seen when developing systems
which are quite complex. The example application is due to time constrains not a very
advanced application, thus not illustrating the benefits of a modeling environment to the full
extent.

84

8.3 Enhancements and further work

8.3.1 Application messages

In the existing TAPAS support platforms, the application message data type consists of
message type and message which are represented as String and String[] respectively. This
format is not flexible from the application developer’s point of view. Conversion of data types
will often be required and some data types will not be possible to send as application
messages. A more flexible way of implementing the application messages will be to make a
stereotype for the application message format which can be extended for the various types of
messages. This will also be more descriptive in the model of the application, because the
message types are implemented as own classes.

8.3.2 Towards UML2.0

As described in section 3.1.3, UML2.0 introduces new concepts for behaviour modelling that
will be useful for modelling of complex behaviour. In future development of TAPAS
applications these concepts will probably be useful and when more modelling tools will
support new versions of UML it is natural to emerge TAPAS modelling into the new
standards.

8.3.3 Code generation from state diagrams

This thesis proposes a mapping procedure from the UML state diagrams to Java code. The
mapping is simple and easy to perform. However, the developer which is familiar with
modelling in SDL may have other expectations to automatic code generation from the state
diagrams. This may also become possible in new versions of UML, but it could also be an
idea to develop a simple code generator for the behaviour of the TAPAS Role Figures.

8.3.4 XML and behaviour specification

XML has quickly become a universal standard of storing and distributing information in the
software industry. Using XML to represent the behaviour of the Role Figures will provide
platform independent manuscripts, which means that the actors executing on various
platforms may download and use the same manuscript files. This will enhance the ability to
handle platform compatibility issues. In this thesis mapping from the Role Figure Model to
XML is described.

85

9 Conclusion

The main objective of this thesis was to find out if UML is suitable for modelling of TAPAS
applications. UML models of the existing TAPAS platforms, and a template for further
application development should be made. To demonstrate the use of the template an example
application should be developed with focus on utilization of the Role Figure Mobility
concept.

The models are developed using the UML modelling tool Rational Rose Real-Time. Models
are made for the basic support platform and for MicroTAPAS. A model is also made for the
Tele School application to investigate how the application uses the TAPAS platform. The new
template consists of a set of UML diagrams, template classes and design patterns to use for
application development. A process for the modelling and implementation phase is also
described. The UML models are completed with code by reverse engineering the code from
the existing prototypes. The result is that the support platforms and the new applications
developed to run on top of them can be completely developed and deployed using the
modelling tool.

An example application is developed by using the template, which demonstrates use of the
Role Figure Mobility concept in TAPAS. The PatientRecords application is a simplified
system for electronic patient journals, where the user client can be moved seamlessly between
terminals.

This report shows that UML is a well suited for modelling of the TAPAS support platforms,
basically because the platform prototypes is developed in Java which contain many of the
same concepts as UML. However, UML has until now been lacking formal support for
behaviour modelling which is essential in modelling of the TAPAS Role Figures. The new
version of UML, called UML2.0, has major improvements in this area of modelling. At the
moment few modelling tools are supporting UML2.0 and it is hard to find a tool supporting
2.0 and generation of Java code which is an important building block in the TAPAS
development. Therefore, a tool based on UML 1.4 is used for modelling in this thesis and
Java code is generated. The conclusion is that this is sufficient for modelling of behaviour
which is of moderate complexity. In the future, when applications become more and more
advanced and behaviour more complex, new versions of UML will be appropriate for
modelling of the Role Figures.

86

References

[1]

[4]

[10]

[11]

[12]

[13]

Finn Arve Aagesen, Bjarne E. Helvik, Chutiporn Anutariya, and Mazen

Malek Shiaa: On Adaptable Networking. The 2003 International Conference on
Information and Communication Technologies (ICT 2003), Bangkok-Thailand,april
2003.

Mazen Malek and Finn Arve Aagesen: Mobility management in a Plug and
Play Architecture, IFIP TC6 Seventh International Conference on
Intelligence in Networks (SmartNet2002), Saariselka - Finland, April 2002.
Published by Kluwer Academic Publishers.

Finn Arve Aagesen, Bjarne E. Helvik, Ulrik Johansen and Hein Meling: Plug and
Play for telecommunication functionality — architecture and demonstration issues. The
International Conference on Information Technology for the New Millennium
(IConIT2001), Thammasat University, Bangkok — Thailand, May 2001.

K.O Chow, Weijia Jia, Vito C.P Chan, Jiannong Chao: Model based generation of
Java code. International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). Las Vegas 2000.

UML - Object Management Group — Specification found at http://www.omg.org
[Accessed Mai 2004]

Eirik Luhr: Mobility support for wireless devices- within the TAPAS platform. Master
Thesis, Deparment of telematics, NTNU 2004

Eirik Luhr: TAPAS for Wireless PDA. Project Report, Department of Telematics,
NTNU, 2003

Hein Meling: Complete System Overview,
http://tapas.item.ntnu.no/documentation/SystemDoc/Main/Main.pdf
[Accessed Mai 2004]

Shanshan Jiang and Finn Arve Aagesen: XML-based Dynamic Service Behaviour
Representation. NIK’2003. Oslo, Norway, November 2003

SDL — Specification and Description Language, CCITT recommendation Z100

Geir Melby: Using J2EE Technologies for implementation of ActorFrame based
UML2.0 models. Master Thesis, Agder University College, Grimstad 2003.

Ivar Jacobson: Object-Oriented Software Engineering — a use case driven approach.
Addison-Wesley Professional 1992. ISBN: 0201544350

J Krogstie: Evaluating UML using a Generic Quality Framework. ‘UML and the
Unified Process’, IDEA group, published 2003.

87

http://www.omg.org/
http://tapas.item.ntnu.no/documentation/SystemDoc/Main/Main.pdf

[14]

[15]

[16]

[17]

[18]

Kendall Scott: The Unified Process explained. Addison-Wesley Professional 2001.
ISBN: 0201742047

Extreme programming XP: http://www.extremeprogramming.org/
[Accessed June 2004]

Rational Unified Process — best practices for software development teams. White
Paper. Rational Software Cooperation 1998.

TAPAS, website. Available online: http://tapas.item.ntnu.no
[Accessed Mai 2004]

JUinit, website. Available online: http://www.junit.org
[Accessed Mai 2004]

88

http://www.extremeprogramming.org/
http://tapas.item.ntnu.no/

Appendix A: Source code for the PatientRecords role
figures

This appendix contains the generated source code for the Role Figures of PatientRecords
application ~ which is the PatientRecordsClient, PatientRecordsUI and the
PatientRecordsServer.

package PatientRecords.vl_1;

import PatientRecords.v1_1.PatientRecordsClientInterface;

import PatientRecords.v1_1.NoteWindow;

// {{{RME classifier 'Logical View::PatientRecords::v1_1::PatientRecordsClient' tool 'RTJava' property 'ClassFileHeader'
import MicroTAPAS.*;

import MicroTAPAS.mobility.MobilityApplicationActor;

import MicroTAPAS.debug.DebugEvent;

import MicroTAPAS.util.Util;

import java.util.Hashtable;
import java.util.Vector;
import java.util.Enumeration;
import java.awt.Color;

// }}}RME classifier 'Logical View::PatientRecords::v1_1::PatientRecordsClient' tool 'RTJava' property 'ClassFileHeader'
/] {{{RME classifier 'Logical View::PatientRecords::v1_1::PatientRecordsClient'
public class PatientRecordsClient

extends MicroTAPAS.mobility.MobilityApplicationActor

implements java.io.Serializable {

/] {{{RME classAttribute "initiated'

private boolean initiated = false;

/] }}IRME classAttribute 'initiated'

/] {{{RME classAttribute 'ai'

public PatientRecordsClientInterface ai;

/] }}}RME classAttribute ‘ai'

/] {{{RME classAttribute 'stInitial'

private static final int stlnitial = 0;

// }}IRME classAttribute 'stInitial'

/] {{{RME classAttribute 'stInitialized'

private static final int stInitialized = 1;

// }}}YRME classAttribute 'stInitialized'

/] {{{RME classAttribute 'stLoggedOn'

private static final int stLoggedOn = 3;

// }}}RME classAttribute 'stLoggedOn'

/] {{{RME classAttribute 'stWaitPatientSelected'

private static final int stWaitPatientSelected = 4;

/] Y}}RME classAttribute 'stWaitPatientSelected'

/] {{{RME classAttribute 'initialRoleSession’

private RoleSession initialRoleSession = null;

// }}}RME classAttribute 'initialRoleSession’

/] {{{RME classAttribute 'bgColor"

private Color bgColor = new Color(130, 165, 124);

// }}}RME classAttribute 'bgColor'

/] {{{RME classAttribute 'low'

private LogOnWindow low;

/] }}IRME classAttribute 'low'

/] {{{RME classAttribute 'configuration’

private PatientRecordsConfiguration configuration;

// }}IRME classAttribute 'configuration'

/] {{{RME classAttribute 'server'

private RoleSession server;

// }}}RME classAttribute 'server'

/] {{{RME classAttribute 'stWaitLogon'

private static final int stWaitLogon = 2;

/] }}}RME classAttribute 'stWaitLogon'

/] {{{RME classAttribute 'stWaitRecordSelected'

89

private static final int stWaitRecordSelected = 5;
/] }}IRME classAttribute 'stWaitRecordSelected'

/] {{{RME classAttribute 'stRecordSelected'
private static final int stRecordSelected = 6;
// }}}RME classAttribute 'stRecordSelected'
/] {{{RME classAttribute 'stNoteOpen'
private static final int stNoteOpen = 7;
// }}}RME classAttribute 'stNoteOpen'
/] {{{RME classAttribute 'mainWindow'
private ClientMainWindow mainWindow;
/] }}IRME classAttribute ‘'mainWindow'
/] {{{RME classAttribute 'stPatientSelected'
private static final int stPatientSelected = 8;
/] Y}IRME classAttribute 'stPatientSelected'
/] {{{RME classAttribute 'recordWindow'
private RecordWindow recordWindow;
// }}Y}RME classAttribute 'recordWindow'
/] {{{RME classAttribute 'title'
private String title = "PatientRecords";
/] }}IRME classAttribute 'title'
/] {{{RME classAttribute 'info'
private InfoWindow info;
// }}}RME classAttribute 'info'
/] {{{RME classAttribute 'ui'
private RoleSession ui;
// }}}RME classAttribute 'ui'
/] {{{RME operation 'PatientRecordsClient()'
public PatientRecordsClient() {
ai = new PatientRecordsClientInterface();
ai.state = stlnitial;

}

// }}}RME operation 'PatientRecordsClient()'

/] {{{RME operation 'mobilityActorEntry(RequestPars)'

public RequestResult mobilityActorEntry(RequestPars rp) throws
// {{{RME tool 'RTJava' property 'JavaThrows'

Exception

// }}}RME tool 'RTJava' property 'JavaThrows'

if (DEBUG)
debug.send(
new DebugEvent(
this,
DebugEvent.INFODEBUG,
"mobilityActorEntry()",
P));

// ActorPlugIn
if (rp.requestType == RequestPars.ActorPlugln) {
if (linitiated) {
return stateTransition(rp);

} else {
return new RequestResult(
RequestResult.OK,
"Actor already initiated",
rp.ID);
)
¥
// ActorPlugOut

else if (rp.requestType == RequestPars.ActorPlugOut) {
return stateTransition(rp);

// ActorChangeBehaviour

else if (rp.requestType == RequestPars.ActorChangeBehaviour) {

return stateTransition(rp);

// RoleSessionAction

else if (rp.requestType == RequestPars.RoleSessionAction) {

return stateTransition(rp);

b
// FAIL
else {

90

debua.send(
new DebugEvent(

this,
DebugEvent.FAULT,
"mobilityActorEntry()",
"Invalid request: " + RequestPars.RT[rp.requestTypel));
return new RequestResult(
RequestResult.FAIL,
super.context.self
+ "::[mobilityActorEntry()] Unknown request type: "
+ RequestPars.RT[rp.requestType],
rp.ID);

}
// }}}RME operation 'mobilityActorEntry(RequestPars)’
/] {{{RME operation 'stateTransition(RequestPars)'
public RequestResult stateTransition(RequestPars pRP) throws
// {{{RME tool 'RTJava' property 'JavaThrows'
Exception
// }}}RME tool 'RTJava' property 'JavaThrows'
{
if (DEBUG)
debug.send(
new DebugEvent(
this,
DebugEvent.INFODEBUG,
"stateTransition()",
PRP));
RequestResult rr =
new RequestResult(
RequestResult.OK,
this.getClass().getName()
+ "::stateTransition: state="
+ ai.state,
pRP.ID);
ApplicationMessage appMsg = null;
ActorPlugInReq request;

switch (ai.state) {

case stlnitial :
if (ActorContext.microPNES != null) {
// Define configuration to be used by the application
configuration =
new PatientRecordsConfiguration(
context.play.playLoc + context.play.playld,
context);
initialRoleSession = (context.rsc.initialRoleSession());
=
new RequestResult(
RequestResult.OK,
"ActorPlugIn was successful”,
pRP.ID);
if (pRP.isMoved) {
// Stay in this state. When the interface is recreated, the actor will
be recreated in its
// original state
ai.state = stlnitial;
} else {
// Plug in user interface
// User interface shall run at same Node and PNES, but with
another identifier
GAI uii =
new GAI(
context.self.getType(),
context.self.getNode(),
context.self.getPNES(),
"PatientRecordsUI");
request =
new ActorPlugInReq(
uii,

91

new Role("PatientRecordsUI"));

// Actor plug in

rr = actorPlugIn(request);
ui = rr.roleSession;
ai.state = stlnitialized;

)
} else {
rr=
new RequestResult(
RequestResult.FAIL,
"ParentPNES is null",
pRP.ID);
}
break;

case stlnitialized :
if (pRP.requestType == RequestPars.RoleSessionAction) {
appMsg = pRP.applicationMessage;
if (appMsg.messageType.compareTolgnoreCase("exit") == 0) {
try {
rr = super.actorPlugOut(initialRoleSession, false);
} catch (Exception e) {
e.printStackTrace();
rr=
new RequestResult(
RequestResult.FAIL,
"Exception: " + e.toString(),
0);

} else if (
appMsg.messageType.compareTolgnoreCase("logon") == 0) {
// Build parameters for Server plug in
request =
// NOTE: Now only location and role are specified - other must be
completed
new ActorPlugInReq(configuration.locationServer(),
new Role("PatientRecordsServer"));

// Actor plug in
rr = actorPlugIn(request);
server = rr.roleSession;

// Send message
=
sendMessage(
server.cooperator,
"logonReq",
appMsg.message);
ai.state = stWaitLogon;

}

break;

case stWaitLogon :
if (pRP.requestType == RequestPars.RoleSessionAction) {
appMsg = pRP.applicationMessage;
if (appMsg.messageType.compareTolgnoreCase("logonDenied")
// Send message
=
sendMessage(
ui.cooperator,
"OpenInfoWindow",
new String[] { "Login failed. Wrong user name
or password." });
ai.state = stlnitialized;
} else if (
appMsg.messageType.compareTolgnoreCase("logonCnf")

==0){

92

/I Send message
=
sendMessage(
ui.cooperator,
"closeWindow",
new String[] { "logon" });
=
sendMessage(
ui.cooperator,
"openMainWindow",
appMsg.message);
ai.state = stLoggedOn;

}

break;

case stLoggedOn :
if (pRP.requestType == RequestPars.RoleSessionAction) {
appMsg = pRP.applicationMessage;
if (appMsg.messageType.compareTolgnoreCase("selectPatient")
==0){
=
sendMessage(
server.cooperator,
"getRecords",
appMsg.message);
ai.state = stWaitPatientSelected;

} else if (

appMsg.messageType.compareTolgnoreCase("exit") == 0) {
try {

rr = super.actorPlugOut(initialRoleSession, false);
} catch (Exception e) {

e.printStackTrace();

rr=

new RequestResult(

RequestResult.FAIL,
"Exception: " + e.toString(),
0);
)
} else if (

appMsg.messageType.compareTolgnoreCase("newPatient™)

} else if (
appMsg.messageType.compareTolgnoreCase("moveClient")
==0){
GAI newGAI =
New
GAI("Actor://10.2.1.8/MicroPNES/PatientRecordsClientM");
rr=
sendMessage(
ui.cooperator,
"moveUserInterface”,
new String[] { newGAl.toString()});
actorMove(newGAI);

} else if (
appMsg.messageType.compareTolgnoreCase("selectRecord")
=

sendMessage(
server.cooperator,
"getPatientRecord",
appMsg.message);
ai.state = stWaitRecordSelected;

} else if (
appMsg.messageType.compareTolgnoreCase("addNote")
==0){

=

93

sendMessaae(
server.cooperator,

"addNote",
appMsg.message);
ai.state = stRecordSelected;

} else if (
appMsg.messageType.compareTolgnoreCase("logOff")
==0){
=
sendMessage(ui.cooperator, "closeAllWindows", null);
=
sendMessage(ui.cooperator, "openLogonWindow", null);
ai.state = stlnitialized;

}

break;

case stWaitPatientSelected :
if (pRP.requestType == RequestPars.RoleSessionAction) {
appMsg = pRP.applicationMessage;

if (appMsg
.messageType
.compareTolgnoreCase("patientRecords")
==0){
=
sendMessage(
ui.cooperator,
"displayPatientRecords",
appMsg.message);
} else if (
appMsg.messageType.compareTolgnoreCase("noRecord")
==0){
// Error message
)
ai.state = stLoggedOn;
b
break;

case stWaitRecordSelected :
if (pRP.requestType == RequestPars.RoleSessionAction) {
appMsg = pRP.applicationMessage;
if (appMsg
.messageType
.compareTolgnoreCase("recordContents")
==0){
=
sendMessage(
ui.cooperator,
"openRecordWindow",
appMsg.message);
ai.state = stLoggedOn;
} else if (
appMsg.messageType.compareTolgnoreCase("noContents")

==0){

¥

break;

default :
debug.send(
new DebugEvent(

this,

DebugEvent.FAULT,

"applicationActorEntry()",

"Invalid state encountered in actor HospitalClient State:"
+ ai.state
+ "message:"
+ appMsg));

94

return (
new RequestResult(
RequestResult.FAIL,
"Invalid state: " + ai.state,

pRP.ID));
b
if (DEBUG)
debug.send(
new DebugEvent(

this,
DebugEvent.INFODEBUG,
"stateTransition()",
m)

return rr;

// }}}RME operation 'stateTransition(RequestPars)'
/] {{{RME operation 'getinterface()’
public Object getInterface() {

return (Object) ai;

¥
// }}}YRME operation 'getInterface()’'

// {{{RME operation 'createlnterface(Object)'
public void createlnterface(Object actorInterface) {
// Update the actors interface

if (actorInterface != null) {
PatientRecordsClientInterface tmp =
(PatientRecordsClientInterface) actorInterface;
System.out.printin(

context.self + "::createActorInterface(): ai=" + ai.toString());

if (DEBUG)
debug.send(
new DebugEvent(
this,
DebugEvent.INFODEBUG,
"createlnterface()",
ai.toString()));
ai.state = tmp.state;
} else {
debug.send(
new DebugEvent(
this,
DebugEvent. WARNING,
"createlnterface()",
"ActorInterface = null"));
System.out.printin(

context.self + "::WARNING::ActorInterface = null");

)
// }}}RME operation 'createInterface(Object)'

/] {{{RME operation 'sendMessage(GAI,String,String[])'
public RequestResult sendMessage(
GAI client,
String messageType,
String[] message) {
RequestPars rp =
new RequestPars(
RequestPars.RoleSessionAction,
context.self,
client);

rp.applicationMessage = new ApplicationMessage(messageType, message);

return super.requestToActor(rp);

)
// }}}RME operation 'sendMessage(GAI,String, String[])'

// }}}RME classifier 'Logical View::PatientRecords::v1_1::PatientRecordsClient'

95

Appendix B: XML description for the PatientRecordsClient

This appendix contains a XML manuscript for the PatientRecordsClient which is transferred
from the UML state diagram description of the Role Figure. The mapping is done according
to the procedure described in section 5.4.1.2.

<manuscript>

<I--descripton of the manuscript for the role PatientRecordsClient-->
<fsm name="PatientRecordsClient">

1
2
3
4
5
6 <data>

7 <name> v_interface </name>
8 <type> RoleSession </type>
9 </data>

10 <data>

11 <name> v_server </name>
12 <type> RoleSession </type>
13 </data>

15 <init_state> stInit </init_state>

17 <!--Description of state stlnit (initial state)-->
18 <state name="stInit">

20 <input msg="INITIAL_TRANSITION">

22 <!--Configuration is now specified by play
23 configuration rules. No setConfiguration

24 action is therefore specified in the

25 manuscript... -->

27 <action>

28 <meth_name> conditionalJump </meth_name>
29 <param>

30 <name> variable </name>
31 <value> isMoved </value>
32 </param>

33 <param>

34 <name> value </name>
35 <value> true </value>

36 </param>

37 </action>

39 <action>

40 <meth_name> conditionalJump </meth_name>
41 <param>

42 <name> variable </name>

43 <value> isMoved </value>

44 </param>

45 <param>

46 <name> value </name>

47 <value> false </value>

48 </param>

49 <param>

50 <name> gotoSubtrans </name>
51 <value> Continue </value>

52 </param>

53 </action>

55 </input>
56 </state>

59 <state name="stlnitialized">

96

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

<input msg="Logon">

<action>
<meth_name> ActorPlugInReq </meth_name>
<param>
<name> role </name>
<value> PatienRecordsServer </value>
</param>
<store_return> v_server </store_return>
</action>

<output>
<msg type="logonReq">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> server </dest>
</msg>
</output>

<next_state> stWaitLogOn </next_state>
</input>
</state>

<state name="stWaitLogOn">
<input msg="LogonCnf">
<output>
<msg type="CloseWindow">
<param>
<name> windowType </name>
<value> Logon </value>
</param>
<dest> v_user_interface </dest>
</msg>
<msg type="OpenMainWindow">
<dest> v_user_interface </dest>
</msg>
</output>
<next_state> stLoggedOn </next_state>
</input>

<input msg="LogonDenied">
<output>
<msg type="OpenInfoWindow">
<param>
<name> text </name>
<value> Login failed. Wrong user name or password </value>
</param>
<dest> v_user_interface </dest>
</msg>
</output>

<next_state> stlnitialized </next_state>
</input>

<input msg="UNDEFINED">
</input>

</state>

<state name="stLoggedOn">

<input msg="selectPatient">
<output>
<msg type="getRecords">
<param>
<name> message</name>
<value> INPUT_MSG </value>
</param>
<dest> v_server</dest>
</msg>
</output>

97

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

<next_state> stWaitPatienSelect </next_state>
</input>

<input msg="selectRecord">
<output>
<msg type="getPatientRecord">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> v_server </dest>
</msg>

<next_state> stWaitPatientSelected </next_state>
</output>
</input>

<input msg="addNote">
<output>
<msg type="addNote">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> v_server </dest>
</msg>

<next_state> stWaitRecordSelected </next_state>
</output>
</input>

<input msg="logOff">
<output>
<msg type="closeAllWindows">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> v_user_interface </dest>
</msg>
</output>

<output>
<msg type="openLogonWindow">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> v_user_interface </dest>
</msg>

<next_state> stlnitialized </next_state>
</output>
</input>

<input msg="UNDEFINED">
</input>

190 </state>

191

192 <state name="stWaitPatientSelect">

193
194
195
196
197
198
199
200
201
202
203

<input msg="patientRecords">
<data>
<name> v_temp </name>
<type> boolean </type>
</data>

<output>
<msg type="displayPatientRecords">
<param>
<name> message </name>
<value> INPUT_MSG </value>

98

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274

</param>
<dest> v_interface </dest>
</msg>
</output>
<next_state> stLoggedOn </next_state>
</input>

<input msg="noRecord">
<output>
<msg type="openInfoWindow">
<param>
<name> text </name>

<value> No records found for this patient </value>

</param>
<dest> v_user_interface </dest>
</msg>
</output>
<next_state> stLoggedOn </next_state>
</input>

<input msg="UNDEFINED">
</input>
</state>

<state name="stWaitRecordSelected">
<input msg="recordContents">
<output>
<msg type="openRecordWindow">
<param>
<name> message </name>
<value> INPUT_MSG </value>
</param>
<dest> v_user_interface </dest>
</msg>
</output>
</input>
<input msg="noContents">
<output>
<msg type="openInfoWindow">
<param>
<name> text </name>
<value> Empty record </value>
</param>
<dest> v_user_interface </dest>
</msg>
</output>
</input>

<next_state> stLoggedOn </next_state>
</state>

<subtransition name="Continue">
<!--Asks for an actor to play the role
PatientRecordsUI-->
<action>
<meth_name> ActorPlugInReq </meth_name>

<param>
<name> role</name>
<value> PatientRecordsUI </value>
</param>
<param>
<name> location</name>
<!-- THIS refers to the same role as the node

where this actor (PatientRecordsClient) is installed

->
<value> THIS </value>
</param>
<store_return> v_interface </store_return>
</action>
<next_state> stInitUserInterface </next_state>

99

275 </subtransition>
276

277 </fsm>
278 </manuscript>

Appendix C: PatienRecords sequence diagrams

This appendix contains sequence diagrams which describes alternative flows for the
PatienRecords application.

Appendix D: CD
The CD provided with this thesis contains the following directories:
\model - this directory contains the UML model - Model.rtmdl
\model\PaP - generated source code for the basic TAPAS support platform.
\model\School - generated source code for the Tele School application.
\model\MicroTAPAS - generated source code for MicroTAPAS.

\model\PatientRecords - generated source code for the PatientRecords application.

100

	Preface
	Table of Contents
	Figure List
	Table List
	Abstract
	Introduction
	The TAPAS project
	Modelling of TAPAS
	Outline of the thesis

	TAPAS concept and architecture
	The theatre metaphor
	TAPAS architectures
	TAPAS basic architecture
	TAPAS mobility handling architecture

	TAPAS support systems implemented in Java
	The original layered design model
	The layered design model for MicroTAPAS

	Example applications
	Summary

	UML modelling
	Introduction to UML
	The UML diagrams
	Modelling of dynamic behaviuor
	UML 2.0

	UML modelling tools
	Modelling tools features
	Selecting a modelling tool

	The Rational Rose Real-Time modelling tool
	Real-Time features
	Standard UML features

	Methodology
	The use case driven approach
	The Unified Process

	Summary

	TAPAS models
	Model of the TAPAS support platform
	Use cases
	Class diagrams
	Data types
	Sequence diagrams
	Reverse engineering
	Components and deployment

	The MicroTAPAS model
	Use Cases
	Class diagrams
	Sequence diagrams
	Reverse engineering
	Components and deployment

	Model of the Tele School application
	Use cases
	Class diagrams
	Sequence diagrams
	State diagrams
	Reverse engineering
	Components and deployment

	Summary

	Role Figure model template
	Specification of requirements
	Functional requirements
	Non-functional requirements

	Specifying the Role Figures
	Finding the Role Figures
	The ApplicationRoleFigure template class

	Description of the functionality
	Behaviour specification
	The ApplicationRoleFigure state machine
	Mapping from state diagram to Java code
	Mapping of state diagram to XML manuscript

	The Role Figure Support Classes

	Building and deploying the application
	Workflow
	Summary

	An application based on Role Figure Mobility
	The PatientRecords Application
	Requirements specification
	Functional requirements
	Non functional requirements

	Specifying the Role Figures and support classes
	Description of the functionality
	Logon and logoff
	Select patient
	Open record
	Create a new record
	Add a new note to a record
	Register a new patient
	�
	Moving the client to a new terminal

	Behaviour specification
	PatientRecordsClient behaviour
	PatientRecordsServer behaviour

	PatientRecordsUI behaviour
	Implementation of the application
	The PatientRecordsClient class
	The PatientRecordsUI class
	The PatientRecordsServer class

	Deployment of the software components
	Screen shots
	Summary

	Test and verification
	Test environment
	Installation and configuration

	Tests and results
	The Tele School application on the basic TAPAS support platform
	The PatientRecords application on MicroTAPAS platform

	Test methodology
	Summary

	Discussion
	Experiences with the modelling tool
	Evaluation of the template and development process
	Enhancements and further work
	Application messages
	Towards UML2.0
	Code generation from state diagrams
	XML and behaviour specification

	Conclusion
	References
	Appendix A: Source code for the PatientRecords role figures
	Appendix B: XML description for the PatientRecordsClient
	Appendix C: PatienRecords sequence diagrams
	Appendix D: CD

