
TOWARDS DYNAMIC COMPOSITION
OF HYBRID COMMUNICATION SERVICES

Jacqueline Floch and Rolv Bræk
Department of Telematics, NTNU
N-7491 Trondheim, Norway
e-mail: {Jacqueline.Floch, Rolv.Braek}@item.ntnu.no

Key words: Architecture, Telecommunication, Services, Service models, Service composi-
tion, Service execution framework, Roles, Role assignment, Role learning.

Abstract: Due to the deregulation of the telecom network and the Internet, users will have
access to an increasing number of heterogeneous communication services and
will need to adapt their services or learn new services in order to interact with
other users and systems. We propose a dynamic composition method that ena-
bles services to be constructed dynamically or “on-the-fly” from existing func-
tional elements (service roles). Roles and actors that play roles are key concepts
in our approach. A service role is defined as the part an object takes in a serv-
ice. Service execution requires that roles are assigned to actors in a coordinated
way. Our approach enables the systematic and structured specification of serv-
ices, and provides mechanisms for service composition and an execution envi-
ronment.

1 INTRODUCTION

Since short time to market for new services is increasingly important, the
telecom operators and manufacturers are in constant search for better frame-
works and methods for the rapid construction and deployment of services.
Frameworks such as the TINA Service Architecture [1] or the programmable
architecture from EPFL [2] have been proposed. We believe that a traditional
approach to service life-cycle as proposed by TINA with the associated sce-
narios for service deployment, user subscription and service withdrawal, is
not flexible enough to future market expectations and service providers
needs. Users expect to access a similar set of services independently of what
network they happen to use, they expect to get access to new and useful serv-



Jacqueline Floch, Rolv Bræk

ices as they become available, and they expect to be able to communicate
seamlessly with other users and applications regardless of what service pro-
vider and network operator they use. Conversely, service providers need to
develop and deploy services across the network technologies at a pace and
with a degree of harmonisation that keeps up with user expectation. As the
open world of Internet enables several parties to develop and provide rapidly
new services, as new actors are emerging in the deregulated telecom network,
users will have access to an increasing number of heterogeneous services and
will need to adapt their services or learn new services in order to interact with
other users and systems. The mobility of users also creates a need for adapta-
tion. For example, UMTS (Universal Mobile Telecommunication System)
introduces the Virtual Home Environment (VHE) and service portability.
This allows users to access their personalised services in any visited network
in the same way as in their home network, even if the services are not actually
offered in the visited network.

Hybrid communication services are sometimes defined as services that
span different network technologies including the public switched network
(PSTN) and the Internet [3]. We also consider as hybrid services, services
that are provided by interactions between heterogeneous service components,
developed by different parties or made available by different service provid-
ers. In our work, the latter kind is in focus. Our goal is to define a framework
for service execution and methods for service design that enable services to
be designed separately and then composed dynamically using Plug-and-Play
techniques [4].

Service design is complex. Communication services normally require the
coordinated effort of several distributed components, where some of the com-
ponents may be involved in several services. Services involve several users
where some of them may participate in several services. In addition to this
intricate structure of services, the need for service inter-operability across
several operator domains and for service availability over different network
technologies also contribute to the complexity of service design. Our
approach to service design is based on service roles [5]. We define a service
role as the part an entity (an object in our framework) takes in a service, and
we consider a service as a collaboration between roles. By using services
roles, we are able to break down the complexity of service specification, and
also to combine roles and provide new services in a flexible way.

Dynamic service composition enables hybrid services to be constructed
dynamically from heterogeneous service roles. The method supports service
adaptation and learning, and thus provides service users and providers with
the ability to build new services “on-the-fly”.

This paper presents our approach to service development and execution
based on role modelling and dynamic service composition. The next section
introduces the basic concepts: roles and actors. In Section 3 we present the



Towards Dynamic Composition of Hybrid Communication Services

service execution framework in which we are experimenting with the
dynamic composition method. The purpose of the framework is to enable the
systematic and structured specification of services by defining concepts for
service modelling. The framework also provides basic mechanisms for serv-
ice composition and an execution environment. In Section 4 we present some
examples that illustrate how dynamic composition may be used during serv-
ice execution. The examples also introduce the concepts of role assignment,
negotiation and learning. Section 5 presents the main ideas in our approach
and discuss potential solutions. We identify the requirements that the
approach sets on the service development. In Section 6 we discuss composi-
tion correctness. Finally we compare our approach to some related work.

2 ACTORS AND ROLES

Actors and service roles are key concepts in our framework. A service
role is the part an entity (an object in our framework) takes part in a service.
Thus a service is seen as a collaboration between roles [5]. Service execution
requires that roles are assigned dynamically to objects (that we denote as
actors) in a coordinated way.

Roles may be introduced in a rather intuitive way. The concept of role is
used extensively every day, either to describe relations between persons, for
example family roles such as mother and daughter, or to describe functions
and responsibilities, for example organisational roles such as professor, secre-
tary, librarian, student. Also in telephony, it is customary to refer to the A-
subscriber and B-subscriber, or the caller and the callee in a call.

The concept of role was already introduced in the end of the 70’s in the
context of data modelling [6] and has emerged again in the object-oriented
literature. Roles are used both for data modelling [7] and functional model-
ling [8], [9], [10]. In our approach, service roles are functional roles that
encapsulate the functional properties of components involved in a service.

As services involve several distributed components where some of them
may be involved in several services, using roles enables to focus on single
“slices” of behaviour. This is illustrated in Figure 1. This figure shows a serv-
ice role collaboration diagram for basic call. It also shows an underlying
object structure implementing the roles. In this figure two User Servers are
involved that play the subscriber roles “caller basic call” and “callee basic
call”. The User Servers may play different roles in other services as shown in
Figure 2. Here one of the User Server plays the role “call forward”. This serv-
ice role collaboration may occur if the user B initially called by A is busy or
does not reply. 



Jacqueline Floch, Rolv Bræk

These examples illustrate that roles may be combined in different manner.
The role “caller basic call” may both collaborate with “callee basic call” or
“call forward”. The roles must be specified such that they collaborate in a
consistent manner. In addition the collaboration of roles should not conflict or
interfere in an undesirable manner. In the call forward example, we may
check that the user A does not object to be forwarded to C.

While these two first examples show quite simple service role collabora-
tions, some service demand more complex collaboration structures. This is
shown in Figure 3. Here one of the User Server plays concurrently the two
roles “callee basic call” and “call waiting” towards the other User Servers.
Some coordination between these roles may be required.

Although these examples use telecommunication services, role modelling
can also be applied to information or management services. Telecommunica-
tion services are especially interesting because they usually involve several
interacting roles played by concurrent objects.

Role modelling is not new. The originality of our work is that we use roles
for communication services and that we assign roles and compose them
dynamically. In our approach, actors are objects that are created and assigned
service roles dynamically on demand. A user may participate in several inde-
pendent services or service sessions. In that case, several concurrent actors
are created and allocated the independent services roles. Actors may change

User
ServerEndpoint Endpoint

caller

played-by played-by

Figure 1.Service role collaboration for basic call.

user A user B

basic
call

callee
basic
call

service with service roles

User
Server

Basic call

Endpoint Endpoint

played-by played-by

Figure 2.Service role collaboration for call forward.

user A user Cplayed-by

caller
basic
call

callee
basic
call

call
forward

User
Server

User
Server

User
Server

Call forwarding
service with service roles



Towards Dynamic Composition of Hybrid Communication Services

roles during their lifetime. Within each service session, an actor may also
play several roles. These roles are usually functionally related or they may
share some common resources (e.g. a terminal).

The assignment and composition of roles must be coordinated in order to
ensure a correct behaviour. For this purpose, actors are created with some
intrinsic behaviour required for role coordination. We distinguish between the
intrinsic behavioural properties of an actor i.e. the properties of the actor
itself, and the extrinsic properties that are obtained through the role assign-
ment [9].

In resume, the main issues in the work presented here are the definition of
rules for the specification of composable service roles, the assignment of
roles to actors and their coordination within one actor.

3 EXECUTION FRAMEWORK

We have introduced a simple execution framework in which we are exper-
imenting with dynamic composition. The purpose of this framework is two-
fold: 1. to enable the systematic and independent specification of services by
defining concepts for service modelling; 2. to provide basic mechanisms for
service composition and execution.

Our framework is inspired by the Telecommunication Information Net-
work Architecture (TINA) [11]:
• We use a wide definition for service that includes telecommunication, 

management and information services.
• We separate between service logic and network resources and protocols.
• The components of the architecture are defined and implemented as inter-

acting objects, following a distributed object oriented approach.

Endpoint

Endpoint

played-by
played-by

Figure 3.Service role collaboration for call waiting.

user A

user B

Endpoint

played-by
user C

played-by

caller
basic
call

caller
basic
call

callee
basic
call

call
waiting

User
Server

User
Server

User
Server



Jacqueline Floch, Rolv Bræk

• We use the concept of session where a session is a means for representing 
a relationship between a group of objects collaborating to a service.

• We assume that the components execute in a distributed processing envi-
ronment that support locating objects and interaction between objects.

In order to focus on the composition problem, we have introduced several
simplifications to TINA. While TINA proposes a network-centric approach
where the central service components belong to the provider domain, we do
not make any assumption about the domain where our components are being
deployed. We also simplify the TINA session model and let the user session
components play the role of the session manager. This latter simplification
restricts mobility and multi-party support, but it also considerably simplify
the service usage scenarios and facilitate our experimentation.

Figure 4 shows a simplified UML collaboration diagram where the main
computational service components (or objects) in our framework are intro-
duced. The components are defined in a generic manner and need to be spe-
cialized for specific services. The generic functionalities of the components
are defined as follows:
• The User Endpoint represents different interfaces that provide the user 

with service access and usage such as a telephone set, a personal computer 
or any other terminal equipment. The user may be a human user or an 
application.

• The User Agent is a service independent component that represents the 
user and the user profile in the network. It records information about the 
user subscription to services, the endpoints where the user can be reached, 
the user preferences and the user participation into services. The User 
Agent is involved during the instantiation of new service sessions and is 
in charge of role assignment. The User Agent becomes increasingly 
important when services become more personalised.

• The Session Actor is a service independent component that can play dif-
ferent service roles. The Session Actor coordinates the execution of con-
current roles. A service role is assigned to a Session Actor either when a 
user requests to participate in a service session (e.g. “caller” role in a basic 
call), or when a user is invited to participate in a service session (e.g. “cal-
lee” role in a basic call or “call waiting” when busy), or when some spe-
cial events happen during a service session (i.e. “billing” after session 
control negotiation, or “announcement” before the initiation of call for-
ward).

• The Communication Endpoint is a service independent component. It 
coordinates the establishment of stream flow connections. This compo-
nent is not detailed in our framework. It represents the interfaces to the 
transport network resources.



Towards Dynamic Composition of Hybrid Communication Services

The computational objects execute in a distributed processing environ-
ment (DPE) such as CORBA or Java RMI that mainly support communica-
tion and binding with remote objects. Through the definition of the User
Agent and Session Actor, and the allocation of responsibilities to these com-
ponents, we confine service specification enabling the service designer to
focus on service logic, role interaction and consistency. In this way our
framework provides additional functionality to a DPE.

4 EXAMPLES

Our aim with the following examples is to:
• demonstrate the potential of dynamic composition,
• describe different forms of composition (e.g. sequential or parallel com-

position),
• identify the basic elements or steps in the composition process and,
• capture the basic requirements to the composition method.

We present three examples. The first example introduces the concept of
role assignment, the second the concept of adaptation and the third the con-
cept of learning. The examples are presented using UML sequence diagrams
that describe the interactions between the system components [12]. Several
alternative interactions are often possible; we present one of them. The aim is

Figure 4.Service session model.

UEa: User
Endpoint

UAa: User
Agent

SAa: Session
Actor

1: request

UEb: User
Endpoint

UAb: User
Agent

SAb: Session
Actor

2 : create
assign a role

3: request

4 : create
assign a role

CEb: Comm
Endpoint

CEa: Comm
Endpoint

user A user B



Jacqueline Floch, Rolv Bræk

not to propose an optimal service design, but rather to identify particular
needs in the composition approach. Again here as in Section 2 and for the
same reasons, we use simple telecommunication services.

4.1 Role assignment in a Basic Call

This example is given as introduction to the concept of role assignment to
Session Actors. It shows that we consider a service as a collaboration
between roles and that these roles are assigned to actors at service execution.
The example involves two users A and B where user A is making a basic call
to B. See Figure 5.

In this example a Session Actor is created and assigned the “caller basic
call” role by the User Agent on A side when the user A requests to participate
in the service. The retrieval and loading of role behaviours are basic function-
alities supported by the distributed processing environment. The new Session
Actor locates the User Agent that represents B and invites the user B to par-
ticipate in the service. A new Session Actor is created and assigned the
requested “callee basic call” role by the User Agent on B side. Then the serv-
ice can continue.

UEa: User
Endpoint

UAa: User
Agent

request_service (basic call, B)

<<create>>

play (“caller basic call”, B, <alternatives roles>)

request_role(callee basic call, A)

<<create>>

play (“callee basic call”, SPa)

playing (“callee basic call”)

progress alert

Figure 5.Role assignment in Basic Call.

UAb: User
Agent

UEb: User
Endpoint

SAa: Session
Actor

SAb: Session
Actor

check request

retrieve B reference

Basic Call continue

check request



Towards Dynamic Composition of Hybrid Communication Services

The assignment of roles must be coordinated in order to avoid inconsist-
encies or undesirable service interaction. The User Agent serves to coordi-
nate the assignment. It also checks the request against the user’s preferences
and subscription profile.

When assigning the role to Session Actor on A side, the User Agent may
specify a list of alternative roles. This information indicates to the Session
Actor which other roles may be played if the current request cannot be hon-
oured. Role compatibility information, conditions and priorities may be asso-
ciated to alternative roles. For example an alternative role may be associated
to the condition “B busy”. Using the specification of alternative roles, the
Session Actor may decide on behaviour changes without involving the User
Agent. This will be shown in the next example.

The messages “play” and “playing” are service role independent. We will
introduce other role assignment related messages and interactions in the next
examples. We define these interactions such that role assignment can be
clearly distinguished from playing the role itself.

4.2 Call Forward when Busy

This example illustrates the ability to adapt a service session to a specific
situation by using an alternative behaviour. It involves three users A, B and
C. The user A wishes to establish a basic call to a busy user B. Incoming calls
to B are forwarded to C if B is busy. The example shows that several Session
Actors may co-exist and execute in parallel on one user side (here on B side).

On request from A, the User Agent for B determines that the “call for-
ward” role should be played (see Figure 6). This role is played concurrently
from the role currently played at B and is assigned to a new Session Actor.
The Session Actor on the A side is informed about B playing this new role;
this gives the Session Actor the opportunity to accept or reject the role, but
also to check for call barring cases, etc. before service execution continues.

We assume that the Session Actor on A side was given alternative roles
during its initial role assignment (see Figure 5). Thus it knows that the current
role “caller basic call” is compatible with the new role “call forward” and that
the assignment of a new role on A side is not necessary. We will see in the
next example that A may also reject the role proposed by B and negotiate
other roles with B.

4.3 Learning alternative behaviour

This example illustrates the ability to enhance a service by learning a new
behaviour. It involves two users A and B. The user A wishes to establish a
basic call to a busy user B. A and B negotiate a behaviour for handling the



Jacqueline Floch, Rolv Bræk

busy situation. We assume that different services are available on A and B
sides. This would be the case when A and B are subscribers in different net-
works.

On request from A, the User Agent for B determines that the “call wait-
ing” role should be played (see Figure 7). The “call waiting” role permits to
notify the user B about the incoming (waiting) call and to let user B choose to
accept or reject the waiting call. This role has to be tightly synchronized with
the role currently played by B, so it is allocated to the existing Session Actor.
The Session Actor on the A side does not agree on this role (the user A may
wish to not interrupt B) and proposes to initiate the alternative “call back”
role. This service role alternative is not available on B side where the Session
Actor has to be learned the new service role. Learning includes the down-
loading of code to the Actor.

We assume that both Session Actors were informed about alternative roles
and assignment conditions during their initial role assignment and are able to
decide about behaviour changes without involving the User Agents. The Ses-
sion Actors inform the User Agents about behavioural changes (sending the
message “playstatus”). In some cases the Session Actors may need external
support to make decision about the assignment of a new role. Decision sup-
port may be provided by the User Agent, some other specialized agent in the
network or the end user.

SAa: Session
Actor

<<create>>

play (“call forward”, SAa, C)

playing (“call forward”, busy, C)

progress

Figure 6.Service adaptation and parallel role assignment.

UAb: User
Agent

SAb1: Session
Actor

SAb2: Session
Actor

request_role

(callee basic call, A)

playgrant

UAc: User
Agent

(callee basic call, A)

request_role

busy (“call forward”)

Basic Call initiated

user B is busy

SAa knows that call forward can be accepted.
The role is compatible with the curent role.

Call forward continue



Towards Dynamic Composition of Hybrid Communication Services

The “call back” service role has to be coordinated with the role currently
played by the Session Actor on B side. The activation of “call back” is
delayed until some synchronization point is reached in the role played by B,
for example the suspension of the role or its completion. Some conditions
may be attached to the synchronization points. A synchronization condition
could specify that any voice based service should be delayed after comple-
tion.

4.4 Other examples

The composition approach may also be used in other situations and applied to
information and management services:
• Filters or translators may be used in order to adapt a service to a user or an 

application. For example, a user may prefer not to be notified of the 
arrival of electronic messages in the morning, except from those sent from 
some selected sources.

• Services may also be adapted to handle some specific type of information. 
For example, the information retrieved from a name directory may have to 

SAa: Session
Actor

playing (“call waiting”)

Figure 7.Learning a new role.

UAb: User
Agent

SAb: Session
Actor

request_role

playrejectwithrequest (“call back”)

busy (“call waiting”)

UAb: User
Agent

playlearnrequest (“call back”)

playstatus (...)

play (“call waiting”, SAa)

play (“call back”)

stop (“caller basic call”)

play (“call back”)

stop (“call waiting”)

playstatus (...)

Basic Call initiated
user B is busy

Call back continue

(callee basic call, A)



Jacqueline Floch, Rolv Bræk

be re-formatted. Translation from voice to text or from text to voice may 
also be needed.

• A service may be adapted to some particular equipment. A subscriber of a 
PSTN that is using a traditional telephone set with no processing capabil-
ity may need to interact with an electronic service support application that 
was designed for interaction with remote PC users. Some adaptation func-
tion based on an IVR may be introduced between the telephone user and 
this electronic service.

• Billing, logging and other management functions may be designed as 
service roles that are composed with telecommunication and information 
services.

5 ROLE BASED SERVICE DEVELOPMENT

5.1 Specifying roles as state machines

Service roles make it possible to break down a complex behaviours into
simpler ones. A service role is the part that an object plays in a service. Each
object plays (communicates) with other objects that play dual or consistent
service roles. By dual roles we mean that roles complement each other and
can play together in a correct way, e.g. “caller” and “callee” roles in a call. By
consistent roles, we mean that roles can be aligned in order to provide a con-
sistent behaviour (see Section 6).

We use the same mechanisms for designing role types as for classes. Inter-
actions between roles can be modelled using message sequence charts and
their detailed behaviour using state machines. For example the behaviour of
roles may be specified using MSC [13] and SDL [14]. A main difference
between role types and classes is that role types cannot be instantiated on
their own but need to be assigned to objects. Role assignment sets require-
ments on the structure and behaviour of the object being assigned a role. This
will be discussed later in this paper.

5.2 Forms of composition

Service roles are composed in order to provide advanced service function-
ality. We distinguish between different forms of composition:
• Sequential composition: service roles are executed in a sequential order. 

Information may be transferred between two consecutive roles. For exam-
ple, the “basic call” and the “call back” service roles may be composed 
serially.



Towards Dynamic Composition of Hybrid Communication Services

• Parallel composition: service roles are executed in parallel. The roles may 
be executed for the same period of time or they may start and end at dif-
ferent times. The “billing” and “call basic” service roles may be com-
posed in parallel with billing being started when “call basic” reaches a 
connected state.

• Alternating composition: service roles are executed in an alternate manner 
i.e. only one role is active while the others are passive waiting for some 
event that enables them to be activated. Synchronization points are points 
of the role execution where the activation, suspension and resumption of 
the role execution can take place. Conditions may be associated with the 
synchronization points. In that case, the activation (or suspension and 
resumption) of the role execution can only take place if the conditions are 
fulfilled. Actions to be performed at role activation (or suspension and 
resumption) may also be attached; for example, communication resources 
may be released at suspension and reallocated at resumption. The “basic 
call” and “call waiting” service roles may be composed in an alternative 
way.

5.3 Composition behaviour

Our approach requires that roles are designed in order to enable composi-
tion. Roles must be prepared to report and catch events related to composi-
tion, and to coordinate with other roles they are composed with. We define
separately the composition behaviour and the service behaviour. Roles are
assigned, negotiated, learnt, suspended and resumed using interactions spe-
cific to the composition behaviour and independent from the service role
behaviour.

Role composition is triggered and controlled by service dependent events,
by user states (e.g. idle, connected, busy) and user preferences. In order to
generalize composition triggering and to define patterns for role design, we
need to identify and classify triggering events. We reuse the knowledge from
other frameworks where important service events have been identified, e.g.
Parlay [15].

Role assignment, negotiation and suspension may be attached service
dependent information; this is done using service independent mechanisms.
As shown in the previous examples, a list of alternative roles (and associated
conditions and actions) may be specified for role negotiation. The contents of
the list depend on the service role, but the mechanisms defined for specifying
and interpreting the list are service independent. For example, in “call for-
ward when busy”, we may specify that a check for call barring cases (this is a
service dependent action) has to be performed before accepting the “call for-
ward”.



Jacqueline Floch, Rolv Bræk

5.4 Synchronization

Alternating composition requires roles to be tightly coordinated with
other roles. Coordination occurs at synchronisation points. As dynamic com-
position may be applied to service roles that are designed by different parties
and at different times, it may not be possible, when designing a role, to fore-
see the behaviour of the roles this role will be composed with. In order to
generalize the coordination of alternate roles, we need to identify potential
synchronisation events. Here again, we reuse the knowledge from other
frameworks where important service events have been identified, e.g. Parlay
[15].

5.5 Role manager

The role manager encapsulates the intrinsic behaviour of a Session Actor.
It supports the assignment of service roles to actors, and coordinates the
negotiation and the learning of new roles. The role manager checks and initi-
ates the conditions and actions attached to service assignment and negotia-
tion. In addition, it coordinates the synchronisation of alternate roles.

While the User Agent coordinates a set of actors acting for a user, the role
manager coordinates a set of roles within an actor. Thus our framework intro-
duces two levels of control, one at the actor level and one at the role level.

5.6 Negotiation decision

In the examples presented in Section 4, we have assumed that actors were
able to decide whether a role should be granted or rejected, and to negotiate
alternative roles. This decision was based on the interpretation of a list of
alternative roles provided by the User Agent. The list is generated from a role
map that describes relations between roles and correct execution orders (see
Section 6). The role map can be adapted to user’s preferences. For example, a
user may prefer not to use “call waiting” when busy although this is a correct
combination of service role and state.

If the information contained in the list of alternative roles does not permit
the Session Actor to make a decision during negotiation, the Session Actor
may require external support. Decision support may be provided by the User
Agent or some other specialized agent in the network. The users may also be
involved in the decision process. As some terminals with limited capabilities
make it difficult to involve the users, the capabilities of the user terminals
have to be taken into account. The preferences of the users involved in the
service must also be significant. In our third example, the user A rejects “call



Towards Dynamic Composition of Hybrid Communication Services

waiting” because A does not wish to interrupt B; when A proposes the “call
back”, it would be incoherent to interrupt B in order to let him decide if the
role can be agreed.

5.7 Several actors and actor types

The examples presented in this paper have focused on the collaboration of
roles assigned to two different Session Actors. We plan to develop cases
where more than two Session Actors are involved.

In our work, we have chosen to first concentrate on the assignment of
roles to Session Actors. We will further develop the method in order to sup-
port the assignment of roles to the other components of the framework e.g.
the User Endpoint.

6 COMPOSITION CORRECTNESS

Although our work concentrates at the moment on the service design
aspects, we also have in mind the need for ensuring service correctness. Serv-
ice correctness is not a particular requirement set by the composition method.
We meet similar problems in traditional service development and deployment
approaches where the completeness and consistency of service specifications,
and the conformance of implementations to specifications have to be ensured.
However the assignment of roles to actors and their composition in our
method require special attention.

Development based on formal methods enable the verification of the
specifications, the automatic generation of code and test cases. It seems that
few attempts to use formal methods on large scale have been done and that
the methods are usually applied in general, not to the special case of hybrid
communication services [16]. By breaking down complex service behaviours
into small behavioural roles where each role can be specified using some for-
mal method (e.g. SDL [14]), and by constraining the ways these small behav-
iours can be composed together, we intend to produce specifications and
executable services that can be more easily verified and validated.

The role of the User Agent is crucial with respect to behavioural consist-
ency. The User Agent coordinates the assignment of roles in order to avoid
inconsistencies or undesirable service interactions. It also checks that the
assignment is consistent with respect to the user’s preferences and subscrip-
tion profile. We can distinguish between two problem areas:
• the role alignment i.e. ensuring that the roles assigned to interacting Ses-

sion Actors or negotiated between Session Actors collaborate in a consist-
ent manner leading to the execution of a correct service. For example the 



Jacqueline Floch, Rolv Bræk

“caller basic call” role should interact consistently with the “callee basic 
call” role.

• the role execution ordering i.e. checking that roles are assigned and 
played in a correct order. For example, the call forward role can only be 
assigned in relation with some other role assignment request such as call 
diversion.

6.1 Role alignment

Each Session Actor plays (or provides) a role that requires the interacting
Session Actor to play a consistent role. An association between actors is valid
if the provided roles “contain” the required roles [5]. Roles being assigned
should be aligned in order to ensure containment. We distinguish between
three levels of assignment:
• Validation. Checking that the required roles are contained in the provided 

roles. Validation is illustrated in our first example where the “caller basic 
call” role and “callee basic call” role must be validated.

• Adaptation. The roles are negotiated and adapted. Adaptation is illustrated 
in our second example where the “call forward” role is adapted to the 
“caller basic call” role.

• Learning. A role can be learned when the existing roles on one side are 
insufficient. Learning is illustrated in our third example where the “call 
back” role is learnt by the B side.

Ideally, role alignment should be performed dynamically. This would ena-
ble new services to be produced in a flexible manner during service adapta-
tion and service learning. In practice, the alignment is done during system
design. When a service is designed, new service roles are defined that com-
plement each other (dual roles) or new roles are designed to play with exist-
ing roles.

6.2 Role execution ordering

Service roles cannot be composed in any order. When a new role is intro-
duced, it is necessary to relate this new role to other existing roles and
describe execution constraints. We call this description a role map. The map
specifies the allowed role sequences. A notation was introduced in [9] for
specifying allowed role sequences. This notation needs to be further devel-
oped in order to enable annotations that describe events, conditions and
actions to be associated to the sequences in the map.



Towards Dynamic Composition of Hybrid Communication Services

7 OTHER ISSUES

We are aware that several other issues would need consideration. We have
chosen to concentrate on the functional service aspects. We list some other
interesting issues:
• Role discovery and downloading. Existing frameworks such as Java and 

Jini support retrieval and downloading. The Plug-and-Play project pro-
poses a basic infrastructure for dynamic plug-in and develops a demon-
stration platform based on Java that enables dynamic component plug-in 
[4]. Our work is based on the concepts introduced by Plug-and-Play.

• Service subscription. The possibility to learn new service roles at execu-
tion time changes the way of thinking about service subscription (i.e. the 
right to access a service). Operators and services providers may wish to 
limit the access to new services.

• Service billing. In traditional telecommunication networks, billing is 
related to service subscription and use. Dynamic composition makes tra-
ditional billing difficult. Rules for billing services that are not part of a 
subscriber repertoire but are learned during service execution may be 
designed.

• Failure management. The services roles downloaded from other parts may 
lead to errors. Failure management support is needed that permits the con-
trol of failures for downloaded code.

• Upgrade. There may exist several versions of a service role. Support for 
deploying new versions, for identifying specific versions is needed.

• Security. The operators and service providers will require the control of 
new service roles with respect to security.

• Performance. The dynamic composition should not introduce waiting 
delays that are longer than tolerated by the service users.

8 RELATED WORK

As explained in Section 3, our framework is inspired by TINA [11]. We
extend this approach in order to provide a flexible composition of services.
We have introduced simplifications to the TINA session model, that facilitate
our experimentation.

The notion of role is currently used in several object oriented methodolo-
gies. [9] describes the properties of roles. It introduces the concept of “roleifi-
cation” and compares it to other abstraction concepts as specialization and
aggregation. It discusses the specification of behavioural roles and present
how roles can be attached to objects. It also defines a notation for the repre-
sentation of allowed role sequences. We propose to further develop this nota-



Jacqueline Floch, Rolv Bræk

tion in order to specify role maps. OORASS is an object oriented
methodology based on role analysis and synthesis [8]. Roles are used in the
analysis that allows the designer to break the total problem into sub-prob-
lems. Synthesis combines the role in order to produce objects. While OORAS
has been mainly applied to information systems, we focus on communication
services. In addition, we propose a dynamic synthesis of roles.

A service composition method is proposed in the CANES project [17].
The method addresses transport services in Active Networks i.e. Internet
based networks where packets may contain executable programs that are
delivered to network elements. The services discussed in CANEs are related
to transport, e.g. packet forwarding, packet filtering, transcoding. Our work
focuses on high level services that have a more complex structure than trans-
port services. The “hybrid” aspect is not really important in CANEs and is
not discussed.

Several execution frameworks are available (e.g. CORBA, Jini, DCOM)
that propose general solutions to component based systems. In these frame-
works, the components are described by static interfaces. Thus the interfaces
do not cover the dynamic behaviour and cannot be checked in order to guar-
antee the correctness of interactions between components that are dynami-
cally bound together. [18] introduces to several architecture concepts and
investigate the properties that interfaces should provide in order to guarantee
the correctness of connections.

Feature interaction is a fundamental problem in service creation. The
problem arises from the extension of telecommunications system functional-
ity, feature by feature. In [19] the authors try to define a modular approach to
service specifications. Each feature is implemented by one or two compo-
nents types, and each external call is processed by a dynamically assembled
configuration of components. The proposed configuration is limited to an
assembly of pipes and filters, and the interactions modules are strictly limited
by the architecture. Our architecture is less restrictive than the pipe-and-filter
based architecture. We believe that the coordinated composition of service
roles and the definition of role maps are means for avoiding undesirable inter-
actions.

9 CONCLUSION

We have proposed an approach and a service execution framework that
enable services to be constructed dynamically from heterogeneous functional
components or service roles. Using roles, we are able to break down the com-
plexity of service specification. The service execution framework supports



Towards Dynamic Composition of Hybrid Communication Services

service negotiation and learning. Compared to traditional service develop-
ment and deployment methods, our approach offer several potential advan-
tages:
• Roles encapsulate a limited set of functional properties. They are small 

and can be easily understood.
• The method enforces systematic design. Roles are defined using generic 

composition patterns.
• Service role implementations may be shared between users.
• Service behaviour may be negotiated and adapted to the special needs of 

users.
• New service roles can be easily be tested.
• Rapid and incremental deployment of new services is enabled.
• The allowed sequences of roles can be described. These sequences can be 

adapted to user’s preferences. Undesirable service interactions may also 
be avoided.

• The approach is applicable to different types of services such as telecom-
munication, information and management services.

ACKNOWLEDGMENT

Our work is done in the frame of the Plug-and-Play project supported by
the Norwegian Foundation for Research (NFR) [4].

We would especially like to thank you Humberto Castejon for inspiring
discussions. Humberto, MSc. student at ETSIT, Universidad Politécnica de
Valencia, has been working with service role modelling and implementation
in our institute in the frame of his MSc. thesis.

REFERENCES

[1] TINA-C deliverable: Service Architecture Version 5.0. Available at 
http://www.tinac.com/ (accessed February 2000).

[2] C. Gbaguidi, J.P. Hubaux and M. Hamdi. “A programmable Architecture for the provision 
of Hybrid Services,” IEEE Communication Magazine, July 1999.

[3] G. Vanececk et al. “Enabling Hybrid services in Emerging Data Networks,” IEEE Com-
munication Magazine, July 1999.

[4] F.A. Aagesen et al. “Towards a Plug and Play Architecture for Telecommunications,” in 
Proc. of the Fifth International Conference on Intelligence in Networks, November 1999. 
Kluwer Academic Publishers. Information available at http://www.item.ntnu.no/~plugan-
dplay/ (accessed February 2000).



Jacqueline Floch, Rolv Bræk

[5] R. Bræk. “Using Roles with Types and Objects For Service Development,” in Proc. of the 
Fifth International Conference on Intelligence in Networks, November 1999. Kluwer 
Academic Publishers.

[6] C.W. Bachman and M. Daya. “The role concept in data models,” in Proc. of the Third 
International Conference on Very Large Databases, 1977.

[7] R. Wueringa and W. de Jonge. “The identification of objects and roles - Object identifiers 
revisited-,” Technical Report IR-267, Faculty of Mathematics and Computer Science, 
Vrije Universuteit, Amsterdam., December 1991.

[8] T. Reenskaug and al. “OORASS: Seamless support for the creation and maintenance of 
object oriented systems.” Journal of object-oriented programming, 1992.

[9] B.B. Kristensen and K. Østerbye. “Roles: Conceptual Abstraction Theory and Practical 
Language Issues,” Theory and Practice of Object Systems, Vol. 2(3), 1996.

[10] M. Mezini and K. Lieberherr. “Adaptative Plug-and-Play Components for Evolutionary 
Software Development,” in Proc. of the 13th Conference on Object-Oriented Program-
ming Systems, Languages and Applications, October 1998.

[11] TINA. Information available at http://www.tinac.com/ (accessed February 2000).

[12] OMG Unified Modeling Language Specification. Version 1.3 June 1999. Available at 
http://www.omg.org/ (accessed December 1999).

[13] Recommendation Z.120, ITU Message Sequence Charts (MSC), October 1996. ITU-T.

[14] Recommendation Z.100, ITU Specification and Design Language (SDL), June 1994. 
ITU-T.

[15] Parlay API Specification 2.0: Generic Call Control Service Data Definitions. Available at 
http://www.parlay.org/ (accessed February 2000).

[16] X. Logean, F. Dietrich and J.P. Hubaux. “On Applying Formal Techniques to the Devel-
opment of Hybrid Services: Challenges and Directions,” IEEE Communication Magazine, 
July 1999.

[17] E. Zegura (lead author). “Composable Services for Active Networks. Georgia”. Architec-
ture document from the CANEs project, Georgia Institute of Technology. Information 
available at http://www.cc.gatech.edu/projects/canes/ (accessed Mars 2000).

[18] D. Luckham and al. “Three Concepts of Architecture”. Stanford University Technical 
Report CSL-TR-95-674, July 1995.

[19] M. Jackson and P. Zave. “Distributed Feature Composition: A Virtual Architecture for 
Telecommunications Services,” IEEE Transactions on Software Engineering, October 
1998.


